tensor.py 29.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
X
xuwei06 已提交
24
import numpy
Y
Yu Yang 已提交
25 26

__all__ = [
L
li099 已提交
27 28 29
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
30
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Z
zhoukunsheng 已提交
31
    'range', 'linspace', 'zeros_like', 'diag'
Y
Yu Yang 已提交
32 33 34
]


X
xuwei06 已提交
35
def create_tensor(dtype, name=None, persistable=False):
36
    """
Q
update  
qiaolongfei 已提交
37
    Create an variable, which will hold a LoDTensor with data type dtype.
38 39

    Args:
Q
update  
qiaolongfei 已提交
40
        dtype(string): 'float32'|'int32'|..., the data type of the
41
            created tensor.
Q
update  
qiaolongfei 已提交
42
        name(string): The name of the created tensor, if not set,
43
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
44
        persistable(bool): Set the persistable flag of the create tensor.
45 46 47 48 49 50 51 52 53

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
54
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
55 56
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
57 58


59 60
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
61
                     name=None,
62 63 64 65
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
66 67 68 69 70 71
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

72 73 74 75 76 77 78 79 80 81 82
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
83 84 85 86 87 88
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
89
    """
Q
Qiao Longfei 已提交
90
    helper = LayerHelper("create_parameter", **locals())
91
    if attr is None:
X
xuwei06 已提交
92
        attr = ParamAttr(name=name)
93 94 95 96
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


97 98 99 100 101 102 103
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
X
Xin Pan 已提交
104
    Create a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
105

106 107
    Args:
        shape(list[int]): shape of the variable
M
minqiyang 已提交
108
        value(float): the value of the variable. The new created
F
fengjiayi 已提交
109 110
                      variable will be filled with it.
        dtype(string): data type of the variable
M
minqiyang 已提交
111
        persistable(bool): if this variable is persistable.
F
fengjiayi 已提交
112
                           Default: False
M
minqiyang 已提交
113
        force_cpu(bool): force this variable to be on CPU.
F
fengjiayi 已提交
114
                         Default: False
M
minqiyang 已提交
115 116
        name(str|None): The name of the variable. If set to None the variable
                        name will be generated automatically.
F
fengjiayi 已提交
117
                        Default: None
118 119 120

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
121 122 123 124

    Examples:
        .. code-block:: python

M
minqiyang 已提交
125
            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32',
F
fengjiayi 已提交
126
                                 persistable=True, force_cpu=True, name='new_var')
127
    """
Q
Qiao Longfei 已提交
128 129
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
130 131 132 133 134
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
135 136 137
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
138

Q
Qiao Longfei 已提交
139 140 141
    return var


142
def cast(x, dtype):
Y
Yu Yang 已提交
143
    """
M
minqiyang 已提交
144
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts
T
tensor-tang 已提交
145 146
    it to the output with :attr:`dtype`. It's meaningless if the output
    dtype equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
147 148 149 150 151 152 153 154 155 156

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
157

Y
Yibing Liu 已提交
158 159
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
160 161
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
162
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
163 164 165 166 167 168 169 170 171
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


172
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
173
    """
174 175 176
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
177
    and returns that as the output.
178 179 180 181

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
182 183
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
184 185 186 187 188 189

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
190

191 192 193 194 195
            a = fluid.layers.data(name='a', shape=[2, 13], dtype='float32')
            b = fluid.layers.data(name='b', shape=[2, 3], dtype='float32')
            c = fluid.layers.data(name='c', shape=[2, 2], dtype='float32')
            d = fluid.layers.data(name='d', shape=[2, 5], dtype='float32')
            out = fluid.layers.concat(input=[a, b, c, d], axis=2)
Y
Yu Yang 已提交
196 197
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
198
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
199 200 201 202 203 204 205 206
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
207 208 209 210 211 212
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
M
minqiyang 已提交
213

L
li099 已提交
214
    .. code-block:: text
M
minqiyang 已提交
215

L
li099 已提交
216 217 218 219 220 221 222 223
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
M
minqiyang 已提交
224

L
li099 已提交
225
        axis = 1
M
minqiyang 已提交
226

L
li099 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

           output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
    """
L
li099 已提交
249
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
250 251 252
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
253
        type='tensor_array_to_tensor',
L
li099 已提交
254 255 256 257 258 259 260
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


261
def sums(input, out=None):
F
fengjiayi 已提交
262 263
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
264 265 266 267 268
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
269
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
270
                             Default: None
K
kavyasrinet 已提交
271 272

    Returns:
F
fengjiayi 已提交
273
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
274 275

    Examples:
F
fengjiayi 已提交
276
        .. code-block:: python
K
kavyasrinet 已提交
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
          import paddle.fluid as fluid

          # sum of several tensors
          a0 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
          a1 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
          a2 = fluid.layers.fill_constant(shape=[1], dtype='int64', value=3)
          sums = fluid.layers.sums(input=[a0, a1, a2])

          # sum of a tensor array
          array = fluid.layers.create_array('int64')
          i = fluid.layers.zeros(shape=[1], dtype='int64', force_cpu=True)
          fluid.layers.array_write(a0, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a1, array=array, i=i)
          i = fluid.layers.increment(x=i)
          fluid.layers.array_write(a2, array=array, i=i)
          sums = fluid.layers.sums(input=array)
Y
Yu Yang 已提交
295 296 297
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
298 299
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
300 301 302 303 304
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
305 306 307
    return out


F
fengjiayi 已提交
308
def assign(input, output=None):
309 310 311 312 313 314
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
315
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
316
        output(Variable|None): The destination variable
317 318 319 320 321 322

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
323

324 325 326 327
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
328
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
329
    if output is None:
X
Xin Pan 已提交
330
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
331 332
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
333
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
334 335
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
336
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
337
            value_name = "fp32_values"
338
            values = [float(v) for v in input.flat]
339
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
340
            value_name = "int32_values"
341
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
342 343
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
344 345 346
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
347 348 349 350 351 352 353

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
354
                value_name: values
X
xuwei06 已提交
355 356 357 358
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
359 360 361
    return output


Q
QI JUN 已提交
362
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
363
    """
364 365
    **fill_constant**

366 367
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
368

369
    The attribute `stop_gradient` of the created tensor is set to True.
370 371

    Args:
372
        shape(tuple|list|None): Shape of the output tensor.
373
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
374 375
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
376
        force_cpu(True|False): data should be on CPU if set true.
377 378

    Returns:
379
        Variable: The tensor variable storing the output.
380 381 382 383 384

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
385
    """
386

Y
Yu Yang 已提交
387 388
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
X
Xin Pan 已提交
389
        out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
390 391 392 393
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
394 395 396 397
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
398
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
399 400
        },
        stop_gradient=True)
Y
Yu Yang 已提交
401 402 403 404
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
405
@templatedoc()
Y
Yu Yang 已提交
406 407 408 409 410
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
411
                                  output_dim_idx=0):
412
    """
Y
yuyang18 已提交
413
    ${comment}
414 415 416 417

    It also sets *stop_gradient* to True.

    Args:
Y
yuyang18 已提交
418
        input(${input_type}): ${input_comment}.
419

Y
yuyang18 已提交
420
        shape(${shape_type}): ${shape_comment}.
421

Y
yuyang18 已提交
422 423 424
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
425

Y
yuyang18 已提交
426 427 428 429 430
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
431
        ${out_comment}.
H
haowang101779990 已提交
432 433 434 435 436 437 438 439

    Examples:

        .. code-block:: python

             data = fluid.layers.fill_constant_batch_size_like(
                         input=like, shape=[1], value=0, dtype='int64')

440
    """
Y
Yu Yang 已提交
441
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
442
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
458 459 460 461
def argmin(x, axis=0):
    """
    **argmin**

462
    This function computes the indices of the min elements
S
sneaxiy 已提交
463 464 465 466 467 468
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
469

S
sneaxiy 已提交
470 471
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
472

S
sneaxiy 已提交
473 474
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
475

476 477 478
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out = fluid.layers.argmin(x, axis=0)
            out = fluid.layers.argmin(x, axis=-1)
S
sneaxiy 已提交
479 480
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
481
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
482 483 484 485 486 487 488 489 490 491 492 493
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

494
    This function computes the indices of the max elements
S
sneaxiy 已提交
495 496 497 498 499 500
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
501

S
sneaxiy 已提交
502 503
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
504

S
sneaxiy 已提交
505 506
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
507

508 509 510
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out = fluid.layers.argmax(x, axis=0)
            out = fluid.layers.argmax(x, axis=-1)
S
sneaxiy 已提交
511 512
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
513
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
514 515 516 517 518 519 520 521
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


522
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
523
    """
M
minqiyang 已提交
524 525
    Performs sorting on the input Variable along the given axis, and outputs
    sorted data Varibale and its corresponding index Variable with the same
Y
Yibing Liu 已提交
526 527 528
    shape as :attr:`input`.

    .. code-block:: text
M
minqiyang 已提交
529

Y
Yibing Liu 已提交
530 531 532 533 534 535 536 537 538 539 540 541
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

M
minqiyang 已提交
542
            indices = [[0, 1, 2],
Y
Yibing Liu 已提交
543 544 545 546
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
M
minqiyang 已提交
547 548
        axis(int): The axis along which to sort the input Variable. When
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` +
Y
Yibing Liu 已提交
549
                   rank(:attr:`input`). Default -1, the last dimension.
M
minqiyang 已提交
550
        name(str|None): (optional) A name for this layer. If set None, the
551
                   layer will be named automatically.
Y
Yibing Liu 已提交
552 553 554 555 556 557 558

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

559 560
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
            out, indices = fluid.layers.argsort(input=x, axis=0)
Y
Yibing Liu 已提交
561 562
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
563 564 565 566
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
567 568 569 570
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
571 572
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
573 574 575
    return out, ids


Y
Yang Yu 已提交
576
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
577
    """
578 579 580 581 582 583 584 585
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
C
chengduozh 已提交
586
        shape(tuple|list): Shape of output tensor
587
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
588 589 590 591 592 593 594 595

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
596
    """
C
chengduozh 已提交
597 598 599 600
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
601 602 603
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
604
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
605
    """
606 607 608 609 610 611 612 613
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
614 615 616
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
617 618

    Returns:
W
wanghaoshuang 已提交
619
        Variable: The tensor variable storing the output.
620 621 622 623 624

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
625 626
    """
    return fill_constant(value=0.0, **locals())
627 628


F
fengjiayi 已提交
629 630 631 632 633 634 635 636
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
637 638 639
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
654
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
655 656
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
657
        inputs={'X': x},
F
fengjiayi 已提交
658 659 660 661 662
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


663 664 665 666 667 668 669
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
670 671 672
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
688 689
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
690
        file_path(str): The file path where variables will be saved.
691
        overwrite(bool): Whether or not cover the given file when it has already
692 693
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
733 734 735 736 737 738 739 740 741 742 743 744 745


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
746
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
762
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
779
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
780 781
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

    args:
        start(int|float|Variable): Start of interval. The interval includes this value.
        end(int|float|Variable): End of interval. The interval does not include this
                                 value, except in some cases where step is not an integer
                                 and floating point round-off affects the length of out. 
        step(int|float|Variable): Spacing between values. For any output out, this is the
                                  distance between two adjacent values, out[i+1] - out[i].
                                  The default step size is 1.
        dtype(string): 'float32'|'int32'|..., the data type of the output tensor.

    returns:
        Evenly spaced values within a given interval.

    examples:

        .. code-block:: python

             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
829 830


Z
zhoukunsheng 已提交
831 832 833 834 835 836 837 838
def linspace(start, stop, num, dtype):
    """
    Return fixed number of evenly spaced values within a given interval.

    First entry is start, and last entry is stop. In the case when Num is 1, only Start is returned. Like linspace function of numpy.

    Args:
        start(float|Variable): First entry in the sequence. It is a float scalar, or a tensor of shape [1] with type 'float32'|'float64'.
Z
zhoukunsheng 已提交
839
        stop(float|Variable): Last entry in the sequence. It is a float scalar, or a tensor of shape [1] with type 'float32'|'float64'.
Z
zhoukunsheng 已提交
840 841 842 843 844 845
        num(int|Variable): Number of entry in the sequence. It is an int scalar, or a tensor of shape [1] with type int32.
        dtype(string): 'float32'|'float64', the data type of the output tensor.

    Returns:
        Variable: The tensor variable storing a 1-D tensor. 

Z
zhoukunsheng 已提交
846
    Examples:
Z
zhoukunsheng 已提交
847 848
        .. code-block:: python

Z
zhoukunsheng 已提交
849 850
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
871 872


Z
zhoukunsheng 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
def zeros_like(x, out=None):
    """
    **zeros_like**

    This function creates a zeros tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
        Variable: The tensor variable storing the output.

    Examples:
        .. code-block:: python

Z
zhoukunsheng 已提交
890 891 892
          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
893 894 895 896 897 898 899 900 901
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937


def diag(diagonal):
    """
    **diag**

    This function creates a square matrix which has diagonal values specified by `diagonal`.

    Args:
        diagonal(Variable|numpy.ndarray): The input tensor specifying diagonal values, should be of rank 1.

    Returns:
        Variable: The tensor variable storing the square matrix.

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
          data = fluid.layers.diag(np.arange(3, 6)) 

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out