tensor.py 53.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
19
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
20
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .. import core
24
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
25
from . import utils
26
from ..data_feeder import check_type_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
27
import numpy
28
import warnings
Y
Yu Yang 已提交
29 30

__all__ = [
L
li099 已提交
31 32 33
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
34
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
35
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
36 37 38
]


X
xuwei06 已提交
39
def create_tensor(dtype, name=None, persistable=False):
40
    """
W
wangchaochaohu 已提交
41
    Create a variable, which will hold a Tensor with data type dtype.
42 43

    Args:
W
wangchaochaohu 已提交
44 45 46 47
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
48
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
49
            default value is False.
50 51

    Returns:
W
wangchaochaohu 已提交
52
        Variable: The tensor to be created according to dtype.
53 54 55 56

    Examples:
        .. code-block:: python

57
          import paddle.fluid as fluid
58 59
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
60
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
61 62
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
63 64


65 66
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
67
                     name=None,
68 69 70 71
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
72
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
73 74 75 76 77
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

78 79 80 81 82 83 84
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
85 86 87
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
88
        default_initializer (Initializer, optional): Initializer for the parameter
89 90

    Returns:
91
        The created parameter.
Y
yuyang18 已提交
92 93

    Examples:
94 95
        .. code-block:: python

96
            import paddle.fluid as fluid
97 98
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
99
    """
Q
Qiao Longfei 已提交
100
    helper = LayerHelper("create_parameter", **locals())
101
    if attr is None:
X
xuwei06 已提交
102
        attr = ParamAttr(name=name)
103 104 105 106
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


107 108 109 110 111 112 113
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
114
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
115

116 117 118
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
119
                      variable will be filled with it.
120 121
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
122
                           Default: False
123
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
124
                         Default: False
125 126
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
127 128

    Returns:
129
        Variable: The created Variable
F
fengjiayi 已提交
130 131 132 133

    Examples:
        .. code-block:: python

134
            import paddle.fluid as fluid
135 136 137
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
138
    """
Q
Qiao Longfei 已提交
139 140
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
141 142 143 144 145
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
146 147 148
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
149

Q
Qiao Longfei 已提交
150 151 152
    return var


153
def cast(x, dtype):
Y
Yu Yang 已提交
154
    """
155 156 157
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
158 159

    Args:
160 161 162 163
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
164 165

    Returns:
166
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
167 168 169

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
170

171
            import paddle.fluid as fluid
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
194 195
    """
    helper = LayerHelper('cast', **locals())
196 197 198 199
    check_type_and_dtype(
        x, 'x', Variable,
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
X
Xin Pan 已提交
200
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
201 202 203 204 205 206 207 208 209
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


210
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
211
    """
212 213
    **Concat**

214
    This OP concatenates the input along the axis.
215 216

    Args:
217 218
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
219
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
220 221 222 223 224
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
225 226

    Returns:
227
        Variable: A Tensor with the same data type as input's.
228 229 230

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
231

232
            import paddle.fluid as fluid
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
255
    """
256 257 258 259 260 261 262 263 264 265

    if in_dygraph_mode():
        inputs = {'X': input}
        if not isinstance(axis, int):
            raise TypeError(
                "Input 'axis' in concat must be int in Dygraph mode.")
        attrs = {'axis': axis}
        outs = core.ops.concat(inputs, attrs)
        return outs['Out'][0]

266 267 268 269 270
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
271 272 273 274 275
    for id, x in enumerate(input):
        check_type_and_dtype(
            x, 'input[' + str(id) + ']', Variable,
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
276 277 278 279 280 281 282 283
    inputs = {'X': input}
    attrs = {}
    if isinstance(axis, Variable):
        axis.stop_gradient = True
        inputs['AxisTensor'] = axis
    else:
        attrs['axis'] = axis

284
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
285
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
286
    helper.append_op(
287
        type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
288 289 290
    return out


G
Guo Sheng 已提交
291
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
292
    """
G
Guo Sheng 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
343 344

    Args:
G
Guo Sheng 已提交
345 346 347 348 349 350 351
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
352 353

    Returns:
G
Guo Sheng 已提交
354 355 356
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
357 358 359 360

    Examples:
        .. code-block:: python

361
            import paddle.fluid as fluid
362
            import numpy as np
G
Guo Sheng 已提交
363 364 365 366 367 368 369
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
370
    """
L
li099 已提交
371
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
372 373 374
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
375
        type='tensor_array_to_tensor',
L
li099 已提交
376 377 378
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
379 380
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
381 382 383
    return out, out_index


384
def sums(input, out=None):
F
fengjiayi 已提交
385
    """
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
407 408

    Args:
409 410 411 412
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
413 414

    Returns:
415 416
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
417 418

    Examples:
F
fengjiayi 已提交
419
        .. code-block:: python
K
kavyasrinet 已提交
420

421 422 423 424 425 426 427 428 429
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
430

431 432
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
433 434 435
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
436 437
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
438 439 440 441 442
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
443 444 445
    return out


F
fengjiayi 已提交
446
def assign(input, output=None):
447
    """
448
    The OP copies the :attr:`input` to the :attr:`output`.
449

450 451 452 453 454
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
455 456

    Returns:
457
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
458 459 460

    Examples:
        .. code-block:: python
461

462
          import paddle.fluid as fluid
463 464 465 466 467 468
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
469
    """
Y
Yu Yang 已提交
470
    helper = LayerHelper('assign', **locals())
471
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
472
    if isinstance(input, Variable):
473 474 475
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
476 477 478
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
479
        helper.append_op(
R
robot 已提交
480
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
481 482
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
483
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
484
            value_name = "fp32_values"
485
            values = [float(v) for v in input.flat]
486
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
487
            value_name = "int32_values"
488
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
489
        else:
490 491 492 493
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be float32 or int32, but "
                "received %s." % convert_dtype(dtype))
494 495 496
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
497 498 499
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
500 501 502 503 504 505
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
506
                value_name: values
X
xuwei06 已提交
507 508
            })

Y
Yu Yang 已提交
509 510 511
    return output


Q
QI JUN 已提交
512
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
513
    """
W
wangchaochaohu 已提交
514
    This OP creates a Tensor with specified `shape` and `dtype`, and
515
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
516

W
wangchaochaohu 已提交
517
    The attribute `stop_gradient` of the created Tensor is setted to True.
518 519

    Args:
520 521 522 523
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
524 525 526 527 528 529 530
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
531 532

    Returns:
W
wangchaochaohu 已提交
533 534 535 536 537
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
538 539 540 541

    Examples:
        .. code-block:: python

542
          import paddle.fluid as fluid
543 544 545 546 547 548 549 550 551 552 553 554
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
          # data1=[[0], [0]] data2=[[5], [5]]

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
Y
Yu Yang 已提交
555
    """
556 557 558 559 560 561 562 563 564 565 566 567
    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
L
Leo Chen 已提交
568
            if utils._contain_var(shape):
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
                raise TypeError(
                    "The type of 'shape' in fill_constant must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in fill_constant must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))
        if out is None:
            out = _varbase_creator(dtype=dtype)
        attrs['dtype'] = out.dtype
        outputs = {'Out': [out]}
        outs = core.ops.fill_constant({}, attrs, outputs)
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
585
    helper = LayerHelper("fill_constant", **locals())
586 587 588 589
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
L
liym27 已提交
590 591 592 593 594 595
    inputs = {}
    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

596 597 598 599 600
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))

L
liym27 已提交
601 602 603 604 605 606 607 608 609 610 611
    def _get_attr_shape(list_shape):
        attr_shape = []
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                attr_shape.append(-1)
            else:
                attr_shape.append(dim)
        return attr_shape

    def _get_shape_tensor(list_shape):
        new_shape_tensor = []
612
        for idx, dim in enumerate(list_shape):
L
liym27 已提交
613 614
            if isinstance(dim, Variable):
                dim.stop_gradient = True
615 616 617 618
                check_dtype(
                    dim.dtype, 'shape[' + str(idx) + ']', ['int32', 'int64'],
                    'fill_constant',
                    '(When type of shape in fill_constant is list or tuple.)')
619 620
                if convert_dtype(dim.dtype) == 'int64':
                    dim = cast(x=dim, dtype='int32')
L
liym27 已提交
621 622 623 624 625 626 627 628 629
                new_shape_tensor.append(dim)
            else:
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    if isinstance(shape, Variable):
        shape.stop_gradient = True
630 631
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant',
                    '(When type of shape in fill_constant is Variable.)')
632 633
        if (convert_dtype(shape.dtype) == 'int64'):
            shape = cast(shape, 'int32')
L
liym27 已提交
634 635 636 637 638 639
        inputs["ShapeTensor"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, (
            "The size of 'shape' in fill_constant can't be zero, "
            "but received %s." % len(shape))
        attrs["shape"] = _get_attr_shape(shape)
L
Leo Chen 已提交
640
        if utils._contain_var(shape):
L
liym27 已提交
641 642
            inputs['ShapeTensorList'] = _get_shape_tensor(shape)

Y
Yu Yang 已提交
643
    if out is None:
X
Xin Pan 已提交
644
        out = helper.create_variable_for_type_inference(dtype=dtype)
645
    else:
646 647 648 649 650
        check_dtype(
            dtype, 'create data type',
            convert_dtype(out.dtype), 'fill_constant',
            '(The create data type in fill_constant must be the same with out data type.)'
        )
L
liym27 已提交
651
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
652 653
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
654
        inputs=inputs,
Y
Yu Yang 已提交
655
        outputs={'Out': [out]},
L
liym27 已提交
656
        attrs=attrs,
M
minqiyang 已提交
657
        stop_gradient=True)
Y
Yu Yang 已提交
658 659 660 661
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
662
@templatedoc()
Y
Yu Yang 已提交
663 664 665 666 667
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
668 669
                                  output_dim_idx=0,
                                  force_cpu=False):
670
    """
W
wangchaochaohu 已提交
671 672 673 674 675
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
676 677

    Args:
W
wangchaochaohu 已提交
678 679 680 681 682 683 684 685 686 687 688
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
G
Guo Sheng 已提交
689
        force_cpu(bool): data should be on CPU if it's true, defalut value is False.
Y
yuyang18 已提交
690 691

    Returns:
W
wangchaochaohu 已提交
692
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
693 694 695 696 697

    Examples:

        .. code-block:: python

698
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
699
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
700
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
701
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
702

703
    """
Y
Yu Yang 已提交
704
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
705
    out = helper.create_variable_for_type_inference(dtype=dtype)
706 707 708 709 710 711 712 713 714 715 716 717
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
        'force_cpu': force_cpu or force_init_on_cpu()
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
718 719 720 721
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
722
        attrs=attrs)
Y
Yu Yang 已提交
723 724 725 726
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
727 728 729 730
def argmin(x, axis=0):
    """
    **argmin**

731 732
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
733 734

    Args:
735 736 737 738 739
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
740

S
sneaxiy 已提交
741
    Returns:
742
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
743

S
sneaxiy 已提交
744 745
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
746

747
            import paddle.fluid as fluid
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
775 776
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
777
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
778 779 780 781 782 783 784 785 786 787 788 789
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

790 791
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
792 793

    Args:
794 795 796 797 798
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
799

S
sneaxiy 已提交
800
    Returns:
801
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
802

S
sneaxiy 已提交
803 804
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
805

806
            import paddle.fluid as fluid
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
834 835
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
836
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
837 838 839 840 841 842 843 844
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


845
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
846
    """
847 848 849
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
850 851

    Args:
852 853 854 855 856
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
857 858 859
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
860 861 862
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
863 864

    Returns:
865 866 867
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
868 869 870 871

    Examples:
        .. code-block:: python

872
            import paddle.fluid as fluid
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
914 915
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
916 917 918 919
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
920 921 922 923
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
924
                 'Indices': ids},
925 926
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
927 928 929
    return out, ids


Y
Yang Yu 已提交
930
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
931
    """
932 933
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
934

935 936 937 938 939 940 941
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
942 943

    Returns:
944
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
945 946 947 948

    Examples:
        .. code-block:: python

949
          import paddle.fluid as fluid
950
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
951
    """
C
chengduozh 已提交
952 953 954 955
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
956 957 958
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
959
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
960
    """
961 962
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
963

964 965 966 967 968 969 970
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
971 972

    Returns:
973
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
974 975 976 977

    Examples:
        .. code-block:: python

978
          import paddle.fluid as fluid
979
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
980
    """
981 982 983
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
984
    return fill_constant(value=0.0, **locals())
985 986


F
fengjiayi 已提交
987 988
def reverse(x, axis):
    """
989
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
990

991 992 993 994 995
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
996 997

    Returns:
998
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
999 1000 1001 1002

    Examples:
        .. code-block:: python

1003
          import paddle.fluid as fluid
1004 1005 1006 1007
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1008 1009 1010 1011
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1012
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1013 1014
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1015
        inputs={'X': x},
F
fengjiayi 已提交
1016 1017 1018 1019 1020
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1021 1022 1023 1024 1025 1026 1027
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1028 1029 1030
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1046 1047
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1048
        file_path(str): The file path where variables will be saved.
1049
        overwrite(bool): Whether or not cover the given file when it has already
1050 1051
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1052 1053 1054 1055 1056 1057 1058 1059

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1060
            import paddle.fluid as fluid
1061 1062 1063 1064 1065 1066 1067
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1092 1093 1094 1095 1096 1097 1098


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1099
       x (Variable): The Tensor/LoDTensor to be checked.
1100 1101

    Returns:
L
liu zhengxi 已提交
1102
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1103 1104 1105 1106 1107 1108 1109 1110
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1111 1112
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1113
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1114 1115 1116 1117 1118 1119 1120 1121 1122
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1123
       x (Variable): The Tensor/LoDTensor to be checked.
1124 1125

    Returns:
L
liu zhengxi 已提交
1126
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1127 1128 1129 1130 1131 1132 1133 1134
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1135 1136
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1137
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1152 1153 1154 1155 1156

    Examples:

        .. code-block:: python

1157
            import paddle.fluid as fluid
1158 1159 1160
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1161
            out = fluid.layers.isfinite(var)
1162 1163
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
1164
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1165 1166
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1176 1177 1178 1179
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1180
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1181 1182 1183
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1184
                                  distance between two adjacent values, out[i+1] - out[i].
1185
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1186

L
Liufang Sang 已提交
1187 1188 1189
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1190 1191 1192 1193 1194

    examples:

        .. code-block:: python

1195
             import paddle.fluid as fluid
W
whs 已提交
1196 1197 1198 1199 1200
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

1201 1202 1203 1204
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1205 1206
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1207 1208 1209 1210 1211
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1212 1213
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1214 1215 1216
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1217 1218
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1219 1220
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1230
    out.stop_gradient = True
W
whs 已提交
1231
    return out
Z
zhoukunsheng 已提交
1232 1233


Z
zhoukunsheng 已提交
1234 1235
def linspace(start, stop, num, dtype):
    """
1236
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1237 1238

    Args:
1239 1240 1241 1242 1243 1244 1245
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1246 1247

    Returns:
1248 1249 1250
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1251

Z
zhoukunsheng 已提交
1252
    Examples:
Z
zhoukunsheng 已提交
1253 1254
        .. code-block:: python

1255
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1256 1257
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1278 1279


Z
zhoukunsheng 已提交
1280 1281
def zeros_like(x, out=None):
    """
1282
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1283 1284 1285
    with `x`.

    Args:
1286 1287 1288 1289
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
1290 1291

    Returns:
1292 1293
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1294 1295 1296 1297

    Examples:
        .. code-block:: python

1298
          import paddle.fluid as fluid
1299
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1300 1301
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1311 1312 1313 1314


def diag(diagonal):
    """
1315
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1316 1317

    Args:
1318 1319
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1320 1321

    Returns:
1322 1323
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1324 1325 1326 1327 1328 1329 1330

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1331 1332 1333

          import paddle.fluid as fluid
          import numpy as np
1334 1335 1336
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1352 1353


1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1366 1367
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1368 1369

    Returns:
1370
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1371 1372 1373 1374 1375

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1376 1377
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1378
          #  [0, 1, 0]
1379 1380
          #  [0, 0, 1]]

1381
          data = fluid.layers.eye(2, 3, dtype='int32')
1382
          # [[1, 0, 0]
1383
          #  [0, 1, 0]]
1384 1385

          data = fluid.layers.eye(2, batch_shape=[3])
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1438
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out