tensor.py 23.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
M
minqiyang 已提交
23
from ..imperative import base as imperative_base
24
from .layer_function_generator import templatedoc
X
xuwei06 已提交
25
import numpy
Y
Yu Yang 已提交
26 27

__all__ = [
L
li099 已提交
28 29 30 31
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite'
Y
Yu Yang 已提交
32 33 34
]


X
xuwei06 已提交
35
def create_tensor(dtype, name=None, persistable=False):
36
    """
Q
update  
qiaolongfei 已提交
37
    Create an variable, which will hold a LoDTensor with data type dtype.
38 39

    Args:
Q
update  
qiaolongfei 已提交
40
        dtype(string): 'float32'|'int32'|..., the data type of the
41
            created tensor.
Q
update  
qiaolongfei 已提交
42
        name(string): The name of the created tensor, if not set,
43
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
44
        persistable(bool): Set the persistable flag of the create tensor.
45 46 47 48 49 50 51 52 53

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
54
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
55 56
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
57 58


59 60
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
61
                     name=None,
62 63 64 65
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
66 67 68 69 70 71
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

72 73 74 75 76 77 78 79 80 81 82
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
83 84 85 86 87 88
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
89
    """
Q
Qiao Longfei 已提交
90
    helper = LayerHelper("create_parameter", **locals())
91
    if attr is None:
X
xuwei06 已提交
92
        attr = ParamAttr(name=name)
93 94 95 96
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


97 98 99 100 101 102 103
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
X
Xin Pan 已提交
104
    Create a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
105

106 107
    Args:
        shape(list[int]): shape of the variable
M
minqiyang 已提交
108
        value(float): the value of the variable. The new created
F
fengjiayi 已提交
109 110
                      variable will be filled with it.
        dtype(string): data type of the variable
M
minqiyang 已提交
111
        persistable(bool): if this variable is persistable.
F
fengjiayi 已提交
112
                           Default: False
M
minqiyang 已提交
113
        force_cpu(bool): force this variable to be on CPU.
F
fengjiayi 已提交
114
                         Default: False
M
minqiyang 已提交
115 116
        name(str|None): The name of the variable. If set to None the variable
                        name will be generated automatically.
F
fengjiayi 已提交
117
                        Default: None
118 119 120

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
121 122 123 124

    Examples:
        .. code-block:: python

M
minqiyang 已提交
125
            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32',
F
fengjiayi 已提交
126
                                 persistable=True, force_cpu=True, name='new_var')
127
    """
Q
Qiao Longfei 已提交
128 129
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
    print("set_variable_initializer, ", var.name)
    if imperative_base.enabled():
        var = helper.set_variable_initializer(
            var, initializer=Constant(
                value=float(value), force_cpu=force_cpu))
        print("get var", var)
    else:
        helper.set_variable_initializer(
            var, initializer=Constant(
                value=float(value), force_cpu=force_cpu))

Q
Qiao Longfei 已提交
146 147 148
    return var


149
def cast(x, dtype):
Y
Yu Yang 已提交
150
    """
M
minqiyang 已提交
151
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts
Y
Yibing Liu 已提交
152 153 154 155 156 157 158 159 160 161 162
    it to the output with :attr:`dtype`.

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
163

Y
Yibing Liu 已提交
164 165
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
166 167
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
168
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
169 170 171 172 173 174 175 176 177
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


178
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
179
    """
180 181 182
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
183
    and returns that as the output.
184 185 186 187

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
188 189
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
190 191 192 193 194 195

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
196

F
fengjiayi 已提交
197
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
198 199
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
200
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
201 202 203 204 205 206 207 208
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
209 210 211 212 213 214
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
M
minqiyang 已提交
215

L
li099 已提交
216
    .. code-block:: text
M
minqiyang 已提交
217

L
li099 已提交
218 219 220 221 222 223 224 225
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
M
minqiyang 已提交
226

L
li099 已提交
227
        axis = 1
M
minqiyang 已提交
228

L
li099 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

           output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
    """
L
li099 已提交
251
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
252 253 254
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
255
        type='tensor_array_to_tensor',
L
li099 已提交
256 257 258 259 260 261 262
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


263
def sums(input, out=None):
F
fengjiayi 已提交
264 265
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
266 267 268 269 270
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
271
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
272
                             Default: None
K
kavyasrinet 已提交
273 274

    Returns:
F
fengjiayi 已提交
275
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
276 277

    Examples:
F
fengjiayi 已提交
278
        .. code-block:: python
K
kavyasrinet 已提交
279 280 281 282 283 284

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
285 286
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
287
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
288 289 290
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
291 292
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
293 294 295 296 297
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
298 299 300
    return out


F
fengjiayi 已提交
301
def assign(input, output=None):
302 303 304 305 306 307
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
308
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
309
        output(Variable|None): The destination variable
310 311 312 313 314 315

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
316

317 318 319 320
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
321
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
322
    if output is None:
X
Xin Pan 已提交
323
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
324 325
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
326
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
327 328
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
329
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
330
            value_name = "fp32_values"
331
            values = [float(v) for v in input.flat]
332
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
333
            value_name = "int32_values"
334
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
335 336
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
337 338 339
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
340 341 342 343 344 345 346

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
347
                value_name: values
X
xuwei06 已提交
348 349 350 351
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
352 353 354
    return output


Q
QI JUN 已提交
355
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
356
    """
357 358
    **fill_constant**

359 360
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
361

362
    The attribute `stop_gradient` of the created tensor is set to True.
363 364

    Args:
365
        shape(tuple|list|None): Shape of the output tensor.
366
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
367 368
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
369
        force_cpu(True|False): data should be on CPU if set true.
370 371

    Returns:
372
        Variable: The tensor variable storing the output.
373 374 375 376 377

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
378
    """
379

Y
Yu Yang 已提交
380 381
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
X
Xin Pan 已提交
382
        out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
383 384 385 386
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
387 388 389 390
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
391
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
392
        })
Y
Yu Yang 已提交
393 394 395 396
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
397
@templatedoc()
Y
Yu Yang 已提交
398 399 400 401 402
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
403
                                  output_dim_idx=0):
404
    """
Y
yuyang18 已提交
405
    ${comment}
406 407 408

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
409 410 411
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

412
    Args:
Y
yuyang18 已提交
413
        input(${input_type}): ${input_comment}.
414

Y
yuyang18 已提交
415
        shape(${shape_type}): ${shape_comment}.
416

Y
yuyang18 已提交
417 418 419
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
420

Y
yuyang18 已提交
421 422 423 424 425
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
426
        ${out_comment}.
427
    """
Y
Yu Yang 已提交
428
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
429
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
445 446 447 448
def argmin(x, axis=0):
    """
    **argmin**

449
    This function computes the indices of the min elements
S
sneaxiy 已提交
450 451 452 453 454 455
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
456

S
sneaxiy 已提交
457 458
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
459

S
sneaxiy 已提交
460 461
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
462

S
sneaxiy 已提交
463
          out = fluid.layers.argmin(x=in, axis=0)
464
          out = fluid.layers.argmin(x=in, axis=-1)
S
sneaxiy 已提交
465 466
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
467
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
468 469 470 471 472 473 474 475 476 477 478 479
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

480
    This function computes the indices of the max elements
S
sneaxiy 已提交
481 482 483 484 485 486
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
487

S
sneaxiy 已提交
488 489
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
490

S
sneaxiy 已提交
491 492
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
493

S
sneaxiy 已提交
494
          out = fluid.layers.argmax(x=in, axis=0)
495
          out = fluid.layers.argmax(x=in, axis=-1)
S
sneaxiy 已提交
496 497
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
498
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
499 500 501 502 503 504 505 506
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


507
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
508
    """
M
minqiyang 已提交
509 510
    Performs sorting on the input Variable along the given axis, and outputs
    sorted data Varibale and its corresponding index Variable with the same
Y
Yibing Liu 已提交
511 512 513
    shape as :attr:`input`.

    .. code-block:: text
M
minqiyang 已提交
514

Y
Yibing Liu 已提交
515 516 517 518 519 520 521 522 523 524 525 526
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

M
minqiyang 已提交
527
            indices = [[0, 1, 2],
Y
Yibing Liu 已提交
528 529 530 531
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
M
minqiyang 已提交
532 533
        axis(int): The axis along which to sort the input Variable. When
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` +
Y
Yibing Liu 已提交
534
                   rank(:attr:`input`). Default -1, the last dimension.
M
minqiyang 已提交
535
        name(str|None): (optional) A name for this layer. If set None, the
536
                   layer will be named automatically.
Y
Yibing Liu 已提交
537 538 539 540 541 542 543 544 545 546 547

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(data=[2, 3])
            out, indices = fluid.layers.argsort(input, axis=0)
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
548 549 550 551
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
552 553 554 555
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
556 557
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
558 559 560
    return out, ids


Y
Yang Yu 已提交
561
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
562
    """
563 564 565 566 567 568 569 570 571
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
572
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
573 574 575 576 577 578 579 580

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
581 582 583 584
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
585
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
586
    """
587 588 589 590 591 592 593 594
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
595 596 597
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
598 599

    Returns:
W
wanghaoshuang 已提交
600
        Variable: The tensor variable storing the output.
601 602 603 604 605

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
606 607
    """
    return fill_constant(value=0.0, **locals())
608 609


F
fengjiayi 已提交
610 611 612 613 614 615 616 617
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
618 619 620
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
635
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
636 637
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
638
        inputs={'X': x},
F
fengjiayi 已提交
639 640 641 642 643
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


644 645 646 647 648 649 650
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
651 652 653
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
669 670
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
671
        file_path(str): The file path where variables will be saved.
672
        overwrite(bool): Whether or not cover the given file when it has already
673 674
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
714 715 716 717 718 719 720 721 722 723 724 725 726


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
727
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
743
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
760
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
761 762
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out