tensor.py 17.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
36 37
    'ones',
    'zeros',
Q
qiaolongfei 已提交
38
    'reverse',
Y
Yu Yang 已提交
39 40 41
]


X
xuwei06 已提交
42
def create_tensor(dtype, name=None, persistable=False):
43
    """
Q
update  
qiaolongfei 已提交
44
    Create an variable, which will hold a LoDTensor with data type dtype.
45 46

    Args:
Q
update  
qiaolongfei 已提交
47
        dtype(string): 'float32'|'int32'|..., the data type of the
48
            created tensor.
Q
update  
qiaolongfei 已提交
49
        name(string): The name of the created tensor, if not set,
50
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
51
        persistable(bool): Set the persistable flag of the create tensor.
52 53 54 55 56 57 58 59 60

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
61
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
62 63
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
64 65


66 67
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
68
                     name=None,
69 70 71 72
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
73 74 75 76 77 78
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

79 80 81 82 83 84 85 86 87 88 89
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
90 91 92 93 94 95
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
96
    """
Q
Qiao Longfei 已提交
97
    helper = LayerHelper("create_parameter", **locals())
98
    if attr is None:
X
xuwei06 已提交
99
        attr = ParamAttr(name=name)
100 101 102 103
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


104 105 106 107 108 109 110
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
F
fengjiayi 已提交
111 112
    Create a new variable in the global block(block 0).

113 114
    Args:
        shape(list[int]): shape of the variable
F
fengjiayi 已提交
115 116 117 118 119 120 121 122 123 124
        value(float): the value of the variable. The new created 
                      variable will be filled with it.
        dtype(string): data type of the variable
        persistable(bool): if this variable is persistable. 
                           Default: False
        force_cpu(bool): force this variable to be on CPU. 
                         Default: False
        name(str|None): The name of the variable. If set to None the variable 
                        name will be generated automatically. 
                        Default: None
125 126 127

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
128 129 130 131 132 133

    Examples:
        .. code-block:: python

            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32', 
                                 persistable=True, force_cpu=True, name='new_var')
134
    """
Q
Qiao Longfei 已提交
135 136 137 138
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
139 140
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
141 142 143
    return var


144
def cast(x, dtype):
Y
Yu Yang 已提交
145
    """
Y
Yibing Liu 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts 
    it to the output with :attr:`dtype`.

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
             
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
161 162 163 164 165 166 167 168 169 170 171 172
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


173
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
174
    """
175 176 177
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
178
    and returns that as the output.
179 180 181 182

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
183 184
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
185 186 187 188 189 190

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
191 192
        
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
193 194 195 196 197 198 199 200 201 202 203
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


204
def sums(input, out=None):
F
fengjiayi 已提交
205 206
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
207 208 209 210 211
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
212
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
213
                             Default: None
K
kavyasrinet 已提交
214 215

    Returns:
F
fengjiayi 已提交
216
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
217 218

    Examples:
F
fengjiayi 已提交
219
        .. code-block:: python
K
kavyasrinet 已提交
220 221 222 223 224 225

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
226 227
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
228
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
229 230 231 232 233 234 235 236
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


237
def assign(input, output):
238 239 240 241 242 243
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
244
        input(Variable|numpy.ndarray): The source variable
245 246 247 248 249 250 251
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
252

253 254 255 256
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
257
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
258 259
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
260
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
261 262
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
263
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
264
            value_name = "fp32_values"
265
            values = [float(v) for v in input.flat]
266
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
267
            value_name = "int32_values"
268
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
269 270
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
271 272 273
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
274 275 276 277 278 279 280

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
281
                value_name: values
X
xuwei06 已提交
282 283 284 285
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
286 287 288
    return output


Q
QI JUN 已提交
289
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
290
    """
291 292
    **fill_constant**

293 294
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
295

296
    The attribute `stop_gradient` of the created tensor is set to True.
297 298

    Args:
299
        shape(tuple|list|None): Shape of the output tensor.
300
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
301 302
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
303
        force_cpu(True|False): data should be on CPU if set true.
304 305

    Returns:
306
        Variable: The tensor variable storing the output.
307 308 309 310 311

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
312
    """
313

Y
Yu Yang 已提交
314 315 316 317 318 319 320
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
321 322 323 324
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
325
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
326
        })
Y
Yu Yang 已提交
327 328 329 330
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
331
@templatedoc()
Y
Yu Yang 已提交
332 333 334 335 336
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
337
                                  output_dim_idx=0):
338
    """
Y
yuyang18 已提交
339
    ${comment}
340 341 342

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
343 344 345
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

346
    Args:
Y
yuyang18 已提交
347
        input(${input_type}): ${input_comment}.
348

Y
yuyang18 已提交
349
        shape(${shape_type}): ${shape_comment}.
350

Y
yuyang18 已提交
351 352 353
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
354

Y
yuyang18 已提交
355 356 357 358 359
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
360
        ${out_comment}.
361
    """
Y
Yu Yang 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
379 380 381 382 383 384 385 386 387 388 389
def argmin(x, axis=0):
    """
    **argmin**

    This function computes the indices of the min elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
390

S
sneaxiy 已提交
391 392
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
393

S
sneaxiy 已提交
394 395
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
396

S
sneaxiy 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
          out = fluid.layers.argmin(x=in, axis=0)
          out = fluid.layers.argmin(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

    This function computes the indices of the max elements 
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
421

S
sneaxiy 已提交
422 423
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
424

S
sneaxiy 已提交
425 426
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
427

S
sneaxiy 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440
          out = fluid.layers.argmax(x=in, axis=0)
          out = fluid.layers.argmax(x=in, axis=-1)  
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yang Yu 已提交
441
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
442
    """
443 444 445 446 447 448 449 450 451
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
452
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
453 454 455 456 457 458 459 460

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
461 462 463 464
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
465
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
466
    """
467 468 469 470 471 472 473 474
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
475 476 477
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
478 479

    Returns:
W
wanghaoshuang 已提交
480
        Variable: The tensor variable storing the output.
481 482 483 484 485

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
486 487
    """
    return fill_constant(value=0.0, **locals())
488 489


F
fengjiayi 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
        axis(int|tuple|list): Axis that along which order of elements 
                    is reversed. If it is a tuple or a list, reversing 
                    will be apply on each axis in the tuple or list.  

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
        overwrite(bool): Whether or not cover the given file when it has already 
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
549 550
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
551
        file_path(str): The file path where variables will be saved.
552
        overwrite(bool): Whether or not cover the given file when it has already
553 554
            existed. If it's set 'False' and the file is existed, a runtime 
            error will be thrown. 
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})