tensor.py 53.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
19
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
20
from ..framework import Variable
21
from ..initializer import Constant
22
from ..core import VarDesc
23
from .. import core
24
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
25
from . import utils
26
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
27
import numpy
28
import warnings
Y
Yu Yang 已提交
29 30

__all__ = [
L
li099 已提交
31 32 33
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
34
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
35
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
36 37 38
]


X
xuwei06 已提交
39
def create_tensor(dtype, name=None, persistable=False):
40
    """
W
wangchaochaohu 已提交
41
    Create a variable, which will hold a Tensor with data type dtype.
42 43

    Args:
W
wangchaochaohu 已提交
44 45 46 47
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
48
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
49
            default value is False.
50 51

    Returns:
W
wangchaochaohu 已提交
52
        Variable: The tensor to be created according to dtype.
53 54 55 56

    Examples:
        .. code-block:: python

57
          import paddle.fluid as fluid
58 59
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
60 61 62 63
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
64
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
65 66
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
67 68


69 70
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
71
                     name=None,
72 73 74 75
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
76
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
77 78 79 80 81
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

82 83 84 85 86 87 88
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
89 90 91
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
92
        default_initializer (Initializer, optional): Initializer for the parameter
93 94

    Returns:
95
        The created parameter.
Y
yuyang18 已提交
96 97

    Examples:
98 99
        .. code-block:: python

100
            import paddle.fluid as fluid
101 102
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
103
    """
Q
Qiao Longfei 已提交
104
    helper = LayerHelper("create_parameter", **locals())
105
    if attr is None:
X
xuwei06 已提交
106
        attr = ParamAttr(name=name)
107 108 109 110
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


111 112 113 114 115 116 117
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
118
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
119

120 121 122
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
123
                      variable will be filled with it.
124 125
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
126
                           Default: False
127
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
128
                         Default: False
129 130
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
131 132

    Returns:
133
        Variable: The created Variable
F
fengjiayi 已提交
134 135 136 137

    Examples:
        .. code-block:: python

138
            import paddle.fluid as fluid
139 140
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
141
                                           persistable=True, force_cpu=True, name='new_var')
142
    """
Q
Qiao Longfei 已提交
143 144
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
145 146 147 148 149
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
150 151 152
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
153

Q
Qiao Longfei 已提交
154 155 156
    return var


157
def cast(x, dtype):
Y
Yu Yang 已提交
158
    """
159 160 161
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
162 163

    Args:
164 165 166 167
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
168 169

    Returns:
170
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
171 172 173

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
174

175
            import paddle.fluid as fluid
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
198 199
    """
    helper = LayerHelper('cast', **locals())
200 201
    check_variable_and_dtype(
        x, 'x',
202 203
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
X
Xin Pan 已提交
204
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
205 206 207 208 209 210 211 212 213
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


214
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
215
    """
216 217
    **Concat**

218
    This OP concatenates the input along the axis.
219 220

    Args:
221 222
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
223
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
224 225 226 227 228
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
229 230

    Returns:
231
        Variable: A Tensor with the same data type as input's.
232 233 234

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
235

236
            import paddle.fluid as fluid
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
259
    """
260 261

    if in_dygraph_mode():
S
songyouwei 已提交
262 263 264 265 266
        if isinstance(axis, Variable):
            axis = axis.numpy()
            assert axis.shape == (
                1, ), "axis of type Variable should have shape [1]"
            axis = axis[0]
267
        return core.ops.concat(input, 'axis', axis)
268

269 270 271 272 273
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
274
    for id, x in enumerate(input):
275 276
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
277 278
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
279

280
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
281
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
305 306 307
    return out


G
Guo Sheng 已提交
308
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
309
    """
G
Guo Sheng 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
360 361

    Args:
G
Guo Sheng 已提交
362 363 364 365 366 367 368
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
369 370

    Returns:
G
Guo Sheng 已提交
371 372 373
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
374 375 376 377

    Examples:
        .. code-block:: python

378
            import paddle.fluid as fluid
379
            import numpy as np
G
Guo Sheng 已提交
380 381 382 383 384 385 386
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
387
    """
388 389 390 391 392 393 394 395 396 397 398
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

L
li099 已提交
399
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
400 401 402
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
403
        type='tensor_array_to_tensor',
L
li099 已提交
404 405 406
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
407 408
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
409 410 411
    return out, out_index


412
def sums(input, out=None):
F
fengjiayi 已提交
413
    """
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
435 436

    Args:
437 438 439 440
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
441 442

    Returns:
443 444
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
445 446

    Examples:
F
fengjiayi 已提交
447
        .. code-block:: python
K
kavyasrinet 已提交
448

449 450 451 452 453 454 455 456 457
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
458

459 460
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
461 462 463
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
464 465
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
466 467 468 469 470
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
471 472 473
    return out


F
fengjiayi 已提交
474
def assign(input, output=None):
475
    """
476
    The OP copies the :attr:`input` to the :attr:`output`.
477

478 479 480 481 482
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
483 484

    Returns:
485
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
486 487 488

    Examples:
        .. code-block:: python
489

490
          import paddle.fluid as fluid
491 492 493 494 495 496
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
497
    """
Y
Yu Yang 已提交
498
    helper = LayerHelper('assign', **locals())
499
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
500
    if isinstance(input, Variable):
501 502 503
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
504 505 506
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
507
        helper.append_op(
R
robot 已提交
508
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
509 510
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
511
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
512
            value_name = "fp32_values"
513
            values = [float(v) for v in input.flat]
514
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
515
            value_name = "int32_values"
516
            values = [int(v) for v in input.flat]
517 518 519
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
520
        else:
521 522
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
523
                "the data type of 'input' must be float32, int32 or int64, but "
524
                "received %s." % convert_dtype(dtype))
525 526 527
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
528 529 530
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
531 532 533 534 535 536
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
537
                value_name: values
X
xuwei06 已提交
538 539
            })

Y
Yu Yang 已提交
540 541 542
    return output


Q
QI JUN 已提交
543
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
544
    """
W
wangchaochaohu 已提交
545
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
546
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
547

T
tianshuo78520a 已提交
548
    The attribute `stop_gradient` of the created Tensor is set to True.
549 550

    Args:
551 552 553 554
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
555 556
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
W
wangchaochaohu 已提交
557 558 559
        value(float16|float32|float64|int32|int64|Variable): The constant value used to initialize 
            the Tensor to be created. If value is an Variable, it should be an 1-D Tensor.
        force_cpu(bool): data should be on CPU if it's true, default value is False.
W
wangchaochaohu 已提交
560 561 562
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
563 564

    Returns:
W
wangchaochaohu 已提交
565 566 567 568 569
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
570 571 572 573

    Examples:
        .. code-block:: python

574
          import paddle.fluid as fluid
575 576 577
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
578
          # data1=[[5], [5]] data2=[[5], [5]]
579 580 581 582 583 584 585 586

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
587 588 589 590
          
          # attr value is an Variable Tensor.
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
591
    """
W
wangchaochaohu 已提交
592 593 594 595
    inputs = {}
    attrs = {'force_cpu': force_cpu}
    if isinstance(value, Variable):
        inputs['ValueTensor'] = value
596
    else:
W
wangchaochaohu 已提交
597 598 599 600 601
        attrs['value'] = float(value)
        if convert_dtype(dtype) in ['int64', 'int32']:
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
602 603 604

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
S
songyouwei 已提交
605 606 607
            shape = list(
                map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x,
                    shape))
608
        else:
S
songyouwei 已提交
609
            shape = list(shape.numpy().astype(int))
610 611
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
612 613 614 615 616 617 618

        if isinstance(value, Variable):
            if convert_dtype(dtype) in ['int64', 'int32']:
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

619 620
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
621 622
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
623 624 625
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
626
    helper = LayerHelper("fill_constant", **locals())
627 628 629 630
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
W
wangchaochaohu 已提交
631 632 633 634 635 636
    inputs = utils._get_shape_tensor_inputs(
        inputs=inputs,
        helper=helper,
        attrs=attrs,
        shape=shape,
        op_type='fill_constant')
L
liym27 已提交
637

Y
Yu Yang 已提交
638
    if out is None:
X
Xin Pan 已提交
639
        out = helper.create_variable_for_type_inference(dtype=dtype)
640
    else:
641 642 643 644 645
        check_dtype(
            dtype, 'create data type',
            convert_dtype(out.dtype), 'fill_constant',
            '(The create data type in fill_constant must be the same with out data type.)'
        )
L
liym27 已提交
646
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
647 648
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
649
        inputs=inputs,
Y
Yu Yang 已提交
650
        outputs={'Out': [out]},
L
liym27 已提交
651
        attrs=attrs,
M
minqiyang 已提交
652
        stop_gradient=True)
Y
Yu Yang 已提交
653 654 655 656
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
657
@templatedoc()
Y
Yu Yang 已提交
658 659 660 661 662
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
663 664
                                  output_dim_idx=0,
                                  force_cpu=False):
665
    """
T
tianshuo78520a 已提交
666
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
667 668 669 670
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
671 672

    Args:
W
wangchaochaohu 已提交
673 674 675 676 677 678 679 680 681 682 683
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
684
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
685 686

    Returns:
W
wangchaochaohu 已提交
687
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
688 689 690 691 692

    Examples:

        .. code-block:: python

693
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
694
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
695
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
696
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
697

698
    """
Y
Yu Yang 已提交
699
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
700
    out = helper.create_variable_for_type_inference(dtype=dtype)
701 702 703 704 705 706
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
707
        'force_cpu': force_cpu
708 709 710 711 712
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
713 714 715 716
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
717
        attrs=attrs)
Y
Yu Yang 已提交
718 719 720 721
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
722 723 724 725
def argmin(x, axis=0):
    """
    **argmin**

726 727
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
728 729

    Args:
730 731 732 733 734
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
735

S
sneaxiy 已提交
736
    Returns:
737
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
738

S
sneaxiy 已提交
739 740
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
741

742
            import paddle.fluid as fluid
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
770 771
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
772
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
773 774 775 776 777
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
778
    out.stop_gradient = True
S
sneaxiy 已提交
779 780 781 782 783 784 785
    return out


def argmax(x, axis=0):
    """
    **argmax**

786 787
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
788 789

    Args:
790 791 792 793 794
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
795

S
sneaxiy 已提交
796
    Returns:
797
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
798

S
sneaxiy 已提交
799 800
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
801

802
            import paddle.fluid as fluid
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
830 831
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
832
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
833 834 835 836 837
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
838
    out.stop_gradient = True
S
sneaxiy 已提交
839 840 841
    return out


842
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
843
    """
844 845 846
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
847 848

    Args:
849 850 851 852 853
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
854 855 856
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
857 858 859
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
860 861

    Returns:
862 863 864
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
865 866 867 868

    Examples:
        .. code-block:: python

869
            import paddle.fluid as fluid
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
911 912
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
913 914 915 916
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
917 918 919 920
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
921
                 'Indices': ids},
922 923
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
924 925 926
    return out, ids


Y
Yang Yu 已提交
927
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
928
    """
929 930
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
931

932 933 934 935 936 937 938
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
939 940

    Returns:
941
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
942 943 944 945

    Examples:
        .. code-block:: python

946
          import paddle.fluid as fluid
947
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
948
    """
C
chengduozh 已提交
949 950 951 952
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
953 954 955
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
956
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
957
    """
958 959
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
960

961 962 963 964 965 966 967
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
968 969

    Returns:
970
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
971 972 973 974

    Examples:
        .. code-block:: python

975
          import paddle.fluid as fluid
976
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
977
    """
978 979 980
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
981
    return fill_constant(value=0.0, **locals())
982 983


F
fengjiayi 已提交
984 985
def reverse(x, axis):
    """
986
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
987

988 989 990 991 992
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
993 994

    Returns:
995
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
996 997 998 999

    Examples:
        .. code-block:: python

1000
          import paddle.fluid as fluid
1001 1002 1003 1004
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1005 1006 1007 1008
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1009
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1010 1011
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1012
        inputs={'X': x},
F
fengjiayi 已提交
1013 1014 1015 1016 1017
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1018 1019 1020 1021 1022 1023 1024
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1025 1026 1027
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1043 1044
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1045
        file_path(str): The file path where variables will be saved.
1046
        overwrite(bool): Whether or not cover the given file when it has already
1047 1048
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1049 1050 1051 1052 1053 1054 1055 1056

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1057
            import paddle.fluid as fluid
1058 1059 1060 1061 1062 1063 1064
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1077
    Loads a list of variable from a single file.
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1089 1090 1091 1092 1093 1094 1095


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1096
       x (Variable): The Tensor/LoDTensor to be checked.
1097 1098

    Returns:
L
liu zhengxi 已提交
1099
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1100 1101 1102 1103 1104 1105 1106 1107
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1108 1109
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1110
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1111 1112 1113 1114 1115 1116 1117 1118 1119
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1120
       x (Variable): The Tensor/LoDTensor to be checked.
1121 1122

    Returns:
L
liu zhengxi 已提交
1123
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1124 1125 1126 1127 1128 1129 1130 1131
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1132 1133
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1134
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1149 1150 1151 1152 1153

    Examples:

        .. code-block:: python

1154
            import paddle.fluid as fluid
1155 1156 1157
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1158
            out = fluid.layers.isfinite(var)
1159 1160
    """
    helper = LayerHelper("isfinite", **locals())
1161
    out = helper.create_variable_for_type_inference(dtype='bool')
1162 1163
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1173 1174 1175 1176
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1177
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1178 1179 1180
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1181
                                  distance between two adjacent values, out[i+1] - out[i].
1182
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1183

L
Liufang Sang 已提交
1184 1185 1186
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1187 1188 1189 1190 1191

    examples:

        .. code-block:: python

1192
             import paddle.fluid as fluid
W
whs 已提交
1193 1194 1195 1196 1197
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

1198 1199 1200 1201
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1202 1203
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1204 1205 1206 1207 1208
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1209 1210
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1211 1212 1213
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1214 1215
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1216 1217
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1227
    out.stop_gradient = True
W
whs 已提交
1228
    return out
Z
zhoukunsheng 已提交
1229 1230


Z
zhoukunsheng 已提交
1231 1232
def linspace(start, stop, num, dtype):
    """
1233
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1234 1235

    Args:
1236 1237 1238 1239 1240 1241 1242
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1243 1244

    Returns:
1245 1246 1247
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1248

Z
zhoukunsheng 已提交
1249
    Examples:
Z
zhoukunsheng 已提交
1250 1251
        .. code-block:: python

1252
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1253 1254
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1275 1276


Z
zhoukunsheng 已提交
1277 1278
def zeros_like(x, out=None):
    """
1279
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1280 1281 1282
    with `x`.

    Args:
1283 1284 1285
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
T
tianshuo78520a 已提交
1286
            The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1287 1288

    Returns:
1289 1290
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1291 1292 1293 1294

    Examples:
        .. code-block:: python

1295
          import paddle.fluid as fluid
1296
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1297 1298
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1308 1309 1310 1311


def diag(diagonal):
    """
1312
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1313 1314

    Args:
1315 1316
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1317 1318

    Returns:
1319 1320
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1321 1322 1323 1324 1325 1326 1327

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1328 1329 1330

          import paddle.fluid as fluid
          import numpy as np
1331 1332 1333
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1349 1350


1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1363 1364
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1365 1366

    Returns:
1367
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1368 1369 1370 1371 1372

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1373 1374
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1375
          #  [0, 1, 0]
1376 1377
          #  [0, 0, 1]]

1378
          data = fluid.layers.eye(2, 3, dtype='int32')
1379
          # [[1, 0, 0]
1380
          #  [0, 1, 0]]
1381 1382

          data = fluid.layers.eye(2, batch_shape=[3])
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1435
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out