tensor.py 57.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
29
import numpy
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
L
li099 已提交
33 34 35
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
36
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
37
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
42
    """
W
wangchaochaohu 已提交
43
    Create a variable, which will hold a Tensor with data type dtype.
44 45

    Args:
W
wangchaochaohu 已提交
46 47 48 49
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
50
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
51
            default value is False.
52 53

    Returns:
W
wangchaochaohu 已提交
54
        Variable: The tensor to be created according to dtype.
55 56 57 58

    Examples:
        .. code-block:: python

59
          import paddle.fluid as fluid
60 61
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
62 63 64 65
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
66
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
67 68
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
69 70


71 72
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
73
                     name=None,
74 75 76 77
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
78
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
79 80 81 82 83
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

84 85 86 87 88 89 90
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
91 92 93
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
94
        default_initializer (Initializer, optional): Initializer for the parameter
95 96

    Returns:
97
        The created parameter.
Y
yuyang18 已提交
98 99

    Examples:
100 101
        .. code-block:: python

102
            import paddle.fluid as fluid
103 104
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
105
    """
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
125
    helper = LayerHelper("create_parameter", **locals())
126
    if attr is None:
X
xuwei06 已提交
127
        attr = ParamAttr(name=name)
128 129
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
130 131 132
                                   default_initializer)


133 134 135 136 137 138 139
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
140
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
141

142 143 144
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
145
                      variable will be filled with it.
146 147
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
148
                           Default: False
149
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
150
                         Default: False
151 152
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
153 154

    Returns:
155
        Variable: The created Variable
F
fengjiayi 已提交
156 157 158 159

    Examples:
        .. code-block:: python

160
            import paddle.fluid as fluid
161 162
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
163
                                           persistable=True, force_cpu=True, name='new_var')
164
    """
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
182 183
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
184 185 186 187 188
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
189 190 191
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
192

Q
Qiao Longfei 已提交
193 194 195
    return var


196
def cast(x, dtype):
Y
Yu Yang 已提交
197
    """
198 199 200
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
201 202

    Args:
203 204 205
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
206
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
207 208

    Returns:
209
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
210 211 212

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
213

214
            import paddle.fluid as fluid
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
237
    """
238 239
    check_variable_and_dtype(
        x, 'x',
240 241
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
242 243 244 245 246 247
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
248
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
249 250 251 252 253 254 255 256 257
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


258
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
259
    """
260 261
    **Concat**

262
    This OP concatenates the input along the axis.
263 264

    Args:
265 266
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
267
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
268 269 270 271 272
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
273 274

    Returns:
275
        Variable: A Tensor with the same data type as input's.
276 277 278

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
279

280
            import paddle.fluid as fluid
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
303
    """
304 305

    if in_dygraph_mode():
S
songyouwei 已提交
306 307 308 309 310
        if isinstance(axis, Variable):
            axis = axis.numpy()
            assert axis.shape == (
                1, ), "axis of type Variable should have shape [1]"
            axis = axis[0]
311
        return core.ops.concat(input, 'axis', axis)
312

313 314 315 316 317
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
318
    for id, x in enumerate(input):
319 320
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
321 322
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
323

324
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
325
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
349 350 351
    return out


G
Guo Sheng 已提交
352
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
353
    """
G
Guo Sheng 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
404 405

    Args:
G
Guo Sheng 已提交
406 407 408 409 410 411 412
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
413 414

    Returns:
G
Guo Sheng 已提交
415 416 417
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
418 419 420 421

    Examples:
        .. code-block:: python

422
            import paddle.fluid as fluid
423
            import numpy as np
G
Guo Sheng 已提交
424 425 426 427 428 429 430
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
431
    """
432 433 434 435 436 437 438 439 440 441 442
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

L
li099 已提交
443
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
444 445 446
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
447
        type='tensor_array_to_tensor',
L
li099 已提交
448 449 450
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
451 452
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
453 454 455
    return out, out_index


456
def sums(input, out=None):
F
fengjiayi 已提交
457
    """
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
479 480

    Args:
481 482 483 484
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
485 486

    Returns:
487 488
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
489 490

    Examples:
F
fengjiayi 已提交
491
        .. code-block:: python
K
kavyasrinet 已提交
492

493 494 495 496 497 498 499 500 501
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
502

503 504
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
505
    """
506 507 508 509 510 511 512 513 514
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
515 516
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
517 518
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
519 520 521 522
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
523 524 525 526 527
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
528 529 530
    return out


F
fengjiayi 已提交
531
def assign(input, output=None):
532
    """
533
    The OP copies the :attr:`input` to the :attr:`output`.
534

535 536 537 538 539
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
540 541

    Returns:
542
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
543 544 545

    Examples:
        .. code-block:: python
546

547
          import paddle.fluid as fluid
548 549 550 551 552 553
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
554
    """
Y
Yu Yang 已提交
555
    helper = LayerHelper('assign', **locals())
556
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
557
    if isinstance(input, Variable):
558 559 560
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
561 562 563
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
564
        helper.append_op(
R
robot 已提交
565
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
566 567
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
568 569 570 571
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
572
            value_name = "fp32_values"
573
            values = [float(v) for v in input.flat]
574
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
575
            value_name = "int32_values"
576
            values = [int(v) for v in input.flat]
577 578 579
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
580
        else:
581 582
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
583
                "the data type of 'input' must be bool, float32, int32 or int64, but "
584
                "received %s." % convert_dtype(dtype))
585 586 587
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
588 589 590
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
591 592 593 594 595 596
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
597
                value_name: values
X
xuwei06 已提交
598 599
            })

Y
Yu Yang 已提交
600 601 602
    return output


Q
QI JUN 已提交
603
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
604
    """
W
wangchaochaohu 已提交
605
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
606
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
607

T
tianshuo78520a 已提交
608
    The attribute `stop_gradient` of the created Tensor is set to True.
609 610

    Args:
611 612 613 614
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
615 616
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
W
wangchaochaohu 已提交
617 618 619
        value(float16|float32|float64|int32|int64|Variable): The constant value used to initialize 
            the Tensor to be created. If value is an Variable, it should be an 1-D Tensor.
        force_cpu(bool): data should be on CPU if it's true, default value is False.
W
wangchaochaohu 已提交
620 621 622
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
623 624

    Returns:
W
wangchaochaohu 已提交
625 626 627 628 629
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
630 631 632 633

    Examples:
        .. code-block:: python

634
          import paddle.fluid as fluid
635 636 637
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
638
          # data1=[[5], [5]] data2=[[5], [5]]
639 640 641 642 643 644 645 646

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
647 648 649 650
          
          # attr value is an Variable Tensor.
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
651
    """
W
wangchaochaohu 已提交
652 653 654 655
    inputs = {}
    attrs = {'force_cpu': force_cpu}
    if isinstance(value, Variable):
        inputs['ValueTensor'] = value
656
    else:
W
wangchaochaohu 已提交
657 658 659 660 661
        attrs['value'] = float(value)
        if convert_dtype(dtype) in ['int64', 'int32']:
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
662 663 664

    if in_dygraph_mode():
        if isinstance(shape, (list, tuple)):
S
songyouwei 已提交
665 666 667
            shape = list(
                map(lambda x: x.numpy()[0] if isinstance(x, Variable) else x,
                    shape))
668
        else:
S
songyouwei 已提交
669
            shape = list(shape.numpy().astype(int))
670 671
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
672 673 674 675 676 677 678

        if isinstance(value, Variable):
            if convert_dtype(dtype) in ['int64', 'int32']:
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

679 680
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
681 682
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
683 684 685
        out.stop_gradient = True
        return out

686
    check_dtype(dtype, 'dtype',
687 688 689
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
690 691 692 693 694 695 696 697
    if isinstance(shape, Variable):
        check_variable_and_dtype(shape, 'shape', ['int32', 'int64'],
                                 'fill_constant')
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
W
wangchaochaohu 已提交
698 699 700 701 702 703
    inputs = utils._get_shape_tensor_inputs(
        inputs=inputs,
        helper=helper,
        attrs=attrs,
        shape=shape,
        op_type='fill_constant')
L
liym27 已提交
704

Y
Yu Yang 已提交
705
    if out is None:
X
Xin Pan 已提交
706
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
707
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
708 709
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
710
        inputs=inputs,
Y
Yu Yang 已提交
711
        outputs={'Out': [out]},
L
liym27 已提交
712
        attrs=attrs,
M
minqiyang 已提交
713
        stop_gradient=True)
Y
Yu Yang 已提交
714 715 716 717
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
718
@templatedoc()
Y
Yu Yang 已提交
719 720 721 722 723
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
724 725
                                  output_dim_idx=0,
                                  force_cpu=False):
726
    """
T
tianshuo78520a 已提交
727
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
728 729 730 731
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
732 733

    Args:
W
wangchaochaohu 已提交
734 735 736 737 738 739 740 741 742 743 744
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
745
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
746 747

    Returns:
W
wangchaochaohu 已提交
748
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
749 750 751 752 753

    Examples:

        .. code-block:: python

754
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
755
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
756
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
757
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
758

759
    """
Y
Yu Yang 已提交
760
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
761
    out = helper.create_variable_for_type_inference(dtype=dtype)
762 763 764 765 766 767
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
768
        'force_cpu': force_cpu
769 770 771 772 773
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
774 775 776 777
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
778
        attrs=attrs)
Y
Yu Yang 已提交
779 780 781 782
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
783 784 785 786
def argmin(x, axis=0):
    """
    **argmin**

787 788
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
789 790

    Args:
791 792 793 794 795
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
796

S
sneaxiy 已提交
797
    Returns:
798
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
799

S
sneaxiy 已提交
800 801
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
802

803
            import paddle.fluid as fluid
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
831
    """
832 833 834
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
835
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
836
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
837 838 839 840 841
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
842
    out.stop_gradient = True
S
sneaxiy 已提交
843 844 845 846 847 848 849
    return out


def argmax(x, axis=0):
    """
    **argmax**

850 851
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
852 853

    Args:
854 855 856 857 858
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
859

S
sneaxiy 已提交
860
    Returns:
861
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
862

S
sneaxiy 已提交
863 864
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
865

866
            import paddle.fluid as fluid
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
894
    """
895 896 897
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
898
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
899
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
900 901 902 903 904
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
905
    out.stop_gradient = True
S
sneaxiy 已提交
906 907 908
    return out


909
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
910
    """
911 912 913
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
914 915

    Args:
916 917 918 919 920
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
921 922 923
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
924 925 926
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
927 928

    Returns:
929 930 931
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
932 933 934 935

    Examples:
        .. code-block:: python

936
            import paddle.fluid as fluid
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
978
    """
979 980 981
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
982
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
983 984 985 986
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
987 988 989 990
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
991
                 'Indices': ids},
992 993
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
994 995 996
    return out, ids


Y
Yang Yu 已提交
997
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
998
    """
999 1000
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1001

1002 1003 1004 1005 1006 1007 1008
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1009 1010

    Returns:
1011
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1012 1013 1014 1015

    Examples:
        .. code-block:: python

1016
          import paddle.fluid as fluid
1017
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
1018
    """
1019 1020 1021 1022
    check_type(shape, 'shape', (list, tuple), 'ones')
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'ones')
C
chengduozh 已提交
1023 1024
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
1025 1026 1027
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
1028
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1029
    """
1030 1031
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1032

1033 1034 1035 1036 1037 1038 1039
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
1040 1041

    Returns:
1042
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1043 1044 1045 1046

    Examples:
        .. code-block:: python

1047
          import paddle.fluid as fluid
1048
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
1049
    """
1050
    check_type(shape, 'shape', (list, tuple), 'zeros')
1051 1052 1053
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
1054
    return fill_constant(value=0.0, **locals())
1055 1056


F
fengjiayi 已提交
1057 1058
def reverse(x, axis):
    """
1059
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1060

1061 1062 1063 1064 1065
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
1066 1067

    Returns:
1068
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1069 1070 1071 1072

    Examples:
        .. code-block:: python

1073
          import paddle.fluid as fluid
1074 1075 1076 1077
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
1078 1079 1080 1081
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1082
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1083 1084
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1085
        inputs={'X': x},
F
fengjiayi 已提交
1086 1087 1088 1089 1090
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1091 1092 1093 1094 1095 1096 1097
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1098 1099 1100
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1116 1117
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1118
        file_path(str): The file path where variables will be saved.
1119
        overwrite(bool): Whether or not cover the given file when it has already
1120 1121
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1122 1123 1124 1125 1126 1127 1128 1129

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1130
            import paddle.fluid as fluid
1131 1132 1133 1134 1135 1136 1137
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1150
    Loads a list of variable from a single file.
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1162 1163 1164 1165 1166 1167 1168


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1169
       x (Variable): The Tensor/LoDTensor to be checked.
1170 1171

    Returns:
L
liu zhengxi 已提交
1172
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1173 1174 1175 1176 1177 1178 1179 1180
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1181
    """
1182
    check_type(x, 'x', (Variable), 'has_inf')
1183
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1184
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1185 1186 1187 1188 1189 1190 1191 1192 1193
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1194
       x (Variable): The Tensor/LoDTensor to be checked.
1195 1196

    Returns:
L
liu zhengxi 已提交
1197
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1198 1199 1200 1201 1202 1203 1204 1205
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1206
    """
1207
    check_type(x, 'x', (Variable), 'has_nan')
1208
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1209
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1224 1225 1226 1227 1228

    Examples:

        .. code-block:: python

1229
            import paddle.fluid as fluid
1230 1231 1232
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1233
            out = fluid.layers.isfinite(var)
1234
    """
1235 1236
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1237
    helper = LayerHelper("isfinite", **locals())
1238

1239
    out = helper.create_variable_for_type_inference(dtype='bool')
1240 1241
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1251 1252 1253 1254
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1255
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1256 1257 1258
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1259
                                  distance between two adjacent values, out[i+1] - out[i].
1260
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1261

L
Liufang Sang 已提交
1262 1263 1264
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1265 1266 1267 1268 1269

    examples:

        .. code-block:: python

1270
             import paddle.fluid as fluid
W
whs 已提交
1271 1272 1273 1274 1275
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

1276 1277 1278 1279
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1280 1281
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1282 1283 1284 1285 1286
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1287 1288
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1289 1290 1291
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1292 1293
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1294 1295
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1305
    out.stop_gradient = True
W
whs 已提交
1306
    return out
Z
zhoukunsheng 已提交
1307 1308


Z
zhoukunsheng 已提交
1309 1310
def linspace(start, stop, num, dtype):
    """
1311
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1312 1313

    Args:
1314 1315 1316 1317 1318 1319 1320
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1321 1322

    Returns:
1323 1324 1325
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1326

Z
zhoukunsheng 已提交
1327
    Examples:
Z
zhoukunsheng 已提交
1328 1329
        .. code-block:: python

1330
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1331 1332
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1333 1334 1335 1336

    """
    helper = LayerHelper("linspace", **locals())

1337 1338 1339 1340
    check_type(start, 'start', (Variable, float, int), linspace)
    check_type(stop, 'stop', (Variable, float, int), linspace)
    check_type(num, 'num', (Variable, float, int), linspace)

Z
zhoukunsheng 已提交
1341 1342
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1343 1344 1345 1346
    else:
        check_variable_and_dtype(start, "start", ["float32", "float64"],
                                 "linspace")

Z
zhoukunsheng 已提交
1347 1348
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
1349 1350 1351
    else:
        check_variable_and_dtype(stop, "stop", ["float32", "float64"],
                                 "linspace")
Z
zhoukunsheng 已提交
1352 1353
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)
1354 1355
    else:
        check_variable_and_dtype(num, "num", ["int32"], "linspace")
Z
zhoukunsheng 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1366 1367


Z
zhoukunsheng 已提交
1368 1369
def zeros_like(x, out=None):
    """
1370
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1371 1372 1373
    with `x`.

    Args:
1374 1375 1376
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
T
tianshuo78520a 已提交
1377
            The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1378 1379

    Returns:
1380 1381
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1382 1383 1384 1385

    Examples:
        .. code-block:: python

1386
          import paddle.fluid as fluid
1387
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1388 1389
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1390 1391
    """

1392 1393
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1394 1395 1396
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1397 1398 1399 1400 1401
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')

Z
zhoukunsheng 已提交
1402 1403 1404 1405
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1406 1407 1408 1409


def diag(diagonal):
    """
1410
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1411 1412

    Args:
1413 1414
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1415 1416

    Returns:
1417 1418
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1419 1420 1421 1422 1423 1424 1425

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1426 1427 1428

          import paddle.fluid as fluid
          import numpy as np
1429 1430 1431
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1432 1433

    """
1434 1435 1436
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1449 1450


1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1463 1464
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1465 1466

    Returns:
1467
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1468 1469 1470 1471 1472

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1473 1474
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1475
          #  [0, 1, 0]
1476 1477
          #  [0, 0, 1]]

1478
          data = fluid.layers.eye(2, 3, dtype='int32')
1479
          # [[1, 0, 0]
1480
          #  [0, 1, 0]]
1481 1482

          data = fluid.layers.eye(2, batch_shape=[3])
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1535
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1546 1547
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1548 1549 1550 1551

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1552 1553 1554 1555
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1556 1557 1558 1559 1560 1561
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out