tensor.py 19.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
19
from ..initializer import Constant, force_init_on_cpu
20
from ..core import VarDesc
Y
yuyang18 已提交
21
from layer_function_generator import templatedoc
X
xuwei06 已提交
22
import numpy
Y
Yu Yang 已提交
23 24

__all__ = [
25 26
    'create_tensor',
    'create_parameter',
Q
Qiao Longfei 已提交
27
    'create_global_var',
28 29 30 31 32 33
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
S
sneaxiy 已提交
34 35
    'argmin',
    'argmax',
Y
Yibing Liu 已提交
36
    'argsort',
37 38
    'ones',
    'zeros',
Q
qiaolongfei 已提交
39
    'reverse',
Y
Yu Yang 已提交
40 41 42
]


X
xuwei06 已提交
43
def create_tensor(dtype, name=None, persistable=False):
44
    """
Q
update  
qiaolongfei 已提交
45
    Create an variable, which will hold a LoDTensor with data type dtype.
46 47

    Args:
Q
update  
qiaolongfei 已提交
48
        dtype(string): 'float32'|'int32'|..., the data type of the
49
            created tensor.
Q
update  
qiaolongfei 已提交
50
        name(string): The name of the created tensor, if not set,
51
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
52
        persistable(bool): Set the persistable flag of the create tensor.
53 54 55 56 57 58 59 60 61

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
62
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
63 64
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
65 66


67 68
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
69
                     name=None,
70 71 72 73
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
74 75 76 77 78 79
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

80 81 82 83 84 85 86 87 88 89 90
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
91 92 93 94 95 96
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
97
    """
Q
Qiao Longfei 已提交
98
    helper = LayerHelper("create_parameter", **locals())
99
    if attr is None:
X
xuwei06 已提交
100
        attr = ParamAttr(name=name)
101 102 103 104
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


105 106 107 108 109 110 111
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
F
fengjiayi 已提交
112 113
    Create a new variable in the global block(block 0).

114 115
    Args:
        shape(list[int]): shape of the variable
F
fengjiayi 已提交
116 117 118 119 120 121 122 123 124 125
        value(float): the value of the variable. The new created 
                      variable will be filled with it.
        dtype(string): data type of the variable
        persistable(bool): if this variable is persistable. 
                           Default: False
        force_cpu(bool): force this variable to be on CPU. 
                         Default: False
        name(str|None): The name of the variable. If set to None the variable 
                        name will be generated automatically. 
                        Default: None
126 127 128

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
129 130 131 132 133 134

    Examples:
        .. code-block:: python

            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32', 
                                 persistable=True, force_cpu=True, name='new_var')
135
    """
Q
Qiao Longfei 已提交
136 137 138 139
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
140 141
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
142 143 144
    return var


145
def cast(x, dtype):
Y
Yu Yang 已提交
146
    """
Y
Yibing Liu 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts 
    it to the output with :attr:`dtype`.

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
             
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
162 163 164 165 166 167 168 169 170 171 172 173
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


174
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
175
    """
176 177 178
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
179
    and returns that as the output.
180 181 182 183

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
184 185
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
186 187 188 189 190 191

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
192 193
        
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
194 195 196 197 198 199 200 201 202 203 204
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


205
def sums(input, out=None):
F
fengjiayi 已提交
206 207
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
208 209 210 211 212
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
213
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
214
                             Default: None
K
kavyasrinet 已提交
215 216

    Returns:
F
fengjiayi 已提交
217
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
218 219

    Examples:
F
fengjiayi 已提交
220
        .. code-block:: python
K
kavyasrinet 已提交
221 222 223 224 225 226

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
227 228
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
229
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
230 231 232 233
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
T
tensor-tang 已提交
234 235 236 237 238
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
239 240 241
    return out


242
def assign(input, output):
243 244 245 246 247 248
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
249
        input(Variable|numpy.ndarray): The source variable
250 251 252 253 254 255 256
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
257

258 259 260 261
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
262
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
263 264
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
265
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
266 267
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
268
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
269
            value_name = "fp32_values"
270
            values = [float(v) for v in input.flat]
271
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
272
            value_name = "int32_values"
273
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
274 275
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
276 277 278
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
279 280 281 282 283 284 285

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
286
                value_name: values
X
xuwei06 已提交
287 288 289 290
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
291 292 293
    return output


Q
QI JUN 已提交
294
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
295
    """
296 297
    **fill_constant**

298 299
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
300

301
    The attribute `stop_gradient` of the created tensor is set to True.
302 303

    Args:
304
        shape(tuple|list|None): Shape of the output tensor.
305
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
306 307
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
308
        force_cpu(True|False): data should be on CPU if set true.
309 310

    Returns:
311
        Variable: The tensor variable storing the output.
312 313 314 315 316

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
317
    """
318

Y
Yu Yang 已提交
319 320 321 322 323 324 325
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
326 327 328 329
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
330
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
331
        })
Y
Yu Yang 已提交
332 333 334 335
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
336
@templatedoc()
Y
Yu Yang 已提交
337 338 339 340 341
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
342
                                  output_dim_idx=0):
343
    """
Y
yuyang18 已提交
344
    ${comment}
345 346 347

    It also sets *stop_gradient* to True.

Y
yuyang18 已提交
348 349 350
    >>> data = fluid.layers.fill_constant_batch_size_like(
    >>>             input=like, shape=[1], value=0, dtype='int64')

351
    Args:
Y
yuyang18 已提交
352
        input(${input_type}): ${input_comment}.
353

Y
yuyang18 已提交
354
        shape(${shape_type}): ${shape_comment}.
355

Y
yuyang18 已提交
356 357 358
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
359

Y
yuyang18 已提交
360 361 362 363 364
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
365
        ${out_comment}.
366
    """
Y
Yu Yang 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
384 385 386 387
def argmin(x, axis=0):
    """
    **argmin**

388
    This function computes the indices of the min elements
S
sneaxiy 已提交
389 390 391 392 393 394
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
395

S
sneaxiy 已提交
396 397
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
398

S
sneaxiy 已提交
399 400
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
401

S
sneaxiy 已提交
402
          out = fluid.layers.argmin(x=in, axis=0)
403
          out = fluid.layers.argmin(x=in, axis=-1)
S
sneaxiy 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    """
    helper = LayerHelper("arg_min", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

419
    This function computes the indices of the max elements
S
sneaxiy 已提交
420 421 422 423 424 425
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
426

S
sneaxiy 已提交
427 428
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
429

S
sneaxiy 已提交
430 431
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
432

S
sneaxiy 已提交
433
          out = fluid.layers.argmax(x=in, axis=0)
434
          out = fluid.layers.argmax(x=in, axis=-1)
S
sneaxiy 已提交
435 436 437 438 439 440 441 442 443 444 445
    """
    helper = LayerHelper("arg_max", **locals())
    out = helper.create_tmp_variable(VarDesc.VarType.INT64)
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yibing Liu 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
def argsort(input, axis=-1):
    """
    Performs sorting on the input Variable along the given axis, and outputs 
    sorted data Varibale and its corresponding index Variable with the same 
    shape as :attr:`input`.

    .. code-block:: text
    
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

            indices = [[0, 1, 2], 
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
        axis(int): The axis along which to sort the input Variable. When 
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` + 
                   rank(:attr:`input`). Default -1, the last dimension.

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(data=[2, 3])
            out, indices = fluid.layers.argsort(input, axis=0)
    """
    helper = LayerHelper("argsort", **locals())
    out = helper.create_tmp_variable(dtype=input.dtype, stop_gradient=True)
    ids = helper.create_tmp_variable(VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
                 'Indics': ids},
        attts={'axis': axis})
    return out, ids


Y
Yang Yu 已提交
496
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
497
    """
498 499 500 501 502 503 504 505 506
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
507
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
508 509 510 511 512 513 514 515

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
516 517 518 519
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
520
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
521
    """
522 523 524 525 526 527 528 529
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
530 531 532
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
533 534

    Returns:
W
wanghaoshuang 已提交
535
        Variable: The tensor variable storing the output.
536 537 538 539 540

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
541 542
    """
    return fill_constant(value=0.0, **locals())
543 544


F
fengjiayi 已提交
545 546 547 548 549 550 551 552
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
553 554 555
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reverse',
        inputs={'Input': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


579 580 581 582 583 584 585
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
586 587 588
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
604 605
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
606
        file_path(str): The file path where variables will be saved.
607
        overwrite(bool): Whether or not cover the given file when it has already
608 609
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})