Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
eb3173e2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
eb3173e2
编写于
7月 07, 2020
作者:
Z
zhupengyang
提交者:
GitHub
7月 07, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rand API: remove out, device, stop_gradient; add name (#25246)
上级
22720a15
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
134 addition
and
182 deletion
+134
-182
paddle/fluid/operators/gaussian_random_op.cc
paddle/fluid/operators/gaussian_random_op.cc
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+41
-71
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+3
-12
python/paddle/fluid/layers/utils.py
python/paddle/fluid/layers/utils.py
+20
-7
python/paddle/fluid/tests/unittests/test_rand_op.py
python/paddle/fluid/tests/unittests/test_rand_op.py
+30
-28
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+39
-63
未找到文件。
paddle/fluid/operators/gaussian_random_op.cc
浏览文件 @
eb3173e2
...
...
@@ -98,7 +98,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel {
return
;
}
if
(
!
(
ctx
->
HasInput
(
"ShapeTensor"
)
&&
!
ctx
->
HasInputs
(
"ShapeTensorList"
)
))
{
if
(
!
ctx
->
HasInput
(
"ShapeTensor"
)
&&
!
ctx
->
HasInputs
(
"ShapeTensorList"
))
{
PADDLE_ENFORCE_GT
(
shape
.
size
(),
0UL
,
platform
::
errors
::
InvalidArgument
(
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
eb3173e2
...
...
@@ -10487,29 +10487,24 @@ def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
# [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
"""
helper = LayerHelper('gaussian_random', **locals())
out = helper.create_variable_for_type_inference(dtype)
if not isinstance(shape, (list, tuple, Variable)):
raise TypeError(
"The type of 'shape' in fill_constant must be Variable, list or tuple, but "
"received %s." % (type(shape)))
c_dtype = convert_np_dtype_to_dtype_(dtype)
check_type(shape, 'shape', (list, tuple, Variable), 'gaussian_random')
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
check_dtype(dtype, 'dtype', ['float32', 'float64'], 'gaussian_random')
inputs = {}
attrs = {
'mean': mean,
'std': std,
'seed': seed,
'dtype':
c_
dtype,
'dtype': dtype,
'use_mkldnn': False
}
inputs = {}
utils._get_shape_tensor_inputs(
inputs=inputs,
helper=helper,
attrs=attrs,
shape=shape,
op_type='gaussian_random')
inputs=inputs, attrs=attrs, shape=shape, op_type='gaussian_random')
helper = LayerHelper('gaussian_random', **locals())
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type='gaussian_random',
inputs=inputs,
...
...
@@ -14937,7 +14932,8 @@ def gather_tree(ids, parents):
@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0,
name=None):
"""
This OP initializes a variable with random values sampled from a
uniform distribution in the range [min, max).
...
...
@@ -14952,18 +14948,24 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
result=[[0.8505902, 0.8397286]]
Args:
shape (list|tuple|Variable): The shape of the output Tensor, if the shape is a list or tuple,
its elements can be an integer
or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64.
If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
Default: float32.
min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
seed (int, optional): Random seed used for generating samples. 0 means use a
seed generated by the system. Note that if seed is not 0, this
operator will always generate the same random numbers every time.
Default 0.
shape (list|tuple|Variable): The shape of the output Tensor, if the
shape is a list or tuple, its elements can be an integer or a
Tensor with the shape [1], and the type of the Tensor must be
int32 or int64. If the shape is a Variable, it is a 1-D Tensor, and
the type of the Tensor must be int32 or int64.
dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the
output Tensor. Supported data types: float32, float64. Default: float32.
min (float, optional): The lower bound on the range of random values
to generate, the min is included in the range. Default -1.0.
max (float, optional): The upper bound on the range of random values
to generate, the max is excluded in the range. Default 1.0.
seed (int, optional): Random seed used for generating samples. 0 means
use a seed generated by the system. Note that if seed is not 0,
this operator will always generate the same random numbers every
time. Default 0.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Variable: A Tensor of the specified shape filled with uniform_random values.
...
...
@@ -14993,62 +14995,30 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
result_4 = fluid.layers.uniform_random(var_shape_int32)
"""
check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random')
def get_new_shape_tensor(list_shape):
new_shape_tensor = []
for dim in list_shape:
if isinstance(dim, Variable):
dim.stop_gradient = True
new_shape_tensor.append(dim)
else:
assert (isinstance(dim, int))
temp_out = helper.create_variable_for_type_inference('int64')
fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
new_shape_tensor.append(temp_out)
return new_shape_tensor
if in_dygraph_mode():
shape = utils._convert_shape_to_list(shape)
return core.ops.uniform_random('shape', shape, 'min',
float(min), 'max',
float(max), 'seed', seed, 'dtype', dtype)
def get_attr_shape(list_shape):
unk_dim_idx = -1
attrs_shape = []
for dim_idx, dim_size in enumerate(list_shape):
if isinstance(dim_size, Variable):
attrs_shape.append(-1)
else:
attrs_shape.append(dim_size)
assert dim_size > 0, (
"Each dimension size given in shape must not be negative "
"except one unknown dimension.")
return attrs_shape
check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random')
helper = LayerHelper("uniform_random", **locals())
inputs = dict()
attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
if in_dygraph_mode():
attrs['shape'] = shape
else:
if isinstance(shape, Variable):
shape.stop_gradient = True
inputs["ShapeTensor"] = shape
elif isinstance(shape, (list, tuple)):
assert len(shape) > 0, (
"The size of argument(shape) can't be zero.")
attrs["shape"] = get_attr_shape(shape)
if utils._contain_var(shape):
inputs['ShapeTensorList'] = get_new_shape_tensor(shape)
utils._get_shape_tensor_inputs(
inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random')
helper = LayerHelper("uniform_random", **locals())
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="uniform_random", inputs=inputs, attrs=attrs,
outputs={"Out": out})
return helper.append_activation(out)
return out
def unbind(input, axis=0):
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
eb3173e2
...
...
@@ -685,12 +685,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
attrs
[
'str_value'
]
=
str
(
float
(
value
))
if
in_dygraph_mode
():
if
isinstance
(
shape
,
(
list
,
tuple
)):
shape
=
list
(
map
(
lambda
x
:
x
.
numpy
()[
0
]
if
isinstance
(
x
,
Variable
)
else
x
,
shape
))
else
:
shape
=
list
(
shape
.
numpy
().
astype
(
int
))
shape
=
utils
.
_convert_shape_to_list
(
shape
)
if
out
is
None
:
out
=
_varbase_creator
(
dtype
=
dtype
)
...
...
@@ -719,12 +714,8 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None):
'fill_constant'
)
helper
=
LayerHelper
(
"fill_constant"
,
**
locals
())
inputs
=
utils
.
_get_shape_tensor_inputs
(
inputs
=
inputs
,
helper
=
helper
,
attrs
=
attrs
,
shape
=
shape
,
op_type
=
'fill_constant'
)
utils
.
_get_shape_tensor_inputs
(
inputs
=
inputs
,
attrs
=
attrs
,
shape
=
shape
,
op_type
=
'fill_constant'
)
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
...
...
python/paddle/fluid/layers/utils.py
浏览文件 @
eb3173e2
...
...
@@ -282,7 +282,7 @@ def _contain_var(list_or_tuple):
return
False
def
_get_shape_tensor_inputs
(
inputs
,
helper
,
attrs
,
shape
,
op_type
):
def
_get_shape_tensor_inputs
(
inputs
,
attrs
,
shape
,
op_type
):
from
.tensor
import
fill_constant
,
cast
def
_get_attr_shape
(
list_shape
):
...
...
@@ -295,7 +295,7 @@ def _get_shape_tensor_inputs(inputs, helper, attrs, shape, op_type):
return
attr_shape
def
_get_shape_tensor
(
list_shape
):
new_shape_tensor
=
[]
shape_tensor_list
=
[]
for
idx
,
dim
in
enumerate
(
list_shape
):
if
isinstance
(
dim
,
Variable
):
dim
.
stop_gradient
=
True
...
...
@@ -305,11 +305,11 @@ def _get_shape_tensor_inputs(inputs, helper, attrs, shape, op_type):
'(When type of shape in'
+
op_type
+
'is list or tuple.)'
)
if
convert_dtype
(
dim
.
dtype
)
==
'int64'
:
dim
=
cast
(
x
=
dim
,
dtype
=
'int32'
)
new_shape_tensor
.
append
(
dim
)
shape_tensor_list
.
append
(
dim
)
else
:
temp_out
=
fill_constant
([
1
],
'int32'
,
dim
,
force_cpu
=
True
)
new_shape_tensor
.
append
(
temp_out
)
return
new_shape_tensor
shape_tensor_list
.
append
(
temp_out
)
return
shape_tensor_list
if
isinstance
(
shape
,
Variable
):
shape
.
stop_gradient
=
True
...
...
@@ -325,8 +325,8 @@ def _get_shape_tensor_inputs(inputs, helper, attrs, shape, op_type):
attrs
[
"shape"
]
=
_get_attr_shape
(
shape
)
if
_contain_var
(
shape
):
inputs
[
'ShapeTensorList'
]
=
_get_shape_tensor
(
shape
)
return
inputs
else
:
raise
TypeError
(
"Shape only supports Variable, or list, or tuple."
)
def
_convert_to_tensor_list
(
old_list
,
dtype
=
"int32"
):
...
...
@@ -345,3 +345,16 @@ def _convert_to_tensor_list(old_list, dtype="int32"):
temp_out
=
fill_constant
([
1
],
dtype
,
ele
,
force_cpu
=
True
)
new_list_tensor
.
append
(
temp_out
)
return
new_list_tensor
def
_convert_shape_to_list
(
shape
):
"""
Convert shape(list, tuple, variable) to list in imperative mode
"""
if
isinstance
(
shape
,
(
list
,
tuple
)):
shape
=
list
(
map
(
lambda
x
:
x
.
numpy
()[
0
]
if
isinstance
(
x
,
Variable
)
else
x
,
shape
))
else
:
shape
=
list
(
shape
.
numpy
().
astype
(
int
))
return
shape
python/paddle/fluid/tests/unittests/test_rand_op.py
浏览文件 @
eb3173e2
...
...
@@ -47,71 +47,73 @@ class TestRandOpError(unittest.TestCase):
self
.
assertRaises
(
TypeError
,
test_dtype
)
def
test_shape_list
():
rand
(
shape
=
[
2.
])
self
.
assertRaises
(
TypeError
,
test_shape_list
)
def
test_shape_list2
():
rand
(
shape
=
[
2
,
3.
])
self
.
assertRaises
(
TypeError
,
test_shape_list2
)
def
test_device
():
rand
(
shape
=
[
3
,
4
],
device
=
'device'
)
self
.
assertRaises
(
ValueError
,
test_device
)
class
TestRandOp
(
unittest
.
TestCase
):
"""
This class test the common usages of randop.
"""
def
test_run
(
self
):
use_cuda
=
False
def
run_net
(
self
,
use_cuda
=
False
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
result_1
=
rand
(
shape
=
[
3
,
4
])
result_0
=
rand
([
3
,
4
])
result_1
=
rand
([
3
,
4
],
'float64'
)
dim_1
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
3
)
dim_2
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
5
)
result_2
=
rand
(
shape
=
[
dim_1
,
dim_2
])
var_shape
=
fluid
.
data
(
name
=
'var_shape'
,
shape
=
[
2
],
dtype
=
"int64"
)
result_3
=
rand
(
var_shape
)
var_shape_int32
=
fluid
.
data
(
name
=
'var_shape_int32'
,
shape
=
[
2
],
dtype
=
"int32"
)
result_4
=
rand
(
var_shape_int32
)
exe
.
run
(
startup_program
)
x1
=
np
.
array
([
3
,
2
]).
astype
(
'int64'
)
x2
=
np
.
array
([
4
,
3
]).
astype
(
'int32'
)
ret
=
exe
.
run
(
train_program
,
feed
=
{
"var_shape"
:
x1
,
"var_shape_int32"
:
x2
},
fetch_list
=
[
result_1
,
result_2
,
result_3
,
result_4
])
ret
=
exe
.
run
(
train_program
,
feed
=
{
"var_shape"
:
x1
,
"var_shape_int32"
:
x2
},
fetch_list
=
[
result_1
,
result_1
,
result_2
,
result_3
,
result_4
])
def
test_run
(
self
):
self
.
run_net
(
False
)
if
core
.
is_compiled_with_cuda
():
self
.
run_net
(
True
)
class
TestRandOpForDygraph
(
unittest
.
TestCase
):
"""
This class test the common usages of randop.
"""
def
test_run
(
self
):
use_cuda
=
False
with
fluid
.
dygraph
.
guard
():
rand
(
shape
=
[
3
,
4
])
def
run_net
(
self
,
use_cuda
=
False
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
with
fluid
.
dygraph
.
guard
(
place
):
rand
([
3
,
4
])
rand
([
3
,
4
],
'float64'
)
dim_1
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
3
)
dim_2
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
5
)
rand
(
shape
=
[
dim_1
,
dim_2
])
var_shape
=
fluid
.
dygraph
.
to_variable
(
np
.
array
([
3
,
4
]))
rand
(
var_shape
)
def
test_run
(
self
):
self
.
run_net
(
False
)
if
core
.
is_compiled_with_cuda
():
self
.
run_net
(
True
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/random.py
浏览文件 @
eb3173e2
...
...
@@ -406,7 +406,7 @@ def randperm(n,
return
out
def
rand
(
shape
,
out
=
None
,
dtype
=
None
,
device
=
None
,
stop_gradient
=
Tru
e
):
def
rand
(
shape
,
dtype
=
None
,
name
=
Non
e
):
"""
:alias_main: paddle.rand
:alias: paddle.rand,paddle.tensor.rand,paddle.tensor.random.rand
...
...
@@ -424,22 +424,19 @@ def rand(shape, out=None, dtype=None, device=None, stop_gradient=True):
result=[[0.8505902, 0.8397286]]
Args:
shape(list|tuple|Variable): Shape of the Tensor to be created.
The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
the elements of it should be integers or Tensors with shape [1].
If ``shape`` is a Variable, it should be an 1-D Tensor .
out(Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
if out is None, a new Varibale will be create to store the result.
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor
which can be float32, float64, if dytpe is `None`, the data
type of created tensor is `float32`
device(str, optional): This parameter specifies that the Tensor is created
on the GPU or CPU.
stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable,
default value is True.
shape(list|tuple|Variable): Shape of the Tensor to be created. The data
type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
the elements of it should be integers or Tensors with shape [1]. If
``shape`` is a Variable, it should be an 1-D Tensor .
dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the
output tensor which can be float32, float64, if dytpe is `None`,
the data type of created tensor is `float32`
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Variable: A Tensor of the specified shape filled with random numbers from a uniform distribution on the interval [0, 1).
Variable: A Tensor of the specified shape filled with random numbers
from a uniform distribution on the interval [0, 1).
Raises:
TypeError: The shape type should be list or tupple or Variable.
...
...
@@ -447,54 +444,33 @@ def rand(shape, out=None, dtype=None, device=None, stop_gradient=True):
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
# example 1:
# attr shape is a list which doesn't contain tensor Variable.
result_1 = paddle.rand(shape=[3, 4])
# example 2:
# attr shape is a list which contains tensor Variable.
dim_1 = fluid.layers.fill_constant([1],"int64",3)
dim_2 = fluid.layers.fill_constant([1],"int32",5)
result_2 = paddle.rand(shape=[dim_1, dim_2])
import paddle
import numpy as np
paddle.enable_imperative()
# example 1: attr shape is a list which doesn't contain tensor Variable.
result_1 = paddle.rand(shape=[2, 3])
# [[0.451152 , 0.55825245, 0.403311 ],
# [0.22550228, 0.22106001, 0.7877319 ]]
# example 2: attr shape is a list which contains tensor Variable.
dim_1 = paddle.fill_constant([1], "int64", 2)
dim_2 = paddle.fill_constant([1], "int32", 3)
result_2 = paddle.rand(shape=[dim_1, dim_2, 2])
# [[[0.8879919 0.25788337]
# [0.28826773 0.9712097 ]
# [0.26438272 0.01796806]]
# [[0.33633623 0.28654453]
# [0.79109055 0.7305809 ]
# [0.870881 0.2984597 ]]]
# example 3: attr shape is a Variable, the data type must be int64 or int32.
var_shape = paddle.imperative.to_variable(np.array([2, 3]))
result_3 = paddle.rand(var_shape)
# [[0.22920267 0.841956 0.05981819]
# [0.4836288 0.24573246 0.7516129 ]]
# example 3:
# attr shape is a Variable, the data type must be int64 or int32.
var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
result_3 = paddle.rand(var_shape)
var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
result_4 = paddle.rand(var_shape_int32)
"""
if
dtype
is
None
:
dtype
=
'float32'
check_dtype
(
dtype
,
'dtype'
,
[
'float32'
,
'float64'
],
'rand'
)
check_type
(
shape
,
'shape'
,
(
Variable
,
list
,
tuple
),
'rand'
)
if
isinstance
(
shape
,
Variable
):
check_variable_and_dtype
(
shape
,
'shape'
,
[
'int32'
,
'int64'
],
'rand'
)
elif
isinstance
(
shape
,
(
list
,
tuple
)):
for
i
,
_shape
in
enumerate
(
shape
):
if
not
isinstance
(
_shape
,
Variable
):
check_type
(
_shape
,
'_shape'
,
(
int
),
'rand'
)
else
:
check_variable_and_dtype
(
_shape
,
'shape['
+
str
(
i
)
+
']'
,
[
'int32'
,
'int64'
],
'rand'
)
if
device
not
in
[
None
,
'cpu'
,
'gpu'
]:
raise
ValueError
(
"The input device should in [None, 'cpu', 'gpu'], but received {}"
.
format
(
device
))
helper
=
LayerHelper
(
"rand"
,
**
locals
())
if
out
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
else
:
check_variable_and_dtype
(
out
,
'out'
,
[
dtype
],
'rand'
)
out
.
stop_gradient
=
stop_gradient
with
device_guard
(
device
):
out
=
uniform_random
(
shape
,
dtype
,
min
=
0.
,
max
=
1.0
)
return
out
return
uniform_random
(
shape
,
dtype
,
min
=
0.0
,
max
=
1.0
,
name
=
name
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录