tensor.py 52.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
19
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode
X
xuwei06 已提交
20
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .. import core
24
from .layer_function_generator import templatedoc
25
from ..data_feeder import check_type_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
26
import numpy
27
import warnings
Y
Yu Yang 已提交
28 29

__all__ = [
L
li099 已提交
30 31 32
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
33
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
34
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
35 36 37
]


X
xuwei06 已提交
38
def create_tensor(dtype, name=None, persistable=False):
39
    """
W
wangchaochaohu 已提交
40
    Create a variable, which will hold a Tensor with data type dtype.
41 42

    Args:
W
wangchaochaohu 已提交
43 44 45 46
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
47
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
48
            default value is False.
49 50

    Returns:
W
wangchaochaohu 已提交
51
        Variable: The tensor to be created according to dtype.
52 53 54 55

    Examples:
        .. code-block:: python

56
          import paddle.fluid as fluid
57 58
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
59
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
60 61
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
62 63


64 65
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
66
                     name=None,
67 68 69 70
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
71
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
72 73 74 75 76
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

77 78 79 80 81 82 83
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
84 85 86
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
87
        default_initializer (Initializer, optional): Initializer for the parameter
88 89

    Returns:
90
        The created parameter.
Y
yuyang18 已提交
91 92

    Examples:
93 94
        .. code-block:: python

95
            import paddle.fluid as fluid
96 97
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
98
    """
Q
Qiao Longfei 已提交
99
    helper = LayerHelper("create_parameter", **locals())
100
    if attr is None:
X
xuwei06 已提交
101
        attr = ParamAttr(name=name)
102 103 104 105
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


106 107 108 109 110 111 112
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
113
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
114

115 116 117
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
118
                      variable will be filled with it.
119 120
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
121
                           Default: False
122
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
123
                         Default: False
124 125
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
126 127

    Returns:
128
        Variable: The created Variable
F
fengjiayi 已提交
129 130 131 132

    Examples:
        .. code-block:: python

133
            import paddle.fluid as fluid
134 135 136
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                          persistable=True, force_cpu=True, name='new_var')
137
    """
Q
Qiao Longfei 已提交
138 139
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
140 141 142 143 144
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
145 146 147
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
148

Q
Qiao Longfei 已提交
149 150 151
    return var


152
def cast(x, dtype):
Y
Yu Yang 已提交
153
    """
154 155 156
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
157 158

    Args:
159 160 161 162
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
            bool, float15, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
163 164

    Returns:
165
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
166 167 168

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
169

170
            import paddle.fluid as fluid
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
193 194
    """
    helper = LayerHelper('cast', **locals())
195 196 197 198
    check_type_and_dtype(
        x, 'x', Variable,
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
X
Xin Pan 已提交
199
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
200 201 202 203 204 205 206 207 208
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


209
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
210
    """
211 212
    **Concat**

213
    This OP concatenates the input along the axis.
214 215

    Args:
216 217
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
218
        axis(int32|Variable, optional):  A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. Axis to compute indices along. The effective range
219 220 221 222 223
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
224 225

    Returns:
226
        Variable: A Tensor with the same data type as input's.
227 228 229

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
230

231
            import paddle.fluid as fluid
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
            import numpy as np

            in1 = np.array([[1,2,3],
                            [4,5,6]])
            in2 = np.array([[11,12,13],
                            [14,15,16]])
            in3 = np.array([[21,22],
                            [23,24]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
                out1 = fluid.layers.concat(input=[x1,x2,x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1,x2], axis=0)
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
254
    """
255 256 257 258 259 260 261 262 263 264

    if in_dygraph_mode():
        inputs = {'X': input}
        if not isinstance(axis, int):
            raise TypeError(
                "Input 'axis' in concat must be int in Dygraph mode.")
        attrs = {'axis': axis}
        outs = core.ops.concat(inputs, attrs)
        return outs['Out'][0]

265 266 267 268 269
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in concat should be list, but received %s." %
            (type(input)))
        input = [input]
270 271 272 273 274
    for id, x in enumerate(input):
        check_type_and_dtype(
            x, 'input[' + str(id) + ']', Variable,
            ['float16', 'float32', 'float64', 'int32', 'int64'], 'concat')
    check_type(axis, 'axis', (int, Variable), 'concat')
275 276 277 278 279 280 281 282
    inputs = {'X': input}
    attrs = {}
    if isinstance(axis, Variable):
        axis.stop_gradient = True
        inputs['AxisTensor'] = axis
    else:
        attrs['axis'] = axis

283
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
284
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
285
    helper.append_op(
286
        type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
287 288 289
    return out


G
Guo Sheng 已提交
290
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
291
    """
G
Guo Sheng 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
342 343

    Args:
G
Guo Sheng 已提交
344 345 346 347 348 349 350
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
351 352

    Returns:
G
Guo Sheng 已提交
353 354 355
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
356 357 358 359

    Examples:
        .. code-block:: python

360
            import paddle.fluid as fluid
361
            import numpy as np
G
Guo Sheng 已提交
362 363 364 365 366 367 368
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
369
    """
L
li099 已提交
370
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
371 372 373
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
374
        type='tensor_array_to_tensor',
L
li099 已提交
375 376 377
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
378 379
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
380 381 382
    return out, out_index


383
def sums(input, out=None):
F
fengjiayi 已提交
384
    """
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
406 407

    Args:
408 409 410 411
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
412 413

    Returns:
414 415
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
416 417

    Examples:
F
fengjiayi 已提交
418
        .. code-block:: python
K
kavyasrinet 已提交
419

420 421 422 423 424 425 426 427 428
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
429

430 431
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
432 433 434
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
435 436
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
437 438 439 440 441
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
442 443 444
    return out


F
fengjiayi 已提交
445
def assign(input, output=None):
446
    """
447
    The OP copies the :attr:`input` to the :attr:`output`.
448

449 450 451 452 453
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
            float32, float64, int32 and int64.
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
454 455

    Returns:
456
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
457 458 459

    Examples:
        .. code-block:: python
460

461
          import paddle.fluid as fluid
462 463 464 465 466 467
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
468
    """
Y
Yu Yang 已提交
469
    helper = LayerHelper('assign', **locals())
470
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
471
    if isinstance(input, Variable):
472 473 474
        check_dtype(input.dtype, 'input',
                    ['float32', 'float64', 'int32', 'int64', 'bool'], 'assign',
                    '(When the type of input in assign is Variable.)')
475 476 477
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
478
        helper.append_op(
R
robot 已提交
479
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
480 481
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
482
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
483
            value_name = "fp32_values"
484
            values = [float(v) for v in input.flat]
485
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
486
            value_name = "int32_values"
487
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
488
        else:
489 490 491 492
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be float32 or int32, but "
                "received %s." % convert_dtype(dtype))
493 494 495
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
496 497 498
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
499 500 501 502 503 504
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
505
                value_name: values
X
xuwei06 已提交
506 507
            })

Y
Yu Yang 已提交
508 509 510
    return output


Q
QI JUN 已提交
511
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
512
    """
W
wangchaochaohu 已提交
513
    This OP creates a Tensor with specified `shape` and `dtype`, and
514
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
515

W
wangchaochaohu 已提交
516
    The attribute `stop_gradient` of the created Tensor is setted to True.
517 518

    Args:
519 520 521 522
        shape(list|tuple|Variable): Shape of the Tensor to be created.
                The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
                the elements of it should be integers or Tensors with shape [1].
                If ``shape`` is an Variable, it should be an 1-D Tensor .
W
wangchaochaohu 已提交
523 524 525 526 527 528 529
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
            be float16, float32, float64, int32, int64.
        value(float): The constant value used to initialize the Tensor to be created.
        force_cpu(True): data should be on CPU if it's true, defalut value is False.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
530 531

    Returns:
W
wangchaochaohu 已提交
532 533 534 535 536
        Variable: Tensor which is created according to shape and dtype.

    Raise:
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
        and the data type of out Tensor must be the same as the dtype. 
537 538 539 540

    Examples:
        .. code-block:: python

541
          import paddle.fluid as fluid
542 543 544 545 546 547 548 549 550 551 552 553
          # attr shape is a list which doesn't contain Variable Tensor.
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
          # data1=[[0], [0]] data2=[[5], [5]]

          # attr shape is a list which contains Variable Tensor.
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[1.5, 1.5]

          # attr shape is an Variable Tensor.
          shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2]
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
Y
Yu Yang 已提交
554 555
    """
    helper = LayerHelper("fill_constant", **locals())
556 557 558 559
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
L
liym27 已提交
560 561 562 563 564 565
    inputs = {}
    attrs = {
        'value': float(value),
        'force_cpu': force_cpu or force_init_on_cpu()
    }

566 567 568 569 570
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))

L
liym27 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    def _contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def _get_attr_shape(list_shape):
        attr_shape = []
        for idx, dim in enumerate(list_shape):
            if isinstance(dim, Variable):
                attr_shape.append(-1)
            else:
                attr_shape.append(dim)
        return attr_shape

    def _get_shape_tensor(list_shape):
        new_shape_tensor = []
588
        for idx, dim in enumerate(list_shape):
L
liym27 已提交
589 590
            if isinstance(dim, Variable):
                dim.stop_gradient = True
591 592 593 594
                check_dtype(
                    dim.dtype, 'shape[' + str(idx) + ']', ['int32', 'int64'],
                    'fill_constant',
                    '(When type of shape in fill_constant is list or tuple.)')
595 596
                if convert_dtype(dim.dtype) == 'int64':
                    dim = cast(x=dim, dtype='int32')
L
liym27 已提交
597 598 599 600 601 602 603 604 605
                new_shape_tensor.append(dim)
            else:
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    if isinstance(shape, Variable):
        shape.stop_gradient = True
606 607
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant',
                    '(When type of shape in fill_constant is Variable.)')
608 609
        if (convert_dtype(shape.dtype) == 'int64'):
            shape = cast(shape, 'int32')
L
liym27 已提交
610 611 612 613 614 615 616 617 618
        inputs["ShapeTensor"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, (
            "The size of 'shape' in fill_constant can't be zero, "
            "but received %s." % len(shape))
        attrs["shape"] = _get_attr_shape(shape)
        if _contain_var(shape):
            inputs['ShapeTensorList'] = _get_shape_tensor(shape)

Y
Yu Yang 已提交
619
    if out is None:
X
Xin Pan 已提交
620
        out = helper.create_variable_for_type_inference(dtype=dtype)
621
    else:
622 623 624 625 626
        check_dtype(
            dtype, 'create data type',
            convert_dtype(out.dtype), 'fill_constant',
            '(The create data type in fill_constant must be the same with out data type.)'
        )
L
liym27 已提交
627
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
628 629
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
630
        inputs=inputs,
Y
Yu Yang 已提交
631
        outputs={'Out': [out]},
L
liym27 已提交
632
        attrs=attrs,
M
minqiyang 已提交
633
        stop_gradient=True)
Y
Yu Yang 已提交
634 635 636 637
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
638
@templatedoc()
Y
Yu Yang 已提交
639 640 641 642 643
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
644 645
                                  output_dim_idx=0,
                                  force_cpu=False):
646
    """
W
wangchaochaohu 已提交
647 648 649 650 651
    This OP creates a Tesnor accroding the shape and dtype, and initializes the
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
652 653

    Args:
W
wangchaochaohu 已提交
654 655 656 657 658 659 660 661 662 663 664
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
G
Guo Sheng 已提交
665
        force_cpu(bool): data should be on CPU if it's true, defalut value is False.
Y
yuyang18 已提交
666 667

    Returns:
W
wangchaochaohu 已提交
668
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
669 670 671 672 673

    Examples:

        .. code-block:: python

674
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
675
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
676
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
677
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
678

679
    """
Y
Yu Yang 已提交
680
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
681
    out = helper.create_variable_for_type_inference(dtype=dtype)
682 683 684 685 686 687 688 689 690 691 692 693
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
        'force_cpu': force_cpu or force_init_on_cpu()
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
694 695 696 697
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
698
        attrs=attrs)
Y
Yu Yang 已提交
699 700 701 702
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
703 704 705 706
def argmin(x, axis=0):
    """
    **argmin**

707 708
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
709 710

    Args:
711 712 713 714 715
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
716

S
sneaxiy 已提交
717
    Returns:
718
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
719

S
sneaxiy 已提交
720 721
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
722

723
            import paddle.fluid as fluid
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
751 752
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
753
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
754 755 756 757 758 759 760 761 762 763 764 765
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

766 767
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
768 769

    Args:
770 771 772 773 774
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
775

S
sneaxiy 已提交
776
    Returns:
777
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
778

S
sneaxiy 已提交
779 780
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
781

782
            import paddle.fluid as fluid
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
810 811
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
812
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
813 814 815 816 817 818 819 820
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


821
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
822
    """
823 824 825
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
826 827

    Args:
828 829 830 831 832
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
833 834 835
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
836 837 838
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
839 840

    Returns:
841 842 843
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
844 845 846 847

    Examples:
        .. code-block:: python

848
            import paddle.fluid as fluid
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
890 891
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
892 893 894 895
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
896 897 898 899
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
900
                 'Indices': ids},
901 902
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
903 904 905
    return out, ids


Y
Yang Yu 已提交
906
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
907
    """
908 909
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
910

911 912 913 914 915 916 917
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
918 919

    Returns:
920
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
921 922 923 924

    Examples:
        .. code-block:: python

925
          import paddle.fluid as fluid
926
          data = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
Y
Yu Yang 已提交
927
    """
C
chengduozh 已提交
928 929 930 931
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
932 933 934
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
935
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
936
    """
937 938
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
939

940 941 942 943 944 945 946
    Parameters:
        shape (tuple|list): Shape of output tensor.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports
            bool, float16, float32, float64, int32 and int64.
        force_cpu (bool, optional): Whether force to store the output tensor in CPU memory.
            If :attr:`force_cpu` is False, the output tensor will be stored in running device memory.
            Default: False.
947 948

    Returns:
949
        Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
950 951 952 953

    Examples:
        .. code-block:: python

954
          import paddle.fluid as fluid
955
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
Y
Yu Yang 已提交
956
    """
957 958 959
    check_dtype(dtype, 'create data type',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'zeros')
Y
Yu Yang 已提交
960
    return fill_constant(value=0.0, **locals())
961 962


F
fengjiayi 已提交
963 964
def reverse(x, axis):
    """
965
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
966

967 968 969 970 971
    Parameters:
        x (Variable): A tensor to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
            will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
972 973

    Returns:
974
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
975 976 977 978

    Examples:
        .. code-block:: python

979
          import paddle.fluid as fluid
980 981 982 983
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
F
fengjiayi 已提交
984 985 986 987
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
988
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
989 990
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
991
        inputs={'X': x},
F
fengjiayi 已提交
992 993 994 995 996
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


997 998 999 1000 1001 1002 1003
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1004 1005 1006
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1022 1023
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1024
        file_path(str): The file path where variables will be saved.
1025
        overwrite(bool): Whether or not cover the given file when it has already
1026 1027
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1028 1029 1030 1031 1032 1033 1034 1035

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1036
            import paddle.fluid as fluid
1037 1038 1039 1040 1041 1042 1043
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1068 1069 1070 1071 1072 1073 1074


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1075
       x (Variable): The Tensor/LoDTensor to be checked.
1076 1077

    Returns:
L
liu zhengxi 已提交
1078
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1079 1080 1081 1082 1083 1084 1085 1086
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1087 1088
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1089
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1090 1091 1092 1093 1094 1095 1096 1097 1098
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1099
       x (Variable): The Tensor/LoDTensor to be checked.
1100 1101

    Returns:
L
liu zhengxi 已提交
1102
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1103 1104 1105 1106 1107 1108 1109 1110
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1111 1112
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1113
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1128 1129 1130 1131 1132

    Examples:

        .. code-block:: python

1133
            import paddle.fluid as fluid
1134 1135 1136
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1137
            out = fluid.layers.isfinite(var)
1138 1139
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
1140
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1141 1142
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

L
Liufang Sang 已提交
1152 1153 1154 1155
    Parameters:
        start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value.
            when start is Variable, it is a 1-D Tensor with shape [1].
        end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this
W
whs 已提交
1156
                                 value, except in some cases where step is not an integer
L
Liufang Sang 已提交
1157 1158 1159
                                 and floating point round-off affects the length of out. When end is Variable,
                                 it is a 1-D Tensor with shape [1].
        step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the
W
whs 已提交
1160
                                  distance between two adjacent values, out[i+1] - out[i].
1161
        dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64.
W
whs 已提交
1162

L
Liufang Sang 已提交
1163 1164 1165
    Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype.
    
    Return type: Variable
W
whs 已提交
1166 1167 1168 1169 1170

    examples:

        .. code-block:: python

1171
             import paddle.fluid as fluid
W
whs 已提交
1172 1173 1174 1175 1176
             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

1177 1178 1179 1180
    check_dtype(dtype, 'create data type',
                ['float32', 'float64', 'int32', 'int64'], 'range')

    dtype = convert_dtype(dtype)
W
whs 已提交
1181 1182
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
1183 1184 1185 1186 1187
    elif convert_dtype(start.dtype) != dtype:
        # make sure that start, end, step has the same dtype as
        # `dtype`
        start = cast(x=start, dtype=dtype)

W
whs 已提交
1188 1189
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
1190 1191 1192
    elif convert_dtype(end.dtype) != dtype:
        end = cast(x=end, dtype=dtype)

W
whs 已提交
1193 1194
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)
1195 1196
    elif convert_dtype(step.dtype) != dtype:
        step = cast(x=step, dtype=dtype)
W
whs 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
1206
    out.stop_gradient = True
W
whs 已提交
1207
    return out
Z
zhoukunsheng 已提交
1208 1209


Z
zhoukunsheng 已提交
1210 1211
def linspace(start, stop, num, dtype):
    """
1212
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1213 1214

    Args:
1215 1216 1217 1218 1219 1220 1221
        start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a tensor of shape [1] with input data type float32, float64.
        num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a tensor of shape [1] with type int32.
        dtype(string): The data type of output tensor, it could be 'float32' and 'float64'.
Z
zhoukunsheng 已提交
1222 1223

    Returns:
1224 1225 1226
        Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1227

Z
zhoukunsheng 已提交
1228
    Examples:
Z
zhoukunsheng 已提交
1229 1230
        .. code-block:: python

1231
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1232 1233
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

    """
    helper = LayerHelper("linspace", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1254 1255


Z
zhoukunsheng 已提交
1256 1257
def zeros_like(x, out=None):
    """
1258
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1259 1260 1261
    with `x`.

    Args:
1262 1263 1264 1265
        x(Variable): The input tensor which specifies shape and dtype, the input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the variable as output, the data type and shape of \
            this variable will be same as input :attr:`x`. If is a tensor, the data type and shape need to be same as input :attr:`x`. 
            The defalut value is :attr:`None` .
Z
zhoukunsheng 已提交
1266 1267

    Returns:
1268 1269
        Variable: The N-D tensor, the element in tensor is related to input data type, if the input data type is bool, \
            the output value is False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1270 1271 1272 1273

    Examples:
        .. code-block:: python

1274
          import paddle.fluid as fluid
1275
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1276 1277
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286
    """

    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1287 1288 1289 1290


def diag(diagonal):
    """
1291
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1292 1293

    Args:
1294 1295
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1296 1297

    Returns:
1298 1299
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1300 1301 1302 1303 1304 1305 1306

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1307 1308 1309

          import paddle.fluid as fluid
          import numpy as np
1310 1311 1312
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

    """

    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1328 1329


1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
def eye(num_rows, num_columns=None, batch_shape=None, dtype='float32'):
    """
    **eye**

    This function constructs an identity tensor, or a batch of tensor.

    Args:
        num_rows(int): the number of rows in each batch tensor.
        num_columns(int): the number of columns in each batch tensor.
                          If None, default: num_rows.
        batch_shape(list(int)): If provided, the returned tensor will have a leading
                                batch size of this shape.
1342 1343
        dtype(string): The data type of the returned tensor.
                       It should be int32, int64, float16, float32, float64.
1344 1345

    Returns:
1346
        Variable: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1347 1348 1349 1350 1351

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1352 1353
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1354
          #  [0, 1, 0]
1355 1356
          #  [0, 0, 1]]

1357
          data = fluid.layers.eye(2, 3, dtype='int32')
1358
          # [[1, 0, 0]
1359
          #  [0, 1, 0]]
1360 1361

          data = fluid.layers.eye(2, batch_shape=[3])
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

    helper = LayerHelper("eye", **locals())
    if not isinstance(num_rows, int) or num_rows < 0:
        raise TypeError("num_rows should be a non-negative int")
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
    out = helper.create_variable_for_type_inference(dtype=dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='eye',
        inputs={},
        outputs={'Out': [out]},
        attrs={
            'num_rows': num_rows,
            'num_columns': num_columns,
            'dtype': c_dtype
        },
        stop_gradient=True)
    out.stop_gradient = True

    if batch_shape is not None:
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
        from .nn import stack
        for batch_val in reversed(batch_shape):
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
            else:
                stack_vars = [out for _ in numpy.arange(batch_val)]
                out = stack(stack_vars, axis=0)
    return out


Z
zhoukunsheng 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1414
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out