op_param.h 81.5 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
77 78 79 80 81
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

82 83 84 85 86 87 88 89 90
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
91 92 93 94 95
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

123 124 125 126
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
127 128 129 130 131 132

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

133 134 135 136 137
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
138 139 140 141 142
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
148 149 150 151
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
152 153 154 155 156 157 158 159 160 161 162 163
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
164 165 166 167
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
184

E
eclipsess 已提交
185 186 187 188 189 190 191 192 193 194
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
199

200
  template <typename T>
W
wangliu 已提交
201 202
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
203 204 205
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
206 207 208 209 210
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

240 241 242 243 244
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
245 246 247 248 249
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

250 251 252 253 254
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
255 256 257 258 259 260
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
266 267 268 269 270 271
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
272 273 274 275 276 277
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
278 279 280 281 282
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
283 284 285 286 287 288
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

289 290 291 292 293 294 295 296 297 298 299
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
300
  static const T GetAttr(const string &key, const AttributeMap &map) {
301 302
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
303 304
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
305 306
    return ((Attribute)map.at(key)).GetString();
  }
307

308 309 310 311
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

312
  template <typename T>
W
wangliu 已提交
313
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
314
                        const Scope &scope) {
W
wangliu 已提交
315 316
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
317 318 319 320 321 322
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
323
    }
324
  }
朔-望's avatar
朔-望 已提交
325

E
eclipsess 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

359
  template <typename T>
W
wangliu 已提交
360 361 362
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
363 364
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
365
    vector<T *> var_res;
366 367 368
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
369
    }
370 371
    return var_res;
  }
E
eclipsess 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
385 386
};

N
nhzlx 已提交
387
template <typename Dtype>
388
class ConvParam : public OpParam {
N
nhzlx 已提交
389 390 391
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
392
 public:
393
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
394
            const AttributeMap &attrs, const Scope &scope) {
395 396 397 398 399 400 401 402 403
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
404
  }
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
407

408
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
409

410
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
411

W
wangliu 已提交
412
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
413

W
wangliu 已提交
414
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
415

W
wangliu 已提交
416
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
417

H
hjchen2 已提交
418 419 420 421
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
422 423
    EXEC_DEPTHWISE3x3S2P0_FLOAT,
    EXEC_DEPTHWISE3x3S2P1_FLOAT,
H
hjchen2 已提交
424 425 426
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
427
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
428
    EXEC_GEMM_INT8,
H
hjchen2 已提交
429
    EXEC_DEPTHWISE3x3_INT8,
430
    EXEC_DEPTHWISE5x5_INT8,
H
hjchen2 已提交
431 432 433 434
  };

  ExecMode &ExecMode() const { return exec_mode_; }

435
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
436

437 438 439 440 441 442 443
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
444
 public:
N
nhzlx 已提交
445
  RType *input_;
446 447
  RType *output_;
  RType *filter_;
H
hjchen2 已提交
448
  RType *transformed_filter_;
W
wangliu 已提交
449 450 451
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
452
  mutable enum ExecMode exec_mode_;
453
  int groups;
454 455 456 457

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
458 459 460

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
461
 public:
Z
zhangyang 已提交
462 463 464 465 466 467
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
468
};
N
nhzlx 已提交
469 470
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
471

N
nhzlx 已提交
472
template <typename Dtype>
朔-望's avatar
朔-望 已提交
473
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
474 475 476
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
477
 public:
478
  ElementwiseAddParam(const VariableNameMap &inputs,
479 480
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
481 482 483
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
484 485 486
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
487
  const GType *InputX() const { return input_x_; }
488

xiebaiyuan's avatar
xiebaiyuan 已提交
489
  const GType *InputY() const { return input_y_; }
490

xiebaiyuan's avatar
xiebaiyuan 已提交
491
  GType *Out() const { return out_; }
492 493 494

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
495
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
496 497 498
  GType *input_x_;
  GType *input_y_;
  GType *out_;
499
  int axis_;
Z
zhangyang 已提交
500 501 502
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
503
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
504 505

 public:
H
hanbuhe 已提交
506 507
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
508
#endif
朔-望's avatar
朔-望 已提交
509 510
};

E
eclipsess 已提交
511
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
541
#endif
E
eclipsess 已提交
542

543
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
544 545
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
546 547
#endif

548
#ifdef ELEMENTWISESUB_OP
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
578
#endif
579

L
liuruilong 已提交
580
#ifdef MUL_OP
N
nhzlx 已提交
581
template <typename Dtype>
朔-望's avatar
朔-望 已提交
582
class MulParam : OpParam {
N
nhzlx 已提交
583 584 585
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
586
 public:
587
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
588
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
589 590 591
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
592 593 594
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
595

xiebaiyuan's avatar
xiebaiyuan 已提交
596
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
597

xiebaiyuan's avatar
xiebaiyuan 已提交
598
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
599

xiebaiyuan's avatar
xiebaiyuan 已提交
600
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
601

602
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
603

604
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
605

朔-望's avatar
朔-望 已提交
606
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
607 608 609
  GType *input_x_;
  GType *input_y_;
  GType *out_;
610 611
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
612
};
L
liuruilong 已提交
613
#endif
朔-望's avatar
朔-望 已提交
614

L
liuruilong 已提交
615
#ifdef CONCAT_OP
N
nhzlx 已提交
616
template <typename Dtype>
朔-望's avatar
朔-望 已提交
617
class ConcatParam : public OpParam {
N
nhzlx 已提交
618 619 620
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
621
 public:
622
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
623
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
624 625
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
626 627
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
628

N
nhzlx 已提交
629
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
630

xiebaiyuan's avatar
xiebaiyuan 已提交
631
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
632

633
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
634

朔-望's avatar
朔-望 已提交
635
 private:
N
nhzlx 已提交
636
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
637
  GType *out_;
638
  int axis_;
Z
zhangyang 已提交
639 640 641 642 643 644 645 646 647
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
648
};
L
liuruilong 已提交
649
#endif
朔-望's avatar
朔-望 已提交
650

E
eclipsess 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
682
#ifdef LRN_OP
N
nhzlx 已提交
683
template <typename Dtype>
E
eclipsess 已提交
684
class LrnParam : public OpParam {
N
nhzlx 已提交
685 686 687
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
688
 public:
689
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
690
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
691 692 693
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
694 695 696 697
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
698
    data_format_ = GetStringAttr("data_format", attrs);
699
  }
E
eclipsess 已提交
700

N
nhzlx 已提交
701
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
702

N
nhzlx 已提交
703
  RType *Out() const { return out_; }
E
eclipsess 已提交
704

N
nhzlx 已提交
705
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
706

707
  const int &N() const { return n_; }
E
eclipsess 已提交
708

709
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
710

711
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
712

713
  const float &K() const { return k_; }
E
eclipsess 已提交
714

W
wangliu 已提交
715
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
716

朔-望's avatar
朔-望 已提交
717
 private:
N
nhzlx 已提交
718 719 720
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
721 722 723 724
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
725
  string data_format_;
E
eclipsess 已提交
726
};
L
liuruilong 已提交
727 728 729
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
730
template <typename Dtype>
E
eclipsess 已提交
731
class BatchNormParam : OpParam {
N
nhzlx 已提交
732 733 734
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
735
 public:
736
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
737
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
738 739 740 741 742 743
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
744 745
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
746
    //    is_test_ = GetAttr<bool>("is_test", attrs);
747
  }
E
eclipsess 已提交
748

N
nhzlx 已提交
749
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
750

N
nhzlx 已提交
751
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
752

N
nhzlx 已提交
753
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
754

N
nhzlx 已提交
755
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
756

N
nhzlx 已提交
757
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
758

N
nhzlx 已提交
759
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
760

761
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
762

763
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
764

765
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
766

W
wangliu 已提交
767
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
768

769 770 771 772 773 774 775 776
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
777
 private:
N
nhzlx 已提交
778 779 780 781 782 783
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
784 785 786
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
787
  string data_format_;
788 789
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
790
};
L
liuruilong 已提交
791 792 793
#endif

#ifdef POOL_OP
N
nhzlx 已提交
794
template <typename Dtype>
795
class PoolParam : public OpParam {
N
nhzlx 已提交
796 797 798
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
799
 public:
800
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
801
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
802
    input_ = InputXFrom<GType>(inputs, scope);
803

N
nhzlx 已提交
804
    output_ = OutFrom<GType>(outputs, scope);
805
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
806 807 808
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
809
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
810
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
811
  }
812

N
nhzlx 已提交
813
  const RType *Input() const { return input_; }
814

N
nhzlx 已提交
815
  RType *Output() const { return output_; }
816

W
wangliu 已提交
817
  const string &PoolingType() const { return pooling_type_; }
818

W
wangliu 已提交
819
  const vector<int> &Ksize() const { return ksize_; }
820

W
wangliu 已提交
821
  const vector<int> &Strides() const { return strides_; }
822

W
wangliu 已提交
823
  const vector<int> &Paddings() const { return paddings_; }
824

825
  bool isCeilMode() const { return ceil_mode_; }
826

Z
zhangyang 已提交
827
  bool isGlobalPooling() const { return global_pooling_; }
828

朔-望's avatar
朔-望 已提交
829
 private:
N
nhzlx 已提交
830 831
  RType *input_;
  RType *output_;
W
wangliu 已提交
832 833 834 835
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
836
  bool ceil_mode_;
837
  bool global_pooling_ = false;
Z
zhangyang 已提交
838
#ifdef PADDLE_MOBILE_FPGA
839 840

 private:
H
hanbuhe 已提交
841
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
842 843

 public:
H
hanbuhe 已提交
844 845
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
846
#endif
847
};
L
liuruilong 已提交
848 849 850
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
851
template <typename Dtype>
E
eclipsess 已提交
852
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
853 854 855
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
856 857
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
858
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
859 860 861 862
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
863 864 865 866
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
867 868 869 870

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
871 872
    } else {
      min_max_aspect_ratios_order_ = false;
873
    }
E
eclipsess 已提交
874 875 876 877 878 879
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
880
  const RType *Input() const { return input_; }
E
eclipsess 已提交
881

N
nhzlx 已提交
882
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
883

N
nhzlx 已提交
884
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
885

N
nhzlx 已提交
886
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
887

W
wangliu 已提交
888
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
889

W
wangliu 已提交
890
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
891

W
wangliu 已提交
892
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
893

W
wangliu 已提交
894
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
895 896 897 898 899 900 901 902 903 904 905

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

906 907 908 909
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
910
 private:
N
nhzlx 已提交
911 912 913 914
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
915 916 917 918
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
919 920 921 922 923
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
924
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
925
};
L
liuruilong 已提交
926
#endif
E
eclipsess 已提交
927

L
liuruilong 已提交
928
#ifdef BOXCODER_OP
N
nhzlx 已提交
929
template <typename Dtype>
E
eclipsess 已提交
930
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
931 932 933
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
934 935
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
936
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
937 938 939 940
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
941
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
942
  }
N
nhzlx 已提交
943
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
944

N
nhzlx 已提交
945
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
946

N
nhzlx 已提交
947
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
948

N
nhzlx 已提交
949
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
950 951 952 953

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
954 955 956 957
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
958 959
  std::string code_type_;
};
L
liuruilong 已提交
960
#endif
W
wangliu 已提交
961

L
liuruilong 已提交
962
#ifdef SOFTMAX_OP
N
nhzlx 已提交
963
template <typename Dtype>
W
wangliu 已提交
964
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
965 966 967
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
968 969
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
970
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
971 972
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
973
  }
N
nhzlx 已提交
974 975
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
976 977

 private:
N
nhzlx 已提交
978 979
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
980 981 982 983

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
984
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
985 986 987
  fpga::BypassArgs fpga_bypass_args;

 public:
988
  RType *FloatInput() const {
H
hanbuhe 已提交
989 990 991 992 993 994
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
995
};
L
liuruilong 已提交
996
#endif
W
wangliu 已提交
997

L
liuruilong 已提交
998
#ifdef SIGMOID_OP
N
nhzlx 已提交
999
template <typename Dtype>
W
wangliu 已提交
1000
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1001 1002 1003
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1004 1005
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1006
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1007 1008
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1009
  }
N
nhzlx 已提交
1010 1011
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1012 1013

 private:
N
nhzlx 已提交
1014 1015
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
1016
};
L
liuruilong 已提交
1017 1018 1019
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1020
template <typename Dtype>
E
eclipsess 已提交
1021
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1022 1023 1024
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1025 1026 1027 1028
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1029 1030 1031
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1032 1033 1034 1035 1036 1037 1038 1039
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1040
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1041

Y
yangfei 已提交
1042
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1043

N
nhzlx 已提交
1044
  RType *Out() const { return out_; }
E
eclipsess 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1059 1060 1061
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1062 1063 1064 1065 1066 1067 1068
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1069
#endif
W
wangliu 已提交
1070

L
lijiancheng0614 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1093
template <typename Dtype>
L
liuruilong 已提交
1094
class FeedParam : public OpParam {
N
nhzlx 已提交
1095 1096 1097
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1098 1099
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1100 1101 1102 1103
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1104
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1105
  }
Y
yangfei 已提交
1106
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1107
  GType *Out() const { return out_; }
W
wangliu 已提交
1108
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1109

L
liuruilong 已提交
1110
 private:
Y
yangfei 已提交
1111
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1112
  GType *out_;
W
wangliu 已提交
1113
  int batch_size;
L
liuruilong 已提交
1114 1115
};

N
nhzlx 已提交
1116
template <typename Dtype>
L
liuruilong 已提交
1117
class FetchParam : public OpParam {
N
nhzlx 已提交
1118 1119 1120
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1121 1122
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1123
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1124
    input_x_ = InputXFrom<GType>(inputs, scope);
1125
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1126
  }
L
liuruilong 已提交
1127

N
nhzlx 已提交
1128
  const RType *InputX() const { return input_x_; }
1129 1130 1131
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1132
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1133
  }
L
liuruilong 已提交
1134

L
liuruilong 已提交
1135
 private:
N
nhzlx 已提交
1136
  RType *input_x_;
Y
yangfei 已提交
1137
  Tensor *out_;
L
liuruilong 已提交
1138 1139
};

L
lijiancheng0614 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1176
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1177
template <typename Dtype>
E
eclipsess 已提交
1178
class TransposeParam : public OpParam {
N
nhzlx 已提交
1179 1180 1181
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1182 1183 1184
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1185 1186
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1187 1188 1189
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1190
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1191

N
nhzlx 已提交
1192
  RType *Out() const { return out_; }
E
eclipsess 已提交
1193 1194 1195 1196

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1197 1198
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1199 1200
  vector<int> axis_;
};
L
liuruilong 已提交
1201
#endif
E
eclipsess 已提交
1202

L
lijiancheng0614 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1300
#ifdef RESHAPE_OP
N
nhzlx 已提交
1301
template <typename Dtype>
E
eclipsess 已提交
1302
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1303 1304 1305
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1306 1307 1308
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1309 1310 1311
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1312
    shape_ = GetAttr<vector<int>>("shape", attrs);
1313 1314 1315 1316 1317 1318 1319

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1320 1321
  }

N
nhzlx 已提交
1322
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1323

N
nhzlx 已提交
1324
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1325

N
nhzlx 已提交
1326
  RType *Out() const { return out_; }
E
eclipsess 已提交
1327 1328 1329 1330 1331 1332

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1333 1334 1335
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1336 1337 1338
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1339
#endif
E
eclipsess 已提交
1340

L
lijiancheng0614 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1362
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1363

E
eclipsess 已提交
1364
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1365

E
eclipsess 已提交
1366
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1367

E
eclipsess 已提交
1368
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1369 1370 1371 1372 1373 1374

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1375 1376 1377 1378
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1379 1380 1381 1382 1383
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1384
#ifdef SCALE_OP
N
nhzlx 已提交
1385
template <typename Dtype>
I
itminner 已提交
1386
class ScaleParam : public OpParam {
N
nhzlx 已提交
1387 1388 1389
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1390 1391 1392
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1393 1394 1395
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1396 1397 1398 1399 1400 1401
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1402
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1403

N
nhzlx 已提交
1404
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1405

N
nhzlx 已提交
1406
  RType *Out() const { return out_; }
I
itminner 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1417 1418 1419
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1420 1421 1422 1423 1424
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1425 1426 1427
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1428
template <typename Dtype>
I
itminner 已提交
1429
class SliceParam : public OpParam {
N
nhzlx 已提交
1430 1431 1432
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1433 1434 1435
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1436 1437 1438
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1439 1440 1441 1442 1443
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1444
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1445

N
nhzlx 已提交
1446
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1447

N
nhzlx 已提交
1448
  RType *Out() const { return out_; }
I
itminner 已提交
1449 1450 1451 1452 1453 1454 1455 1456

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1457 1458 1459
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1460 1461 1462 1463
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1464 1465 1466
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1467
template <typename Dtype>
T
Tian 已提交
1468
class ResizeParam : public OpParam {
N
nhzlx 已提交
1469 1470 1471
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1472 1473 1474
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1475 1476 1477
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1478 1479 1480 1481 1482 1483
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1484

N
nhzlx 已提交
1485
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1486

N
nhzlx 已提交
1487
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1488

N
nhzlx 已提交
1489
  RType *Out() const { return out_; }
T
Tian 已提交
1490

I
itminner 已提交
1491
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1492

I
itminner 已提交
1493
  const int &Height() const { return height_; }
T
Tian 已提交
1494

I
itminner 已提交
1495
  const int &Width() const { return width_; }
T
Tian 已提交
1496

I
itminner 已提交
1497
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1498

I
itminner 已提交
1499
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1500

I
itminner 已提交
1501
 private:
N
nhzlx 已提交
1502 1503 1504
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1505 1506 1507 1508 1509
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1510 1511 1512
};
#endif

L
liuruilong 已提交
1513
#ifdef RELU_OP
L
liuruilong 已提交
1514 1515 1516
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1517
template <typename Dtype>
D
relu  
dolphin8 已提交
1518
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1519 1520 1521
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1522
 public:
D
relu  
dolphin8 已提交
1523
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1524
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1525 1526
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1527 1528
  }

N
nhzlx 已提交
1529
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1530

N
nhzlx 已提交
1531
  RType *Out() const { return out_; }
E
eclipsess 已提交
1532 1533

 private:
N
nhzlx 已提交
1534 1535
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1536
};
D
relu  
dolphin8 已提交
1537 1538 1539

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1540
 public:
D
relu  
dolphin8 已提交
1541 1542 1543
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1544
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1545 1546
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1547
 public:
D
relu  
dolphin8 已提交
1548
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1549 1550 1551
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1552 1553
  framework::CLImage midImage;
};
Y
yangfei 已提交
1554
#endif
D
relu  
dolphin8 已提交
1555

L
liuruilong 已提交
1556
#endif
E
eclipsess 已提交
1557

Z
zhangyang 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1590
};
L
liuruilong 已提交
1591
#endif
E
eclipsess 已提交
1592

T
Tian 已提交
1593
#ifdef PRELU_OP
N
nhzlx 已提交
1594
template <typename Dtype>
T
Tian 已提交
1595
class PReluParam : public OpParam {
N
nhzlx 已提交
1596 1597 1598
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1599 1600 1601
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1602
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1603
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1604
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1605
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1606
    out_ = OutFrom<GType>(outputs, scope);
1607
    mode_ = GetStringAttr("mode", attrs);
1608
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1609
  }
N
nhzlx 已提交
1610
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1611
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1612
  RType *Out() const { return out_; }
1613
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1614

I
itminner 已提交
1615
 private:
N
nhzlx 已提交
1616 1617
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1618
  RType *alpha_;
1619
  std::string mode_;
T
Tian 已提交
1620 1621 1622
};
#endif

N
nhzlx 已提交
1623
template <typename Dtype>
L
liuruilong 已提交
1624
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1625 1626 1627
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1628
 public:
L
liuruilong 已提交
1629
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1630
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1631 1632 1633 1634
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1635 1636 1637 1638
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1639
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1640

Y
yangfei 已提交
1641
  RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1642

Y
yangfei 已提交
1643
  RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1644

xiebaiyuan's avatar
xiebaiyuan 已提交
1645
  GType *Out() const { return out_; }
E
eclipsess 已提交
1646 1647 1648 1649 1650 1651 1652 1653

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1654
  GType *input_x_;
N
nhzlx 已提交
1655 1656
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1657
  GType *out_;
E
eclipsess 已提交
1658 1659 1660
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1661

Z
ZhenWang 已提交
1662
#ifdef PADDLE_MOBILE_FPGA
1663
 private:  // NOLINT
Z
zhangyang 已提交
1664
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1665 1666

 public:
Z
zhangyang 已提交
1667 1668
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1669
#endif
E
eclipsess 已提交
1670
};
1671 1672

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1673 1674
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1675
#endif
E
eclipsess 已提交
1676

N
nhzlx 已提交
1677
template <typename Dtype>
1678
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1679 1680 1681
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1682
 public:
L
liuruilong 已提交
1683
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1684
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1685 1686 1687 1688 1689
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1690
  }
N
nhzlx 已提交
1691
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1692 1693 1694

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1695
  RType *Output() const { return output_; }
W
wangliu 已提交
1696

L
liuruilong 已提交
1697
 protected:
N
nhzlx 已提交
1698
  RType *bias_;
W
wangliu 已提交
1699
  int axis_;
N
nhzlx 已提交
1700
  RType *output_;
W
wangliu 已提交
1701 1702
};

N
nhzlx 已提交
1703 1704
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1705

Z
zhangyang 已提交
1706
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1707 1708
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1709
 public:
L
liuruilong 已提交
1710
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1711 1712
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
1713
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1714 1715 1716
};
#endif

1717
#ifdef FUSION_CONVADDPRELU_OP
1718 1719 1720 1721
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1722 1723 1724 1725

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1726 1727 1728
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1729
    mode_ = OpParam::GetStringAttr("mode", attrs);
1730
    framework::DDim dims = alpha_->dims();
1731 1732 1733
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1751 1752 1753 1754
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1755 1756 1757 1758

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1759 1760 1761 1762
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1763
    mode_ = OpParam::GetStringAttr("mode", attrs);
1764
    framework::DDim dims = alpha_->dims();
1765 1766 1767 1768 1769 1770
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1771
    if (keyX1_ == keyOutput_) {
1772
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1773
    } else if (keyY1_ == keyOutput_) {
1774
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1799
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1800
template <typename Dtype>
1801
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1802 1803 1804
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1805 1806 1807
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1820
  }
N
nhzlx 已提交
1821
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1822 1823 1824

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1825
  RType *Output() const { return output_; }
E
eclipsess 已提交
1826

N
nhzlx 已提交
1827
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1828

N
nhzlx 已提交
1829
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1830

N
nhzlx 已提交
1831
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1832

N
nhzlx 已提交
1833
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1834 1835 1836 1837 1838 1839 1840

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1841
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1842

N
nhzlx 已提交
1843
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1844

N
nhzlx 已提交
1845
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1846

N
nhzlx 已提交
1847
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1848 1849

 protected:
N
nhzlx 已提交
1850
  RType *bias_;
E
eclipsess 已提交
1851
  int axis_;
N
nhzlx 已提交
1852 1853 1854 1855 1856
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1857 1858 1859
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1860 1861
  RType *new_bias_;
  RType *new_scale_;
1862 1863 1864 1865 1866
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1867
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1868 1869 1870 1871 1872 1873
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1888
    if (keyX_ == keyBNY_) {
1889
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1890
    } else if (keyY_ == keyBNY_) {
1891
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1892
    }
1893
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
1939
};
1940
#endif
E
eclipsess 已提交
1941

Z
zhangyang 已提交
1942
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1943
template <typename Dtype>
1944
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1945 1946 1947
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1948 1949 1950
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1961
  }
N
nhzlx 已提交
1962
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1963

N
nhzlx 已提交
1964
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1965

N
nhzlx 已提交
1966
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1967

N
nhzlx 已提交
1968
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1969

N
nhzlx 已提交
1970
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1971 1972 1973 1974 1975 1976 1977

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1978
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1979

N
nhzlx 已提交
1980
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1981

N
nhzlx 已提交
1982
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1983

N
nhzlx 已提交
1984
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1985 1986

 protected:
N
nhzlx 已提交
1987 1988 1989 1990 1991
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1992 1993 1994
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1995 1996
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1997 1998 1999
};
#endif

2000
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2001
template <typename Dtype>
2002
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2003 2004 2005
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2006 2007 2008
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2021
  }
N
nhzlx 已提交
2022
  RType *Bias() const { return bias_; }
2023 2024 2025

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2026
  RType *Output() const { return output_y_; }
2027

N
nhzlx 已提交
2028
  const RType *InputBias() const { return input_bias_; }
2029

N
nhzlx 已提交
2030
  const RType *InputMean() const { return input_mean_; }
2031

N
nhzlx 已提交
2032
  const RType *InputScale() const { return input_scale_; }
2033

N
nhzlx 已提交
2034
  const RType *InputVariance() const { return input_variance_; }
2035 2036 2037 2038 2039 2040 2041

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2042
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2043

N
nhzlx 已提交
2044
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2045

N
nhzlx 已提交
2046
  const RType *NewScale() const { return new_scale_; }
2047

N
nhzlx 已提交
2048
  const RType *NewBias() const { return new_bias_; }
2049 2050

 protected:
N
nhzlx 已提交
2051
  RType *bias_;
2052
  int axis_;
N
nhzlx 已提交
2053 2054 2055 2056 2057
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2058 2059 2060
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2061 2062
  RType *new_bias_;
  RType *new_scale_;
2063
};
E
eclipsess 已提交
2064
#endif
Y
Yao,kun 已提交
2065

E
eclipsess 已提交
2066
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2067
template <typename Dtype>
2068
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2069 2070 2071
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2072 2073 2074
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2085
  }
N
nhzlx 已提交
2086
  RType *Output() const { return output_; }
E
eclipsess 已提交
2087

N
nhzlx 已提交
2088
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2089

N
nhzlx 已提交
2090
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2091

N
nhzlx 已提交
2092
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2093

N
nhzlx 已提交
2094
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2095 2096 2097 2098 2099 2100 2101

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2102
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2103

N
nhzlx 已提交
2104
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2105

N
nhzlx 已提交
2106
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2107

N
nhzlx 已提交
2108
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2109 2110

 protected:
N
nhzlx 已提交
2111 2112 2113 2114 2115
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2116 2117 2118
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2119 2120
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2121 2122 2123 2124
};

#endif

2125
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2126
template <typename Dtype>
2127
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2128 2129 2130
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2131 2132 2133
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2144
  }
N
nhzlx 已提交
2145
  RType *Output() const { return output_; }
2146

N
nhzlx 已提交
2147
  const RType *InputBias() const { return input_bias_; }
2148

N
nhzlx 已提交
2149
  const RType *InputMean() const { return input_mean_; }
2150

N
nhzlx 已提交
2151
  const RType *InputScale() const { return input_scale_; }
2152

N
nhzlx 已提交
2153
  const RType *InputVariance() const { return input_variance_; }
2154 2155 2156 2157 2158 2159 2160

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2161
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2162

N
nhzlx 已提交
2163
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2164

N
nhzlx 已提交
2165
  const RType *NewScale() const { return new_scale_; }
2166

N
nhzlx 已提交
2167
  const RType *NewBias() const { return new_bias_; }
2168 2169

 protected:
N
nhzlx 已提交
2170 2171 2172 2173 2174
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2175 2176 2177
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2178 2179
  RType *new_bias_;
  RType *new_scale_;
2180 2181 2182
};
#endif

Y
Yao,kun 已提交
2183
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2184
template <typename Dtype>
Y
Yao,kun 已提交
2185
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2186 2187 2188
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2189 2190 2191 2192
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2193 2194
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2195 2196 2197 2198 2199
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2200
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2201

E
eclipsess 已提交
2202
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2203 2204 2205 2206 2207 2208 2209 2210

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2211 2212
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2213 2214 2215 2216
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2217
#endif
Y
Yao,kun 已提交
2218

2219
#ifdef DROPOUT_OP
N
nhzlx 已提交
2220
template <typename Dtype>
Y
Yao,kun 已提交
2221
class DropoutParam : public OpParam {
N
nhzlx 已提交
2222 2223 2224
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2225 2226 2227
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2228 2229
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2230 2231

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2232 2233
  }

N
nhzlx 已提交
2234
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2235

N
nhzlx 已提交
2236
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2237

Y
yangfei 已提交
2238 2239
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2240
 private:
N
nhzlx 已提交
2241 2242
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2243
  float dropout_prob_;
Y
Yao,kun 已提交
2244
};
2245
#endif
Y
Yao,kun 已提交
2246

N
nhzlx 已提交
2247
template <typename Dtype>
L
liuruilong 已提交
2248
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2249 2250 2251
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2252 2253 2254 2255
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2256 2257
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2258
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2259
    if (outputs.count("Output")) {
2260
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2261
    }
L
liuruilong 已提交
2262 2263 2264 2265 2266 2267
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2268
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2269

N
nhzlx 已提交
2270
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2271

N
nhzlx 已提交
2272
  RType *Output() const { return output_; }
L
liuruilong 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2283 2284 2285
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2286 2287 2288 2289
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
#endif
L
liuruilong 已提交
2300
};
Z
zhangyang 已提交
2301

qnqinan's avatar
qnqinan 已提交
2302 2303 2304 2305 2306
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2307 2308

 public:
qnqinan's avatar
qnqinan 已提交
2309
  FusionDeconvAddParam(const VariableNameMap &inputs,
2310 2311 2312
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2334

Z
zhangyang 已提交
2335 2336 2337 2338 2339
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2365 2366
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2411
    axis = GetAttr<int>("axis", attrs);
2412 2413 2414
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2415
  const int &Axis() const { return axis; }
2416 2417 2418 2419

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2420
  int axis;
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2434
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2435
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2436 2437 2438 2439 2440 2441
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2442 2443
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2444 2445 2446 2447 2448
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2449 2450 2451

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2452
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2453
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2454 2455 2456
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2457 2458 2459 2460 2461 2462 2463 2464 2465
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2482 2483
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2484 2485
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2486
  const RType *InputOutPutSize() const { return input_outsize_; }
2487
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2488 2489
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2490 2491 2492 2493 2494

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2495 2496
  int out_h_;
  int out_w_;
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2512
  const RType *Input() const { return input_; }
2513 2514 2515 2516 2517 2518 2519 2520
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

H
hjchen2 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, scope);
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  RType *indices_;
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2567
#ifdef QUANT_OP
2568
template <typename Dtype>
2569 2570 2571 2572 2573
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2574 2575
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2576
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2577
    output_ = OutFrom<GType>(outputs, scope);
2578 2579
    // online
    // scale = max(abs(x))
H
hjchen2 已提交
2580
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
2581
    // offline
2582
    if (inputs.count("InScale")) {
2583 2584
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2585 2586
    }
    // x = round(scale * x)
2587 2588
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2589
    }
2590 2591 2592 2593
  }

 public:
  // op input
2594
  GType *input_;
2595
  // op output
2596
  GType *output_;
2597
  RType *online_scale_;
2598 2599 2600 2601
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2602
  // round method type
2603 2604
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  // RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2605
};
2606
#endif
2607

2608
#ifdef DEQUANT_OP
2609
template <typename Dtype>
2610 2611 2612 2613 2614
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2615 2616
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2617
    input_ = InputXFrom<GType>(inputs, scope);
2618
    output_ = OutFrom<GType>(outputs, scope);
H
hjchen2 已提交
2619
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, scope);
2620
    // dequantization is performed as x = x / static_scale / online_scale
2621 2622
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2623
    } else {
2624
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2625 2626 2627 2628 2629
    }
  }

 public:
  // op input
2630
  GType *input_;
2631
  // op output
2632
  GType *output_;
2633 2634 2635
  RType *activation_scale_;
  float weight_scale_;
};
2636
#endif
2637

2638 2639 2640 2641
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2642
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2643
template <typename Dtype>
2644
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2645 2646 2647 2648
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2649 2650 2651
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
H
hjchen2 已提交
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
  RType *bn_mean_;
  RType *bn_variance_;
  RType *bn_scale_;
  RType *bn_bias_;
  float epsilon_;
2668 2669 2670
};
#endif

2671 2672 2673 2674
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
  }

 public:
  // elementwise add
  int axis_;
  RType *bias_;
};
#endif

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
                               const AttributeMap &attrs, const Scope &scope)
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
    // offline
2711 2712 2713
    if (inputs.count("InScale")) {
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2714 2715 2716 2717 2718 2719 2720 2721 2722
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  RType *online_scale_;
2723 2724 2725 2726
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2727 2728 2729 2730 2731 2732
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

朔-望's avatar
朔-望 已提交
2733 2734
}  // namespace operators
}  // namespace paddle_mobile