inode.c 138.2 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
18
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 20 21 22
 */

#include <linux/fs.h>
#include <linux/time.h>
23
#include <linux/jbd2.h>
24 25 26 27 28 29
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
30
#include <linux/pagevec.h>
31
#include <linux/mpage.h>
32
#include <linux/namei.h>
33 34
#include <linux/uio.h>
#include <linux/bio.h>
35
#include <linux/workqueue.h>
36
#include <linux/kernel.h>
37
#include <linux/printk.h>
38
#include <linux/slab.h>
39
#include <linux/ratelimit.h>
40

41
#include "ext4_jbd2.h"
42 43
#include "xattr.h"
#include "acl.h"
44
#include "truncate.h"
45

46 47
#include <trace/events/ext4.h>

48 49
#define MPAGE_DA_EXTENT_TAIL 0x01

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
			      struct ext4_inode_info *ei)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	__u16 csum_lo;
	__u16 csum_hi = 0;
	__u32 csum;

	csum_lo = raw->i_checksum_lo;
	raw->i_checksum_lo = 0;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
		csum_hi = raw->i_checksum_hi;
		raw->i_checksum_hi = 0;
	}

	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
			   EXT4_INODE_SIZE(inode->i_sb));

	raw->i_checksum_lo = csum_lo;
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = csum_hi;

	return csum;
}

static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
				  struct ext4_inode_info *ei)
{
	__u32 provided, calculated;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return 1;

	provided = le16_to_cpu(raw->i_checksum_lo);
	calculated = ext4_inode_csum(inode, raw, ei);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
	else
		calculated &= 0xFFFF;

	return provided == calculated;
}

static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
				struct ext4_inode_info *ei)
{
	__u32 csum;

	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_LINUX) ||
	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
		return;

	csum = ext4_inode_csum(inode, raw, ei);
	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}

117 118 119
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
120
	trace_ext4_begin_ordered_truncate(inode, new_size);
121 122 123 124 125 126 127 128 129 130 131
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
132 133
}

134
static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 136
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
E
Eric Sandeen 已提交
137 138 139
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags);
140

141 142 143
/*
 * Test whether an inode is a fast symlink.
 */
144
static int ext4_inode_is_fast_symlink(struct inode *inode)
145
{
146
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 148 149 150 151 152 153 154 155 156
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
157
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158
				 int nblocks)
159
{
160 161 162
	int ret;

	/*
163
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164 165 166 167
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
168
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169
	jbd_debug(2, "restarting handle %p\n", handle);
170
	up_write(&EXT4_I(inode)->i_data_sem);
171
	ret = ext4_journal_restart(handle, nblocks);
172
	down_write(&EXT4_I(inode)->i_data_sem);
173
	ext4_discard_preallocations(inode);
174 175

	return ret;
176 177 178 179 180
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
181
void ext4_evict_inode(struct inode *inode)
182 183
{
	handle_t *handle;
184
	int err;
185

186
	trace_ext4_evict_inode(inode);
187 188 189

	ext4_ioend_wait(inode);

A
Al Viro 已提交
190
	if (inode->i_nlink) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
		/*
		 * When journalling data dirty buffers are tracked only in the
		 * journal. So although mm thinks everything is clean and
		 * ready for reaping the inode might still have some pages to
		 * write in the running transaction or waiting to be
		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
		 * (via truncate_inode_pages()) to discard these buffers can
		 * cause data loss. Also even if we did not discard these
		 * buffers, we would have no way to find them after the inode
		 * is reaped and thus user could see stale data if he tries to
		 * read them before the transaction is checkpointed. So be
		 * careful and force everything to disk here... We use
		 * ei->i_datasync_tid to store the newest transaction
		 * containing inode's data.
		 *
		 * Note that directories do not have this problem because they
		 * don't use page cache.
		 */
		if (ext4_should_journal_data(inode) &&
		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;

			jbd2_log_start_commit(journal, commit_tid);
			jbd2_log_wait_commit(journal, commit_tid);
			filemap_write_and_wait(&inode->i_data);
		}
A
Al Viro 已提交
218 219 220 221
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

222
	if (!is_bad_inode(inode))
223
		dquot_initialize(inode);
224

225 226
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
227 228 229 230 231
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

232 233 234 235 236
	/*
	 * Protect us against freezing - iput() caller didn't have to have any
	 * protection against it
	 */
	sb_start_intwrite(inode->i_sb);
237
	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
238
	if (IS_ERR(handle)) {
239
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
240 241 242 243 244
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
245
		ext4_orphan_del(NULL, inode);
246
		sb_end_intwrite(inode->i_sb);
247 248 249 250
		goto no_delete;
	}

	if (IS_SYNC(inode))
251
		ext4_handle_sync(handle);
252
	inode->i_size = 0;
253 254
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
255
		ext4_warning(inode->i_sb,
256 257 258
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
259
	if (inode->i_blocks)
260
		ext4_truncate(inode);
261 262 263 264 265 266 267

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
268
	if (!ext4_handle_has_enough_credits(handle, 3)) {
269 270 271 272
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
273
			ext4_warning(inode->i_sb,
274 275 276
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
277
			ext4_orphan_del(NULL, inode);
278
			sb_end_intwrite(inode->i_sb);
279 280 281 282
			goto no_delete;
		}
	}

283
	/*
284
	 * Kill off the orphan record which ext4_truncate created.
285
	 * AKPM: I think this can be inside the above `if'.
286
	 * Note that ext4_orphan_del() has to be able to cope with the
287
	 * deletion of a non-existent orphan - this is because we don't
288
	 * know if ext4_truncate() actually created an orphan record.
289 290
	 * (Well, we could do this if we need to, but heck - it works)
	 */
291 292
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
293 294 295 296 297 298 299 300

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
301
	if (ext4_mark_inode_dirty(handle, inode))
302
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
303
		ext4_clear_inode(inode);
304
	else
305 306
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
307
	sb_end_intwrite(inode->i_sb);
308 309
	return;
no_delete:
A
Al Viro 已提交
310
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
311 312
}

313 314
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
315
{
316
	return &EXT4_I(inode)->i_reserved_quota;
317
}
318
#endif
319

320 321
/*
 * Calculate the number of metadata blocks need to reserve
322
 * to allocate a block located at @lblock
323
 */
324
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
325
{
326
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
327
		return ext4_ext_calc_metadata_amount(inode, lblock);
328

329
	return ext4_ind_calc_metadata_amount(inode, lblock);
330 331
}

332 333 334 335
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
336 337
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
338 339
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 341 342
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
343
	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 345
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
346
			 "with only %d reserved data blocks",
347 348 349 350 351
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
352

353 354 355 356 357 358 359 360 361
	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
			 "with only %d reserved metadata blocks\n", __func__,
			 inode->i_ino, ei->i_allocated_meta_blocks,
			 ei->i_reserved_meta_blocks);
		WARN_ON(1);
		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
	}

362 363 364
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
365
	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
366
			   used + ei->i_allocated_meta_blocks);
367
	ei->i_allocated_meta_blocks = 0;
368

369 370 371 372 373 374
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
375
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
376
				   ei->i_reserved_meta_blocks);
377
		ei->i_reserved_meta_blocks = 0;
378
		ei->i_da_metadata_calc_len = 0;
379
	}
380
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
381

382 383
	/* Update quota subsystem for data blocks */
	if (quota_claim)
384
		dquot_claim_block(inode, EXT4_C2B(sbi, used));
385
	else {
386 387 388
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
389
		 * not re-claim the quota for fallocated blocks.
390
		 */
391
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
392
	}
393 394 395 396 397 398

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
399 400
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
401
		ext4_discard_preallocations(inode);
402 403
}

404
static int __check_block_validity(struct inode *inode, const char *func,
405 406
				unsigned int line,
				struct ext4_map_blocks *map)
407
{
408 409
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
410 411 412 413
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
414 415 416 417 418
		return -EIO;
	}
	return 0;
}

419
#define check_block_validity(inode, map)	\
420
	__check_block_validity((inode), __func__, __LINE__, (map))
421

422
/*
423 424
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
458 459 460 461 462 463 464 465 466
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
467 468 469 470 471
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
472 473
			if (num >= max_pages) {
				done = 1;
474
				break;
475
			}
476 477 478 479 480 481
		}
		pagevec_release(&pvec);
	}
	return num;
}

482
/*
483
 * The ext4_map_blocks() function tries to look up the requested blocks,
484
 * and returns if the blocks are already mapped.
485 486 487 488 489
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
490 491
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
492 493 494 495 496 497 498 499
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
500
 * that case, buffer head is unmapped
501 502 503
 *
 * It returns the error in case of allocation failure.
 */
504 505
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
506 507
{
	int retval;
508

509 510 511 512
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
513
	/*
514 515
	 * Try to see if we can get the block without requesting a new
	 * file system block.
516
	 */
517 518
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		down_read((&EXT4_I(inode)->i_data_sem));
519
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
520 521
		retval = ext4_ext_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
522
	} else {
523 524
		retval = ext4_ind_map_blocks(handle, inode, map, flags &
					     EXT4_GET_BLOCKS_KEEP_SIZE);
525
	}
526 527
	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
		up_read((&EXT4_I(inode)->i_data_sem));
528

529
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
530 531 532 533 534 535 536 537 538 539
		int ret;
		if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
			/* delayed alloc may be allocated by fallocate and
			 * coverted to initialized by directIO.
			 * we need to handle delayed extent here.
			 */
			down_write((&EXT4_I(inode)->i_data_sem));
			goto delayed_mapped;
		}
		ret = check_block_validity(inode, map);
540 541 542 543
		if (ret != 0)
			return ret;
	}

544
	/* If it is only a block(s) look up */
545
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
546 547 548 549 550 551
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
552
	 * ext4_ext_get_block() returns the create = 0
553 554
	 * with buffer head unmapped.
	 */
555
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
556 557
		return retval;

558 559 560 561 562 563 564 565 566 567
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
568
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
569

570
	/*
571 572 573 574
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
575 576
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
577 578 579 580 581 582 583

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
584
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
585
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
586 587 588 589
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
590
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
591
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
592
	} else {
593
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
594

595
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
596 597 598 599 600
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
601
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
602
		}
603

604 605 606 607 608 609 610
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
611
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
612 613
			ext4_da_update_reserve_space(inode, retval, 1);
	}
614
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
615
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
616

617 618 619 620 621 622 623 624 625
		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
			int ret;
delayed_mapped:
			/* delayed allocation blocks has been allocated */
			ret = ext4_es_remove_extent(inode, map->m_lblk,
						    map->m_len);
			if (ret < 0)
				retval = ret;
		}
626 627
	}

628
	up_write((&EXT4_I(inode)->i_data_sem));
629
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
630
		int ret = check_block_validity(inode, map);
631 632 633
		if (ret != 0)
			return ret;
	}
634 635 636
	return retval;
}

637 638 639
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

640 641
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
642
{
643
	handle_t *handle = ext4_journal_current_handle();
644
	struct ext4_map_blocks map;
J
Jan Kara 已提交
645
	int ret = 0, started = 0;
646
	int dio_credits;
647

T
Tao Ma 已提交
648 649 650
	if (ext4_has_inline_data(inode))
		return -ERANGE;

651 652 653
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

654
	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
J
Jan Kara 已提交
655
		/* Direct IO write... */
656 657 658
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
659
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
660
		if (IS_ERR(handle)) {
661
			ret = PTR_ERR(handle);
662
			return ret;
663
		}
J
Jan Kara 已提交
664
		started = 1;
665 666
	}

667
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
668
	if (ret > 0) {
669 670 671
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
672
		ret = 0;
673
	}
J
Jan Kara 已提交
674 675
	if (started)
		ext4_journal_stop(handle);
676 677 678
	return ret;
}

679 680 681 682 683 684 685
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

686 687 688
/*
 * `handle' can be NULL if create is zero
 */
689
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
690
				ext4_lblk_t block, int create, int *errp)
691
{
692 693
	struct ext4_map_blocks map;
	struct buffer_head *bh;
694 695 696 697
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

698 699 700 701
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
702

703 704 705
	/* ensure we send some value back into *errp */
	*errp = 0;

706 707 708 709 710 711
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
712
	if (unlikely(!bh)) {
713
		*errp = -ENOMEM;
714
		return NULL;
715
	}
716 717 718
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
719

720 721 722 723 724 725 726 727 728 729 730 731 732
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
733
		}
734 735 736 737 738 739 740
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
741
	}
742 743 744 745 746 747
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
748 749
}

750
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
751
			       ext4_lblk_t block, int create, int *err)
752
{
753
	struct buffer_head *bh;
754

755
	bh = ext4_getblk(handle, inode, block, create, err);
756 757 758 759
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
760
	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
761 762 763 764 765 766 767 768
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

769 770 771 772 773 774 775
int ext4_walk_page_buffers(handle_t *handle,
			   struct buffer_head *head,
			   unsigned from,
			   unsigned to,
			   int *partial,
			   int (*fn)(handle_t *handle,
				     struct buffer_head *bh))
776 777 778 779 780 781 782
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

783 784
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
785
	     block_start = block_end, bh = next) {
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
803
 * close off a transaction and start a new one between the ext4_get_block()
804
 * and the commit_write().  So doing the jbd2_journal_start at the start of
805 806
 * prepare_write() is the right place.
 *
807 808 809 810
 * Also, this function can nest inside ext4_writepage().  In that case, we
 * *know* that ext4_writepage() has generated enough buffer credits to do the
 * whole page.  So we won't block on the journal in that case, which is good,
 * because the caller may be PF_MEMALLOC.
811
 *
812
 * By accident, ext4 can be reentered when a transaction is open via
813 814 815 816 817 818
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
819
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
820 821 822 823
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
824 825
int do_journal_get_write_access(handle_t *handle,
				struct buffer_head *bh)
826
{
827 828 829
	int dirty = buffer_dirty(bh);
	int ret;

830 831
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
832
	/*
C
Christoph Hellwig 已提交
833
	 * __block_write_begin() could have dirtied some buffers. Clean
834 835
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
836
	 * by __block_write_begin() isn't a real problem here as we clear
837 838 839 840 841 842 843 844 845
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
846 847
}

848 849
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
850
static int ext4_write_begin(struct file *file, struct address_space *mapping,
851 852
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
853
{
854
	struct inode *inode = mapping->host;
855
	int ret, needed_blocks;
856 857
	handle_t *handle;
	int retries = 0;
858
	struct page *page;
859
	pgoff_t index;
860
	unsigned from, to;
N
Nick Piggin 已提交
861

862
	trace_ext4_write_begin(inode, pos, len, flags);
863 864 865 866 867
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
868
	index = pos >> PAGE_CACHE_SHIFT;
869 870
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
871

872 873 874 875 876 877 878 879 880 881 882
	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
						    flags, pagep);
		if (ret < 0)
			goto out;
		if (ret == 1) {
			ret = 0;
			goto out;
		}
	}

883
retry:
884 885 886 887
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
888
	}
889

890 891 892 893
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

894
	page = grab_cache_page_write_begin(mapping, index, flags);
895 896 897 898 899
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
900

901 902
	*pagep = page;

903
	if (ext4_should_dioread_nolock(inode))
904
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
905
	else
906
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
907 908

	if (!ret && ext4_should_journal_data(inode)) {
909 910 911
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
912
	}
N
Nick Piggin 已提交
913 914

	if (ret) {
915 916
		unlock_page(page);
		page_cache_release(page);
917
		/*
918
		 * __block_write_begin may have instantiated a few blocks
919 920
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
921 922 923
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
924
		 */
925
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
926 927 928 929
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
930
			ext4_truncate_failed_write(inode);
931
			/*
932
			 * If truncate failed early the inode might
933 934 935 936 937 938 939
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
940 941
	}

942
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
943
		goto retry;
944
out:
945 946 947
	return ret;
}

N
Nick Piggin 已提交
948 949
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
950 951 952 953
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
954
	return ext4_handle_dirty_metadata(handle, NULL, bh);
955 956
}

957
static int ext4_generic_write_end(struct file *file,
958 959 960
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
961 962 963 964 965
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

966 967 968 969 970 971
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else
		copied = block_write_end(file, mapping, pos,
					 len, copied, page, fsdata);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1008 1009 1010 1011
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1012
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1013 1014
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1015
static int ext4_ordered_write_end(struct file *file,
1016 1017 1018
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1019
{
1020
	handle_t *handle = ext4_journal_current_handle();
1021
	struct inode *inode = mapping->host;
1022 1023
	int ret = 0, ret2;

1024
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1025
	ret = ext4_jbd2_file_inode(handle, inode);
1026 1027

	if (ret == 0) {
1028
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1029
							page, fsdata);
1030
		copied = ret2;
1031
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1032 1033 1034 1035 1036
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1037 1038
		if (ret2 < 0)
			ret = ret2;
1039 1040 1041
	} else {
		unlock_page(page);
		page_cache_release(page);
1042
	}
1043

1044
	ret2 = ext4_journal_stop(handle);
1045 1046
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1047

1048
	if (pos + len > inode->i_size) {
1049
		ext4_truncate_failed_write(inode);
1050
		/*
1051
		 * If truncate failed early the inode might still be
1052 1053 1054 1055 1056 1057 1058 1059
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1060
	return ret ? ret : copied;
1061 1062
}

N
Nick Piggin 已提交
1063
static int ext4_writeback_write_end(struct file *file,
1064 1065 1066
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1067
{
1068
	handle_t *handle = ext4_journal_current_handle();
1069
	struct inode *inode = mapping->host;
1070 1071
	int ret = 0, ret2;

1072
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1073
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1074
							page, fsdata);
1075
	copied = ret2;
1076
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1077 1078 1079 1080 1081 1082
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1083 1084
	if (ret2 < 0)
		ret = ret2;
1085

1086
	ret2 = ext4_journal_stop(handle);
1087 1088
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1089

1090
	if (pos + len > inode->i_size) {
1091
		ext4_truncate_failed_write(inode);
1092
		/*
1093
		 * If truncate failed early the inode might still be
1094 1095 1096 1097 1098 1099 1100
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1101
	return ret ? ret : copied;
1102 1103
}

N
Nick Piggin 已提交
1104
static int ext4_journalled_write_end(struct file *file,
1105 1106 1107
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1108
{
1109
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1110
	struct inode *inode = mapping->host;
1111 1112
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1113
	unsigned from, to;
1114
	loff_t new_i_size;
1115

1116
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1117 1118 1119
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

1120 1121
	BUG_ON(!ext4_handle_valid(handle));

1122 1123 1124 1125 1126 1127 1128 1129 1130
	if (ext4_has_inline_data(inode))
		copied = ext4_write_inline_data_end(inode, pos, len,
						    copied, page);
	else {
		if (copied < len) {
			if (!PageUptodate(page))
				copied = 0;
			page_zero_new_buffers(page, from+copied, to);
		}
1131

1132 1133 1134 1135 1136
		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
					     to, &partial, write_end_fn);
		if (!partial)
			SetPageUptodate(page);
	}
1137 1138
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1139
		i_size_write(inode, pos+copied);
1140
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1141
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1142 1143
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1144
		ret2 = ext4_mark_inode_dirty(handle, inode);
1145 1146 1147
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1148

1149
	unlock_page(page);
1150
	page_cache_release(page);
1151
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1152 1153 1154 1155 1156 1157
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1158
	ret2 = ext4_journal_stop(handle);
1159 1160
	if (!ret)
		ret = ret2;
1161
	if (pos + len > inode->i_size) {
1162
		ext4_truncate_failed_write(inode);
1163
		/*
1164
		 * If truncate failed early the inode might still be
1165 1166 1167 1168 1169 1170
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1171 1172

	return ret ? ret : copied;
1173
}
1174

1175
/*
1176
 * Reserve a single cluster located at lblock
1177
 */
1178
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1179
{
A
Aneesh Kumar K.V 已提交
1180
	int retries = 0;
1181
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1182
	struct ext4_inode_info *ei = EXT4_I(inode);
1183
	unsigned int md_needed;
1184
	int ret;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	ext4_lblk_t save_last_lblock;
	int save_len;

	/*
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
	 */
	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
	if (ret)
		return ret;
1196 1197 1198 1199 1200 1201

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1202
repeat:
1203
	spin_lock(&ei->i_block_reservation_lock);
1204 1205 1206 1207 1208 1209
	/*
	 * ext4_calc_metadata_amount() has side effects, which we have
	 * to be prepared undo if we fail to claim space.
	 */
	save_len = ei->i_da_metadata_calc_len;
	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1210 1211
	md_needed = EXT4_NUM_B2C(sbi,
				 ext4_calc_metadata_amount(inode, lblock));
1212
	trace_ext4_da_reserve_space(inode, md_needed);
1213

1214 1215 1216 1217
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1218
	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1219 1220 1221
		ei->i_da_metadata_calc_len = save_len;
		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
		spin_unlock(&ei->i_block_reservation_lock);
A
Aneesh Kumar K.V 已提交
1222 1223 1224 1225
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1226
		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1227 1228
		return -ENOSPC;
	}
1229
	ei->i_reserved_data_blocks++;
1230 1231
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1232

1233 1234 1235
	return 0;       /* success */
}

1236
static void ext4_da_release_space(struct inode *inode, int to_free)
1237 1238
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1239
	struct ext4_inode_info *ei = EXT4_I(inode);
1240

1241 1242 1243
	if (!to_free)
		return;		/* Nothing to release, exit */

1244
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1245

L
Li Zefan 已提交
1246
	trace_ext4_da_release_space(inode, to_free);
1247
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1248
		/*
1249 1250 1251 1252
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1253
		 */
1254 1255
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
1256
			 "data blocks", inode->i_ino, to_free,
1257 1258 1259
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1260
	}
1261
	ei->i_reserved_data_blocks -= to_free;
1262

1263 1264 1265 1266 1267
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
1268 1269
		 * Note that in case of bigalloc, i_reserved_meta_blocks,
		 * i_reserved_data_blocks, etc. refer to number of clusters.
1270
		 */
1271
		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1272
				   ei->i_reserved_meta_blocks);
1273
		ei->i_reserved_meta_blocks = 0;
1274
		ei->i_da_metadata_calc_len = 0;
1275
	}
1276

1277
	/* update fs dirty data blocks counter */
1278
	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1279 1280

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1281

1282
	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1283 1284 1285
}

static void ext4_da_page_release_reservation(struct page *page,
1286
					     unsigned long offset)
1287 1288 1289 1290
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;
1291 1292 1293
	struct inode *inode = page->mapping->host;
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	int num_clusters;
1294
	ext4_fsblk_t lblk;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
1307

1308 1309 1310 1311 1312
	if (to_release) {
		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
		ext4_es_remove_extent(inode, lblk, to_release);
	}

1313 1314 1315 1316 1317 1318 1319
	/* If we have released all the blocks belonging to a cluster, then we
	 * need to release the reserved space for that cluster. */
	num_clusters = EXT4_NUM_B2C(sbi, to_release);
	while (num_clusters > 0) {
		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
			((num_clusters - 1) << sbi->s_cluster_bits);
		if (sbi->s_cluster_ratio == 1 ||
1320
		    !ext4_find_delalloc_cluster(inode, lblk))
1321 1322 1323 1324
			ext4_da_release_space(inode, 1);

		num_clusters--;
	}
1325
}
1326

1327 1328 1329 1330 1331 1332
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
1333
 * them with writepage() call back
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
1344 1345
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
1346
{
1347 1348 1349 1350 1351
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1352
	loff_t size = i_size_read(inode);
1353 1354
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
1355
	sector_t pblock = 0, cur_logical = 0;
1356
	struct ext4_io_submit io_submit;
1357 1358

	BUG_ON(mpd->next_page <= mpd->first_page);
1359
	memset(&io_submit, 0, sizeof(io_submit));
1360 1361 1362
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
1363
	 * If we look at mpd->b_blocknr we would only be looking
1364 1365
	 * at the currently mapped buffer_heads.
	 */
1366 1367 1368
	index = mpd->first_page;
	end = mpd->next_page - 1;

1369
	pagevec_init(&pvec, 0);
1370
	while (index <= end) {
1371
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1372 1373 1374
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
1375
			int skip_page = 0;
1376 1377
			struct page *page = pvec.pages[i];

1378 1379 1380
			index = page->index;
			if (index > end)
				break;
1381 1382 1383 1384 1385

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
1386 1387 1388 1389 1390 1391
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
1392 1393 1394 1395 1396
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

1397 1398
			bh = page_bufs = page_buffers(page);
			block_start = 0;
1399
			do {
1400 1401 1402
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
1403 1404 1405 1406
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
1407 1408 1409 1410 1411 1412 1413
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
1414

1415 1416 1417 1418 1419
				/*
				 * skip page if block allocation undone and
				 * block is dirty
				 */
				if (ext4_bh_delay_or_unwritten(NULL, bh))
1420
					skip_page = 1;
1421 1422
				bh = bh->b_this_page;
				block_start += bh->b_size;
1423 1424
				cur_logical++;
				pblock++;
1425 1426
			} while (bh != page_bufs);

1427 1428 1429 1430
			if (skip_page) {
				unlock_page(page);
				continue;
			}
1431

1432
			clear_page_dirty_for_io(page);
1433 1434
			err = ext4_bio_write_page(&io_submit, page, len,
						  mpd->wbc);
1435
			if (!err)
1436
				mpd->pages_written++;
1437 1438 1439 1440 1441 1442 1443 1444 1445
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
1446
	ext4_io_submit(&io_submit);
1447 1448 1449
	return ret;
}

1450
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1451 1452 1453 1454 1455 1456
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
1457
	ext4_lblk_t start, last;
1458

1459 1460
	index = mpd->first_page;
	end   = mpd->next_page - 1;
1461 1462 1463 1464 1465

	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
	ext4_es_remove_extent(inode, start, last - start + 1);

1466
	pagevec_init(&pvec, 0);
1467 1468 1469 1470 1471 1472
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
1473
			if (page->index > end)
1474 1475 1476 1477 1478 1479 1480
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
1481 1482
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
1483 1484 1485 1486
	}
	return;
}

1487 1488 1489
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1490 1491 1492
	struct super_block *sb = inode->i_sb;

	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1493 1494
	       EXT4_C2B(EXT4_SB(inode->i_sb),
			ext4_count_free_clusters(inode->i_sb)));
1495 1496
	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1497 1498
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1499
	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1500 1501
	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1502 1503 1504 1505
	ext4_msg(sb, KERN_CRIT, "Block reservation details");
	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
		 EXT4_I(inode)->i_reserved_data_blocks);
	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1506
	       EXT4_I(inode)->i_reserved_meta_blocks);
1507 1508 1509
	return;
}

1510
/*
1511 1512
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
1513
 *
1514
 * @mpd - bh describing space
1515 1516 1517 1518
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
1519
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1520
{
1521
	int err, blks, get_blocks_flags;
1522
	struct ext4_map_blocks map, *mapp = NULL;
1523 1524 1525 1526
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
1527 1528

	/*
1529 1530
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
1531
	 */
1532 1533 1534 1535 1536
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
1537 1538 1539 1540

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

1541
	/*
1542
	 * Call ext4_map_blocks() to allocate any delayed allocation
1543 1544 1545 1546 1547 1548 1549 1550
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
1551
	 * want to change *many* call functions, so ext4_map_blocks()
1552
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1553 1554 1555 1556 1557
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
1558
	 */
1559 1560
	map.m_lblk = next;
	map.m_len = max_blocks;
1561
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1562 1563
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1564
	if (mpd->b_state & (1 << BH_Delay))
1565 1566
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

1567
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1568
	if (blks < 0) {
1569 1570
		struct super_block *sb = mpd->inode->i_sb;

1571
		err = blks;
1572
		/*
1573
		 * If get block returns EAGAIN or ENOSPC and there
1574 1575
		 * appears to be free blocks we will just let
		 * mpage_da_submit_io() unlock all of the pages.
1576 1577
		 */
		if (err == -EAGAIN)
1578
			goto submit_io;
1579

1580
		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1581
			mpd->retval = err;
1582
			goto submit_io;
1583 1584
		}

1585
		/*
1586 1587 1588 1589 1590
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
1591
		 */
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
1603
		}
1604
		/* invalidate all the pages */
1605
		ext4_da_block_invalidatepages(mpd);
1606 1607 1608

		/* Mark this page range as having been completed */
		mpd->io_done = 1;
1609
		return;
1610
	}
1611 1612
	BUG_ON(blks == 0);

1613
	mapp = &map;
1614 1615 1616
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
1617

1618 1619
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
1620 1621 1622
	}

	/*
1623
	 * Update on-disk size along with block allocation.
1624 1625 1626 1627 1628 1629
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
1630 1631 1632 1633 1634
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
1635 1636
	}

1637
submit_io:
1638
	mpage_da_submit_io(mpd, mapp);
1639
	mpd->io_done = 1;
1640 1641
}

1642 1643
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
1644 1645 1646 1647 1648 1649

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
1650
 * @b_state - b_state of the buffer head added
1651 1652 1653
 *
 * the function is used to collect contig. blocks in same state
 */
1654
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1655
				   unsigned long b_state)
1656 1657
{
	sector_t next;
1658 1659
	int blkbits = mpd->inode->i_blkbits;
	int nrblocks = mpd->b_size >> blkbits;
1660

1661 1662 1663 1664
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
1665
	 * ext4_map_blocks() multiple times in a loop
1666
	 */
1667
	if (nrblocks >= (8*1024*1024 >> blkbits))
1668 1669
		goto flush_it;

1670 1671
	/* check if the reserved journal credits might overflow */
	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		}
	}
1682 1683 1684
	/*
	 * First block in the extent
	 */
1685 1686
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
1687
		mpd->b_size = 1 << blkbits;
1688
		mpd->b_state = b_state & BH_FLAGS;
1689 1690 1691
		return;
	}

1692
	next = mpd->b_blocknr + nrblocks;
1693 1694 1695
	/*
	 * Can we merge the block to our big extent?
	 */
1696
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1697
		mpd->b_size += 1 << blkbits;
1698 1699 1700
		return;
	}

1701
flush_it:
1702 1703 1704 1705
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
1706
	mpage_da_map_and_submit(mpd);
1707
	return;
1708 1709
}

1710
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1711
{
1712
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1713 1714
}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
/*
 * This function is grabs code from the very beginning of
 * ext4_map_blocks, but assumes that the caller is from delayed write
 * time. This function looks up the requested blocks and sets the
 * buffer delay bit under the protection of i_data_sem.
 */
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
			      struct ext4_map_blocks *map,
			      struct buffer_head *bh)
{
	int retval;
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;

	map->m_flags = 0;
	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, map->m_len,
		  (unsigned long) map->m_lblk);
	/*
	 * Try to see if we can get the block without requesting a new
	 * file system block.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	if (ext4_has_inline_data(inode)) {
		/*
		 * We will soon create blocks for this page, and let
		 * us pretend as if the blocks aren't allocated yet.
		 * In case of clusters, we have to handle the work
		 * of mapping from cluster so that the reserved space
		 * is calculated properly.
		 */
		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
		    ext4_find_delalloc_cluster(inode, map->m_lblk))
			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
		retval = 0;
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
	else
		retval = ext4_ind_map_blocks(NULL, inode, map, 0);

	if (retval == 0) {
		/*
		 * XXX: __block_prepare_write() unmaps passed block,
		 * is it OK?
		 */
		/* If the block was allocated from previously allocated cluster,
		 * then we dont need to reserve it again. */
		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
			retval = ext4_da_reserve_space(inode, iblock);
			if (retval)
				/* not enough space to reserve */
				goto out_unlock;
		}

1771 1772 1773 1774
		retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
		if (retval)
			goto out_unlock;

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
		 * and it should not appear on the bh->b_state.
		 */
		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;

		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
	}

out_unlock:
	up_read((&EXT4_I(inode)->i_data_sem));

	return retval;
}

1791
/*
1792 1793 1794
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
1795 1796 1797 1798 1799 1800 1801
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
1802
 */
1803 1804
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int create)
1805
{
1806
	struct ext4_map_blocks map;
1807 1808 1809
	int ret = 0;

	BUG_ON(create == 0);
1810 1811 1812 1813
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
1814 1815 1816 1817 1818 1819

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
1820 1821
	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
	if (ret <= 0)
1822
		return ret;
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
1835
		set_buffer_mapped(bh);
1836 1837
	}
	return 0;
1838
}
1839

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
1857
	struct buffer_head *page_bufs = NULL;
1858
	handle_t *handle = NULL;
1859 1860 1861
	int ret = 0, err = 0;
	int inline_data = ext4_has_inline_data(inode);
	struct buffer_head *inode_bh = NULL;
1862

1863
	ClearPageChecked(page);
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

	if (inline_data) {
		BUG_ON(page->index != 0);
		BUG_ON(len > ext4_get_max_inline_size(inode));
		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
		if (inode_bh == NULL)
			goto out;
	} else {
		page_bufs = page_buffers(page);
		if (!page_bufs) {
			BUG();
			goto out;
		}
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bget_one);
	}
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

1890 1891
	BUG_ON(!ext4_handle_valid(handle));

1892 1893
	if (inline_data) {
		ret = ext4_journal_get_write_access(handle, inode_bh);
1894

1895 1896 1897 1898 1899 1900 1901 1902 1903
		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);

	} else {
		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     do_journal_get_write_access);

		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
					     write_end_fn);
	}
1904 1905
	if (ret == 0)
		ret = err;
1906
	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1907 1908 1909 1910
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

1911 1912 1913
	if (!ext4_has_inline_data(inode))
		ext4_walk_page_buffers(handle, page_bufs, 0, len,
				       NULL, bput_one);
1914
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1915
out:
1916
	brelse(inode_bh);
1917 1918 1919
	return ret;
}

1920
/*
1921 1922 1923 1924
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
L
Lucas De Marchi 已提交
1925
 * we are writing back data modified via mmap(), no one guarantees in which
1926 1927 1928 1929
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
1930 1931 1932
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
1933
 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1934
 *   - grab_page_cache when doing write_begin (have journal handle)
1935 1936 1937 1938 1939 1940 1941 1942 1943
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
1944
 * but other buffer_heads would be unmapped but dirty (dirty done via the
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1960
 */
1961
static int ext4_writepage(struct page *page,
1962
			  struct writeback_control *wbc)
1963
{
1964
	int ret = 0;
1965
	loff_t size;
1966
	unsigned int len;
1967
	struct buffer_head *page_bufs = NULL;
1968
	struct inode *inode = page->mapping->host;
1969
	struct ext4_io_submit io_submit;
1970

L
Lukas Czerner 已提交
1971
	trace_ext4_writepage(page);
1972 1973 1974 1975 1976
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
1977

T
Theodore Ts'o 已提交
1978
	page_bufs = page_buffers(page);
1979 1980
	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
				   ext4_bh_delay_or_unwritten)) {
1981
		/*
1982 1983 1984
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
1985 1986 1987
		 * We can also reach here via shrink_page_list but it
		 * should never be for direct reclaim so warn if that
		 * happens
1988
		 */
1989 1990
		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
								PF_MEMALLOC);
1991 1992 1993
		redirty_page_for_writepage(wbc, page);
		unlock_page(page);
		return 0;
T
Theodore Ts'o 已提交
1994
	}
1995

1996
	if (PageChecked(page) && ext4_should_journal_data(inode))
1997 1998 1999 2000
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2001
		return __ext4_journalled_writepage(page, len);
2002

2003 2004 2005
	memset(&io_submit, 0, sizeof(io_submit));
	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
	ext4_io_submit(&io_submit);
2006 2007 2008
	return ret;
}

2009
/*
2010
 * This is called via ext4_da_writepages() to
L
Lucas De Marchi 已提交
2011
 * calculate the total number of credits to reserve to fit
2012 2013 2014
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2015
 */
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2027
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2028 2029 2030 2031 2032
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2033

2034 2035
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
2036
 * address space and accumulate pages that need writing, and call
2037 2038
 * mpage_da_map_and_submit to map a single contiguous memory region
 * and then write them.
2039
 */
2040 2041
static int write_cache_pages_da(handle_t *handle,
				struct address_space *mapping,
2042
				struct writeback_control *wbc,
2043 2044
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2045
{
2046
	struct buffer_head	*bh, *head;
2047
	struct inode		*inode = mapping->host;
2048 2049 2050 2051 2052 2053
	struct pagevec		pvec;
	unsigned int		nr_pages;
	sector_t		logical;
	pgoff_t			index, end;
	long			nr_to_write = wbc->nr_to_write;
	int			i, tag, ret = 0;
2054

2055 2056 2057
	memset(mpd, 0, sizeof(struct mpage_da_data));
	mpd->wbc = wbc;
	mpd->inode = inode;
2058 2059 2060 2061
	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2062
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2063 2064 2065 2066
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2067
	*done_index = index;
2068
	while (index <= end) {
2069
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2070 2071
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
2072
			return 0;
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
2084 2085
			if (page->index > end)
				goto out;
2086

2087 2088
			*done_index = page->index + 1;

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
			/*
			 * If we can't merge this page, and we have
			 * accumulated an contiguous region, write it
			 */
			if ((mpd->next_page != page->index) &&
			    (mpd->next_page != mpd->first_page)) {
				mpage_da_map_and_submit(mpd);
				goto ret_extent_tail;
			}

2099 2100 2101
			lock_page(page);

			/*
2102 2103 2104 2105 2106 2107
			 * If the page is no longer dirty, or its
			 * mapping no longer corresponds to inode we
			 * are writing (which means it has been
			 * truncated or invalidated), or the page is
			 * already under writeback and we are not
			 * doing a data integrity writeback, skip the page
2108
			 */
2109 2110 2111 2112
			if (!PageDirty(page) ||
			    (PageWriteback(page) &&
			     (wbc->sync_mode == WB_SYNC_NONE)) ||
			    unlikely(page->mapping != mapping)) {
2113 2114 2115 2116
				unlock_page(page);
				continue;
			}

2117
			wait_on_page_writeback(page);
2118 2119
			BUG_ON(PageWriteback(page));

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
			/*
			 * If we have inline data and arrive here, it means that
			 * we will soon create the block for the 1st page, so
			 * we'd better clear the inline data here.
			 */
			if (ext4_has_inline_data(inode)) {
				BUG_ON(ext4_test_inode_state(inode,
						EXT4_STATE_MAY_INLINE_DATA));
				ext4_destroy_inline_data(handle, inode);
			}

2131
			if (mpd->next_page != page->index)
2132 2133 2134 2135 2136
				mpd->first_page = page->index;
			mpd->next_page = page->index + 1;
			logical = (sector_t) page->index <<
				(PAGE_CACHE_SHIFT - inode->i_blkbits);

2137 2138 2139 2140 2141
			/* Add all dirty buffers to mpd */
			head = page_buffers(page);
			bh = head;
			do {
				BUG_ON(buffer_locked(bh));
2142
				/*
2143 2144 2145
				 * We need to try to allocate unmapped blocks
				 * in the same page.  Otherwise we won't make
				 * progress with the page in ext4_writepage
2146
				 */
2147 2148 2149 2150 2151 2152 2153
				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
					mpage_add_bh_to_extent(mpd, logical,
							       bh->b_state);
					if (mpd->io_done)
						goto ret_extent_tail;
				} else if (buffer_dirty(bh) &&
					   buffer_mapped(bh)) {
2154
					/*
2155 2156 2157 2158 2159 2160 2161
					 * mapped dirty buffer. We need to
					 * update the b_state because we look
					 * at b_state in mpage_da_map_blocks.
					 * We don't update b_size because if we
					 * find an unmapped buffer_head later
					 * we need to use the b_state flag of
					 * that buffer_head.
2162
					 */
2163 2164 2165 2166 2167 2168
					if (mpd->b_size == 0)
						mpd->b_state =
							bh->b_state & BH_FLAGS;
				}
				logical++;
			} while ((bh = bh->b_this_page) != head);
2169 2170 2171 2172

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
2173
				    wbc->sync_mode == WB_SYNC_NONE)
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
2184
					goto out;
2185 2186 2187 2188 2189
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2190 2191 2192
	return 0;
ret_extent_tail:
	ret = MPAGE_DA_EXTENT_TAIL;
2193 2194 2195
out:
	pagevec_release(&pvec);
	cond_resched();
2196 2197 2198 2199
	return ret;
}


2200
static int ext4_da_writepages(struct address_space *mapping,
2201
			      struct writeback_control *wbc)
2202
{
2203 2204
	pgoff_t	index;
	int range_whole = 0;
2205
	handle_t *handle = NULL;
2206
	struct mpage_da_data mpd;
2207
	struct inode *inode = mapping->host;
2208
	int pages_written = 0;
2209
	unsigned int max_pages;
2210
	int range_cyclic, cycled = 1, io_done = 0;
2211 2212
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2213
	loff_t range_start = wbc->range_start;
2214
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2215
	pgoff_t done_index = 0;
2216
	pgoff_t end;
S
Shaohua Li 已提交
2217
	struct blk_plug plug;
2218

2219
	trace_ext4_da_writepages(inode, wbc);
2220

2221 2222 2223 2224 2225
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2226
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2227
		return 0;
2228 2229 2230 2231 2232

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2233
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2234 2235 2236 2237 2238
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2239
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2240 2241
		return -EROFS;

2242 2243
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2244

2245 2246
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2247
		index = mapping->writeback_index;
2248 2249 2250 2251 2252
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2253 2254
		end = -1;
	} else {
2255
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2256 2257
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2258

2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2276 2277 2278 2279 2280 2281
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

2292
retry:
2293
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2294 2295
		tag_pages_for_writeback(mapping, index, end);

S
Shaohua Li 已提交
2296
	blk_start_plug(&plug);
2297
	while (!ret && wbc->nr_to_write > 0) {
2298 2299 2300 2301 2302 2303 2304 2305

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
2306
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2307

2308 2309 2310 2311
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
2312
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2313
			       "%ld pages, ino %lu; err %d", __func__,
2314
				wbc->nr_to_write, inode->i_ino, ret);
2315
			blk_finish_plug(&plug);
2316 2317
			goto out_writepages;
		}
2318 2319

		/*
2320
		 * Now call write_cache_pages_da() to find the next
2321
		 * contiguous region of logical blocks that need
2322
		 * blocks to be allocated by ext4 and submit them.
2323
		 */
2324 2325
		ret = write_cache_pages_da(handle, mapping,
					   wbc, &mpd, &done_index);
2326
		/*
2327
		 * If we have a contiguous extent of pages and we
2328 2329 2330 2331
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2332
			mpage_da_map_and_submit(&mpd);
2333 2334
			ret = MPAGE_DA_EXTENT_TAIL;
		}
2335
		trace_ext4_da_write_pages(inode, &mpd);
2336
		wbc->nr_to_write -= mpd.pages_written;
2337

2338
		ext4_journal_stop(handle);
2339

2340
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2341 2342 2343 2344
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
2345
			jbd2_journal_force_commit_nested(sbi->s_journal);
2346 2347
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2348
			/*
2349 2350 2351
			 * Got one extent now try with rest of the pages.
			 * If mpd.retval is set -EIO, journal is aborted.
			 * So we don't need to write any more.
2352
			 */
2353
			pages_written += mpd.pages_written;
2354
			ret = mpd.retval;
2355
			io_done = 1;
2356
		} else if (wbc->nr_to_write)
2357 2358 2359 2360 2361 2362
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
2363
	}
S
Shaohua Li 已提交
2364
	blk_finish_plug(&plug);
2365 2366 2367 2368 2369 2370 2371
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
2372 2373

	/* Update index */
2374
	wbc->range_cyclic = range_cyclic;
2375 2376 2377 2378 2379
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
2380
		mapping->writeback_index = done_index;
2381

2382
out_writepages:
2383
	wbc->nr_to_write -= nr_to_writebump;
2384
	wbc->range_start = range_start;
2385
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2386
	return ret;
2387 2388
}

2389 2390 2391 2392 2393 2394 2395 2396
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
2397
	 * counters can get slightly wrong with percpu_counter_batch getting
2398 2399 2400 2401
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
2402 2403 2404
	free_blocks  = EXT4_C2B(sbi,
		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	/*
	 * Start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
	    !writeback_in_progress(sb->s_bdi) &&
	    down_read_trylock(&sb->s_umount)) {
		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
		up_read(&sb->s_umount);
	}

2415
	if (2 * free_blocks < 3 * dirty_blocks ||
2416
		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2417
		/*
2418 2419
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
2420 2421 2422 2423 2424 2425
		 */
		return 1;
	}
	return 0;
}

2426
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2427 2428
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
2429
{
2430
	int ret, retries = 0;
2431 2432 2433 2434 2435 2436
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
2437 2438 2439 2440 2441 2442 2443

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
2444
	trace_ext4_da_write_begin(inode, pos, len, flags);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457

	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
		ret = ext4_da_write_inline_data_begin(mapping, inode,
						      pos, len, flags,
						      pagep, fsdata);
		if (ret < 0)
			goto out;
		if (ret == 1) {
			ret = 0;
			goto out;
		}
	}

2458
retry:
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
2470 2471 2472
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
2473

2474
	page = grab_cache_page_write_begin(mapping, index, flags);
2475 2476 2477 2478 2479
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
2480 2481
	*pagep = page;

2482
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2483 2484 2485 2486
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
2487 2488 2489 2490 2491 2492
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
2493
			ext4_truncate_failed_write(inode);
2494 2495
	}

2496 2497
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
2498 2499 2500 2501
out:
	return ret;
}

2502 2503 2504 2505 2506
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
2507
					    unsigned long offset)
2508 2509 2510 2511 2512 2513 2514 2515 2516
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

2517
	for (i = 0; i < idx; i++)
2518 2519
		bh = bh->b_this_page;

2520
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2521 2522 2523 2524
		return 0;
	return 1;
}

2525
static int ext4_da_write_end(struct file *file,
2526 2527 2528
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
2529 2530 2531 2532 2533
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
2534
	unsigned long start, end;
2535 2536 2537
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2538 2539
		switch (ext4_inode_journal_mode(inode)) {
		case EXT4_INODE_ORDERED_DATA_MODE:
2540 2541
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2542
		case EXT4_INODE_WRITEBACK_DATA_MODE:
2543 2544
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
2545
		default:
2546 2547 2548
			BUG();
		}
	}
2549

2550
	trace_ext4_da_write_end(inode, pos, len, copied);
2551
	start = pos & (PAGE_CACHE_SIZE - 1);
2552
	end = start + copied - 1;
2553 2554 2555 2556 2557 2558 2559

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */
	new_i_size = pos + copied;
2560
	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2561 2562
		if (ext4_has_inline_data(inode) ||
		    ext4_da_should_update_i_disksize(page, end)) {
2563
			down_write(&EXT4_I(inode)->i_data_sem);
2564
			if (new_i_size > EXT4_I(inode)->i_disksize)
2565 2566
				EXT4_I(inode)->i_disksize = new_i_size;
			up_write(&EXT4_I(inode)->i_data_sem);
2567 2568 2569 2570 2571
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
2572
		}
2573
	}
2574 2575 2576 2577 2578 2579 2580 2581

	if (write_mode != CONVERT_INLINE_DATA &&
	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
	    ext4_has_inline_data(inode))
		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
						     page);
	else
		ret2 = generic_write_end(file, mapping, pos, len, copied,
2582
							page, fsdata);
2583

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

2603
	ext4_da_page_release_reservation(page, offset);
2604 2605 2606 2607 2608 2609 2610

out:
	ext4_invalidatepage(page, offset);

	return;
}

2611 2612 2613 2614 2615
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
2616 2617
	trace_ext4_alloc_da_blocks(inode);

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
2628
	 *
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
2641
	 * the pages by calling redirty_page_for_writepage() but that
2642 2643
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
L
Lucas De Marchi 已提交
2644
	 * simplifying them because we wouldn't actually intend to
2645 2646 2647
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
2648
	 *
2649 2650 2651 2652 2653 2654
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
2655

2656 2657 2658 2659 2660
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
2661
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2662 2663 2664 2665 2666 2667 2668 2669
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
2670
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2671 2672 2673 2674 2675
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

T
Tao Ma 已提交
2676 2677 2678 2679 2680 2681
	/*
	 * We can get here for an inline file via the FIBMAP ioctl
	 */
	if (ext4_has_inline_data(inode))
		return 0;

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

2692 2693
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
2705
		 * NB. EXT4_STATE_JDATA is not set on files other than
2706 2707 2708 2709 2710 2711
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

2712
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2713
		journal = EXT4_JOURNAL(inode);
2714 2715 2716
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
2717 2718 2719 2720 2721

		if (err)
			return 0;
	}

2722
	return generic_block_bmap(mapping, block, ext4_get_block);
2723 2724
}

2725
static int ext4_readpage(struct file *file, struct page *page)
2726
{
T
Tao Ma 已提交
2727 2728 2729
	int ret = -EAGAIN;
	struct inode *inode = page->mapping->host;

2730
	trace_ext4_readpage(page);
T
Tao Ma 已提交
2731 2732 2733 2734 2735 2736 2737 2738

	if (ext4_has_inline_data(inode))
		ret = ext4_readpage_inline(inode, page);

	if (ret == -EAGAIN)
		return mpage_readpage(page, ext4_get_block);

	return ret;
2739 2740 2741
}

static int
2742
ext4_readpages(struct file *file, struct address_space *mapping,
2743 2744
		struct list_head *pages, unsigned nr_pages)
{
T
Tao Ma 已提交
2745 2746 2747 2748 2749 2750
	struct inode *inode = mapping->host;

	/* If the file has inline data, no need to do readpages. */
	if (ext4_has_inline_data(inode))
		return 0;

2751
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2752 2753
}

2754
static void ext4_invalidatepage(struct page *page, unsigned long offset)
2755
{
2756 2757
	trace_ext4_invalidatepage(page, offset);

2758 2759 2760 2761 2762 2763
	/* No journalling happens on data buffers when this function is used */
	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));

	block_invalidatepage(page, offset);
}

2764 2765
static int __ext4_journalled_invalidatepage(struct page *page,
					    unsigned long offset)
2766 2767 2768 2769 2770
{
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);

	trace_ext4_journalled_invalidatepage(page, offset);

2771 2772 2773 2774 2775 2776
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

2777 2778 2779 2780 2781 2782 2783 2784
	return jbd2_journal_invalidatepage(journal, page, offset);
}

/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
					   unsigned long offset)
{
	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2785 2786
}

2787
static int ext4_releasepage(struct page *page, gfp_t wait)
2788
{
2789
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2790

2791 2792
	trace_ext4_releasepage(page);

2793 2794 2795
	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
2796 2797 2798 2799
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
2800 2801
}

2802 2803 2804 2805 2806
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
2807
int ext4_get_block_write(struct inode *inode, sector_t iblock,
2808 2809
		   struct buffer_head *bh_result, int create)
{
2810
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2811
		   inode->i_ino, create);
2812 2813
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
2814 2815
}

2816
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2817
		   struct buffer_head *bh_result, int create)
2818
{
2819 2820 2821 2822
	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
		   inode->i_ino, create);
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_NO_LOCK);
2823 2824
}

2825
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2826 2827
			    ssize_t size, void *private, int ret,
			    bool is_async)
2828
{
2829
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2830 2831
        ext4_io_end_t *io_end = iocb->private;

2832 2833
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
2834
		goto out;
2835

2836
	ext_debug("ext4_end_io_dio(): io_end 0x%p "
2837
		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2838 2839 2840
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

2841 2842
	iocb->private = NULL;

2843
	/* if not aio dio with unwritten extents, just free io and return */
2844
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2845
		ext4_free_io_end(io_end);
2846 2847 2848
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
2849
		inode_dio_done(inode);
2850
		return;
2851 2852
	}

2853 2854
	io_end->offset = offset;
	io_end->size = size;
2855 2856 2857 2858
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
2859

2860
	ext4_add_complete_io(io_end);
2861
}
2862

2863 2864 2865 2866 2867
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
2868
 * For holes, we fallocate those blocks, mark them as uninitialized
2869
 * If those blocks were preallocated, we mark sure they are split, but
2870
 * still keep the range to write as uninitialized.
2871
 *
2872
 * The unwritten extents will be converted to written when DIO is completed.
2873
 * For async direct IO, since the IO may still pending when return, we
L
Lucas De Marchi 已提交
2874
 * set up an end_io call back function, which will do the conversion
2875
 * when async direct IO completed.
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);
2890 2891 2892
	int overwrite = 0;
	get_block_t *get_block_func = NULL;
	int dio_flags = 0;
2893
	loff_t final_size = offset + count;
2894

2895 2896 2897
	/* Use the old path for reads and writes beyond i_size. */
	if (rw != WRITE || final_size > inode->i_size)
		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2898

2899
	BUG_ON(iocb->private == NULL);
2900

2901 2902
	/* If we do a overwrite dio, i_mutex locking can be released */
	overwrite = *((int *)iocb->private);
2903

2904 2905 2906 2907 2908
	if (overwrite) {
		atomic_inc(&inode->i_dio_count);
		down_read(&EXT4_I(inode)->i_data_sem);
		mutex_unlock(&inode->i_mutex);
	}
2909

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/*
	 * We could direct write to holes and fallocate.
	 *
	 * Allocated blocks to fill the hole are marked as
	 * uninitialized to prevent parallel buffered read to expose
	 * the stale data before DIO complete the data IO.
	 *
	 * As to previously fallocated extents, ext4 get_block will
	 * just simply mark the buffer mapped but still keep the
	 * extents uninitialized.
	 *
	 * For non AIO case, we will convert those unwritten extents
	 * to written after return back from blockdev_direct_IO.
	 *
	 * For async DIO, the conversion needs to be deferred when the
	 * IO is completed. The ext4 end_io callback function will be
	 * called to take care of the conversion work.  Here for async
	 * case, we allocate an io_end structure to hook to the iocb.
	 */
	iocb->private = NULL;
	ext4_inode_aio_set(inode, NULL);
	if (!is_sync_kiocb(iocb)) {
		ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
		if (!io_end) {
			ret = -ENOMEM;
			goto retake_lock;
2936
		}
2937 2938
		io_end->flag |= EXT4_IO_END_DIRECT;
		iocb->private = io_end;
2939
		/*
2940 2941 2942 2943
		 * we save the io structure for current async direct
		 * IO, so that later ext4_map_blocks() could flag the
		 * io structure whether there is a unwritten extents
		 * needs to be converted when IO is completed.
2944
		 */
2945 2946
		ext4_inode_aio_set(inode, io_end);
	}
2947

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	if (overwrite) {
		get_block_func = ext4_get_block_write_nolock;
	} else {
		get_block_func = ext4_get_block_write;
		dio_flags = DIO_LOCKING;
	}
	ret = __blockdev_direct_IO(rw, iocb, inode,
				   inode->i_sb->s_bdev, iov,
				   offset, nr_segs,
				   get_block_func,
				   ext4_end_io_dio,
				   NULL,
				   dio_flags);

	if (iocb->private)
		ext4_inode_aio_set(inode, NULL);
	/*
	 * The io_end structure takes a reference to the inode, that
	 * structure needs to be destroyed and the reference to the
	 * inode need to be dropped, when IO is complete, even with 0
	 * byte write, or failed.
	 *
	 * In the successful AIO DIO case, the io_end structure will
	 * be destroyed and the reference to the inode will be dropped
	 * after the end_io call back function is called.
	 *
	 * In the case there is 0 byte write, or error case, since VFS
	 * direct IO won't invoke the end_io call back function, we
	 * need to free the end_io structure here.
	 */
	if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
		ext4_free_io_end(iocb->private);
		iocb->private = NULL;
	} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
		int err;
		/*
		 * for non AIO case, since the IO is already
		 * completed, we could do the conversion right here
		 */
		err = ext4_convert_unwritten_extents(inode,
						     offset, ret);
		if (err < 0)
			ret = err;
		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
	}
2994

2995 2996 2997 2998 2999 3000
retake_lock:
	/* take i_mutex locking again if we do a ovewrite dio */
	if (overwrite) {
		inode_dio_done(inode);
		up_read(&EXT4_I(inode)->i_data_sem);
		mutex_lock(&inode->i_mutex);
3001
	}
3002

3003
	return ret;
3004 3005 3006 3007 3008 3009 3010 3011
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3012
	ssize_t ret;
3013

3014 3015 3016 3017 3018 3019
	/*
	 * If we are doing data journalling we don't support O_DIRECT
	 */
	if (ext4_should_journal_data(inode))
		return 0;

T
Tao Ma 已提交
3020 3021 3022 3023
	/* Let buffer I/O handle the inline data case. */
	if (ext4_has_inline_data(inode))
		return 0;

3024
	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3025
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3026 3027 3028 3029 3030 3031
		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
	else
		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
	trace_ext4_direct_IO_exit(inode, offset,
				iov_length(iov, nr_segs), rw, ret);
	return ret;
3032 3033
}

3034
/*
3035
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3047
static int ext4_journalled_set_page_dirty(struct page *page)
3048 3049 3050 3051 3052
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3053
static const struct address_space_operations ext4_ordered_aops = {
3054 3055
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3056
	.writepage		= ext4_writepage,
3057 3058 3059 3060 3061 3062 3063 3064
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3065
	.error_remove_page	= generic_error_remove_page,
3066 3067
};

3068
static const struct address_space_operations ext4_writeback_aops = {
3069 3070
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3071
	.writepage		= ext4_writepage,
3072 3073 3074 3075 3076 3077 3078 3079
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3080
	.error_remove_page	= generic_error_remove_page,
3081 3082
};

3083
static const struct address_space_operations ext4_journalled_aops = {
3084 3085
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3086
	.writepage		= ext4_writepage,
3087 3088 3089 3090
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
3091
	.invalidatepage		= ext4_journalled_invalidatepage,
3092
	.releasepage		= ext4_releasepage,
3093
	.direct_IO		= ext4_direct_IO,
3094
	.is_partially_uptodate  = block_is_partially_uptodate,
3095
	.error_remove_page	= generic_error_remove_page,
3096 3097
};

3098
static const struct address_space_operations ext4_da_aops = {
3099 3100
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3101
	.writepage		= ext4_writepage,
3102 3103 3104 3105 3106 3107 3108 3109 3110
	.writepages		= ext4_da_writepages,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3111
	.error_remove_page	= generic_error_remove_page,
3112 3113
};

3114
void ext4_set_aops(struct inode *inode)
3115
{
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	switch (ext4_inode_journal_mode(inode)) {
	case EXT4_INODE_ORDERED_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_ordered_aops;
		break;
	case EXT4_INODE_WRITEBACK_DATA_MODE:
		if (test_opt(inode->i_sb, DELALLOC))
			inode->i_mapping->a_ops = &ext4_da_aops;
		else
			inode->i_mapping->a_ops = &ext4_writeback_aops;
		break;
	case EXT4_INODE_JOURNAL_DATA_MODE:
3130
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3131 3132 3133 3134
		break;
	default:
		BUG();
	}
3135 3136
}

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156

/*
 * ext4_discard_partial_page_buffers()
 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
 * This function finds and locks the page containing the offset
 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
 * Calling functions that already have the page locked should call
 * ext4_discard_partial_page_buffers_no_lock directly.
 */
int ext4_discard_partial_page_buffers(handle_t *handle,
		struct address_space *mapping, loff_t from,
		loff_t length, int flags)
{
	struct inode *inode = mapping->host;
	struct page *page;
	int err = 0;

	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
	if (!page)
3157
		return -ENOMEM;
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185

	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
		from, length, flags);

	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * ext4_discard_partial_page_buffers_no_lock()
 * Zeros a page range of length 'length' starting from offset 'from'.
 * Buffer heads that correspond to the block aligned regions of the
 * zeroed range will be unmapped.  Unblock aligned regions
 * will have the corresponding buffer head mapped if needed so that
 * that region of the page can be updated with the partial zero out.
 *
 * This function assumes that the page has already been  locked.  The
 * The range to be discarded must be contained with in the given page.
 * If the specified range exceeds the end of the page it will be shortened
 * to the end of the page that corresponds to 'from'.  This function is
 * appropriate for updating a page and it buffer heads to be unmapped and
 * zeroed for blocks that have been either released, or are going to be
 * released.
 *
 * handle: The journal handle
 * inode:  The files inode
 * page:   A locked page that contains the offset "from"
3186
 * from:   The starting byte offset (from the beginning of the file)
3187 3188 3189 3190 3191 3192 3193
 *         to begin discarding
 * len:    The length of bytes to discard
 * flags:  Optional flags that may be used:
 *
 *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
 *         Only zero the regions of the page whose buffer heads
 *         have already been unmapped.  This flag is appropriate
3194
 *         for updating the contents of a page whose blocks may
3195 3196 3197
 *         have already been released, and we only want to zero
 *         out the regions that correspond to those released blocks.
 *
3198
 * Returns zero on success or negative on failure.
3199
 */
E
Eric Sandeen 已提交
3200
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
		struct inode *inode, struct page *page, loff_t from,
		loff_t length, int flags)
{
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
	unsigned int blocksize, max, pos;
	ext4_lblk_t iblock;
	struct buffer_head *bh;
	int err = 0;

	blocksize = inode->i_sb->s_blocksize;
	max = PAGE_CACHE_SIZE - offset;

	if (index != page->index)
		return -EINVAL;

	/*
	 * correct length if it does not fall between
	 * 'from' and the end of the page
	 */
	if (length > max || length < 0)
		length = max;

	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

3226 3227
	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	pos = offset;
	while (pos < offset + length) {
3240 3241
		unsigned int end_of_block, range_to_discard;

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
		err = 0;

		/* The length of space left to zero and unmap */
		range_to_discard = offset + length - pos;

		/* The length of space until the end of the block */
		end_of_block = blocksize - (pos & (blocksize-1));

		/*
		 * Do not unmap or zero past end of block
		 * for this buffer head
		 */
		if (range_to_discard > end_of_block)
			range_to_discard = end_of_block;


		/*
		 * Skip this buffer head if we are only zeroing unampped
		 * regions of the page
		 */
		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
			buffer_mapped(bh))
				goto next;

		/* If the range is block aligned, unmap */
		if (range_to_discard == blocksize) {
			clear_buffer_dirty(bh);
			bh->b_bdev = NULL;
			clear_buffer_mapped(bh);
			clear_buffer_req(bh);
			clear_buffer_new(bh);
			clear_buffer_delay(bh);
			clear_buffer_unwritten(bh);
			clear_buffer_uptodate(bh);
			zero_user(page, pos, range_to_discard);
			BUFFER_TRACE(bh, "Buffer discarded");
			goto next;
		}

		/*
		 * If this block is not completely contained in the range
		 * to be discarded, then it is not going to be released. Because
		 * we need to keep this block, we need to make sure this part
		 * of the page is uptodate before we modify it by writeing
		 * partial zeros on it.
		 */
		if (!buffer_mapped(bh)) {
			/*
			 * Buffer head must be mapped before we can read
			 * from the block
			 */
			BUFFER_TRACE(bh, "unmapped");
			ext4_get_block(inode, iblock, bh, 0);
			/* unmapped? It's a hole - nothing to do */
			if (!buffer_mapped(bh)) {
				BUFFER_TRACE(bh, "still unmapped");
				goto next;
			}
		}

		/* Ok, it's mapped. Make sure it's up-to-date */
		if (PageUptodate(page))
			set_buffer_uptodate(bh);

		if (!buffer_uptodate(bh)) {
			err = -EIO;
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			/* Uhhuh. Read error. Complain and punt.*/
			if (!buffer_uptodate(bh))
				goto next;
		}

		if (ext4_should_journal_data(inode)) {
			BUFFER_TRACE(bh, "get write access");
			err = ext4_journal_get_write_access(handle, bh);
			if (err)
				goto next;
		}

		zero_user(page, pos, range_to_discard);

		err = 0;
		if (ext4_should_journal_data(inode)) {
			err = ext4_handle_dirty_metadata(handle, inode, bh);
3327
		} else
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
			mark_buffer_dirty(bh);

		BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
		bh = bh->b_this_page;
		iblock++;
		pos += range_to_discard;
	}

	return err;
}

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
int ext4_can_truncate(struct inode *inode)
{
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

3351 3352 3353 3354 3355 3356 3357 3358
/*
 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 * associated with the given offset and length
 *
 * @inode:  File inode
 * @offset: The offset where the hole will begin
 * @len:    The length of the hole
 *
3359
 * Returns: 0 on success or negative on failure
3360 3361 3362 3363 3364 3365
 */

int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	if (!S_ISREG(inode->i_mode))
3366
		return -EOPNOTSUPP;
3367

3368 3369
	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
		return ext4_ind_punch_hole(file, offset, length);
3370

3371 3372
	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
		/* TODO: Add support for bigalloc file systems */
3373
		return -EOPNOTSUPP;
3374 3375
	}

3376 3377
	trace_ext4_punch_hole(inode, offset, length);

3378 3379 3380
	return ext4_ext_punch_hole(file, offset, length);
}

3381
/*
3382
 * ext4_truncate()
3383
 *
3384 3385
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3386 3387
 * simultaneously on behalf of the same inode.
 *
3388
 * As we work through the truncate and commit bits of it to the journal there
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
3402
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3403
 * that this inode's truncate did not complete and it will again call
3404 3405
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
3406
 * that's fine - as long as they are linked from the inode, the post-crash
3407
 * ext4_truncate() run will find them and release them.
3408
 */
3409
void ext4_truncate(struct inode *inode)
3410
{
3411 3412
	trace_ext4_truncate_enter(inode);

3413
	if (!ext4_can_truncate(inode))
3414 3415
		return;

3416
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3417

3418
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3419
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3420

3421 3422 3423 3424 3425 3426 3427 3428
	if (ext4_has_inline_data(inode)) {
		int has_inline = 1;

		ext4_inline_data_truncate(inode, &has_inline);
		if (has_inline)
			return;
	}

3429
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3430
		ext4_ext_truncate(inode);
3431 3432
	else
		ext4_ind_truncate(inode);
3433

3434
	trace_ext4_truncate_exit(inode);
3435 3436 3437
}

/*
3438
 * ext4_get_inode_loc returns with an extra refcount against the inode's
3439 3440 3441 3442
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
3443 3444
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
3445
{
3446 3447 3448 3449 3450 3451
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
3452
	iloc->bh = NULL;
3453 3454
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
3455

3456 3457 3458
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
3459 3460
		return -EIO;

3461 3462 3463
	/*
	 * Figure out the offset within the block group inode table
	 */
3464
	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3465 3466 3467 3468 3469 3470
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
3471
	if (unlikely(!bh))
3472
		return -ENOMEM;
3473 3474
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
3498
			int i, start;
3499

3500
			start = inode_offset & ~(inodes_per_block - 1);
3501

3502 3503
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3504
			if (unlikely(!bitmap_bh))
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
3516
			for (i = start; i < start + inodes_per_block; i++) {
3517 3518
				if (i == inode_offset)
					continue;
3519
				if (ext4_test_bit(i, bitmap_bh->b_data))
3520 3521 3522
					break;
			}
			brelse(bitmap_bh);
3523
			if (i == start + inodes_per_block) {
3524 3525 3526 3527 3528 3529 3530 3531 3532
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
3533 3534 3535 3536 3537 3538 3539 3540 3541
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
3542
			/* s_inode_readahead_blks is always a power of 2 */
3543 3544 3545 3546 3547
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
3548
			if (ext4_has_group_desc_csum(sb))
3549
				num -= ext4_itable_unused_count(sb, gdp);
3550 3551 3552 3553 3554 3555 3556
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

3557 3558 3559 3560 3561
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
3562
		trace_ext4_load_inode(inode);
3563 3564
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
3565
		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3566 3567
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
3568 3569
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
3570 3571 3572 3573 3574 3575 3576 3577 3578
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

3579
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3580 3581
{
	/* We have all inode data except xattrs in memory here. */
3582
	return __ext4_get_inode_loc(inode, iloc,
3583
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3584 3585
}

3586
void ext4_set_inode_flags(struct inode *inode)
3587
{
3588
	unsigned int flags = EXT4_I(inode)->i_flags;
3589 3590

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3591
	if (flags & EXT4_SYNC_FL)
3592
		inode->i_flags |= S_SYNC;
3593
	if (flags & EXT4_APPEND_FL)
3594
		inode->i_flags |= S_APPEND;
3595
	if (flags & EXT4_IMMUTABLE_FL)
3596
		inode->i_flags |= S_IMMUTABLE;
3597
	if (flags & EXT4_NOATIME_FL)
3598
		inode->i_flags |= S_NOATIME;
3599
	if (flags & EXT4_DIRSYNC_FL)
3600 3601 3602
		inode->i_flags |= S_DIRSYNC;
}

3603 3604 3605
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3626
}
3627

3628
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3629
				  struct ext4_inode_info *ei)
3630 3631
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
3632 3633
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
3634 3635 3636 3637 3638 3639

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
3640
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
3641 3642 3643 3644 3645
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
3646 3647 3648 3649
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
3650

3651 3652 3653 3654 3655 3656
static inline void ext4_iget_extra_inode(struct inode *inode,
					 struct ext4_inode *raw_inode,
					 struct ext4_inode_info *ei)
{
	__le32 *magic = (void *)raw_inode +
			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3657
	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3658
		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3659
		ext4_find_inline_data_nolock(inode);
3660 3661
	} else
		EXT4_I(inode)->i_inline_off = 0;
3662 3663
}

3664
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3665
{
3666 3667
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
3668 3669
	struct ext4_inode_info *ei;
	struct inode *inode;
3670
	journal_t *journal = EXT4_SB(sb)->s_journal;
3671
	long ret;
3672
	int block;
3673 3674
	uid_t i_uid;
	gid_t i_gid;
3675

3676 3677 3678 3679 3680 3681 3682
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
3683
	iloc.bh = NULL;
3684

3685 3686
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
3687
		goto bad_inode;
3688
	raw_inode = ext4_raw_inode(&iloc);
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721

	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
		    EXT4_INODE_SIZE(inode->i_sb)) {
			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
				EXT4_INODE_SIZE(inode->i_sb));
			ret = -EIO;
			goto bad_inode;
		}
	} else
		ei->i_extra_isize = 0;

	/* Precompute checksum seed for inode metadata */
	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
		__u32 csum;
		__le32 inum = cpu_to_le32(inode->i_ino);
		__le32 gen = raw_inode->i_generation;
		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
				   sizeof(inum));
		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
					      sizeof(gen));
	}

	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
		EXT4_ERROR_INODE(inode, "checksum invalid");
		ret = -EIO;
		goto bad_inode;
	}

3722
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3723 3724
	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3725
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3726 3727
		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3728
	}
3729 3730
	i_uid_write(inode, i_uid);
	i_gid_write(inode, i_gid);
M
Miklos Szeredi 已提交
3731
	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3732

3733
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
3734
	ei->i_inline_off = 0;
3735 3736 3737 3738 3739 3740 3741 3742 3743
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
3744
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3745
			/* this inode is deleted */
3746
			ret = -ESTALE;
3747 3748 3749 3750 3751 3752 3753 3754
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3755
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3756
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3757
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
3758 3759
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3760
	inode->i_size = ext4_isize(raw_inode);
3761
	ei->i_disksize = inode->i_size;
3762 3763 3764
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
3765 3766
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
3767
	ei->i_last_alloc_group = ~0;
3768 3769 3770 3771
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
3772
	for (block = 0; block < EXT4_N_BLOCKS; block++)
3773 3774 3775
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

3787
		read_lock(&journal->j_state_lock);
3788 3789 3790 3791 3792 3793 3794 3795
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
3796
		read_unlock(&journal->j_state_lock);
3797 3798 3799 3800
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

3801
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3802 3803
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
3804 3805
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
3806
		} else {
3807
			ext4_iget_extra_inode(inode, raw_inode, ei);
3808
		}
3809
	}
3810

K
Kalpak Shah 已提交
3811 3812 3813 3814 3815
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

3816 3817 3818 3819 3820 3821 3822
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

3823
	ret = 0;
3824
	if (ei->i_file_acl &&
3825
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3826 3827
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
3828 3829
		ret = -EIO;
		goto bad_inode;
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
	} else if (!ext4_has_inline_data(inode)) {
		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			    (S_ISLNK(inode->i_mode) &&
			     !ext4_inode_is_fast_symlink(inode))))
				/* Validate extent which is part of inode */
				ret = ext4_ext_check_inode(inode);
		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
			   (S_ISLNK(inode->i_mode) &&
			    !ext4_inode_is_fast_symlink(inode))) {
			/* Validate block references which are part of inode */
			ret = ext4_ind_check_inode(inode);
		}
3843
	}
3844
	if (ret)
3845
		goto bad_inode;
3846

3847
	if (S_ISREG(inode->i_mode)) {
3848 3849 3850
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
3851
	} else if (S_ISDIR(inode->i_mode)) {
3852 3853
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
3854
	} else if (S_ISLNK(inode->i_mode)) {
3855
		if (ext4_inode_is_fast_symlink(inode)) {
3856
			inode->i_op = &ext4_fast_symlink_inode_operations;
3857 3858 3859
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
3860 3861
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
3862
		}
3863 3864
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3865
		inode->i_op = &ext4_special_inode_operations;
3866 3867 3868 3869 3870 3871
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3872 3873
	} else {
		ret = -EIO;
3874
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3875
		goto bad_inode;
3876
	}
3877
	brelse(iloc.bh);
3878
	ext4_set_inode_flags(inode);
3879 3880
	unlock_new_inode(inode);
	return inode;
3881 3882

bad_inode:
3883
	brelse(iloc.bh);
3884 3885
	iget_failed(inode);
	return ERR_PTR(ret);
3886 3887
}

3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
3898
		 * i_blocks can be represented in a 32 bit variable
3899 3900
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3901
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3902
		raw_inode->i_blocks_high = 0;
3903
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3904 3905 3906 3907 3908 3909
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
3910 3911 3912 3913
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
3914
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3915
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3916
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3917
	} else {
3918
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
3919 3920 3921 3922
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3923
	}
3924
	return 0;
3925 3926
}

3927 3928 3929 3930 3931 3932 3933
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
3934
static int ext4_do_update_inode(handle_t *handle,
3935
				struct inode *inode,
3936
				struct ext4_iloc *iloc)
3937
{
3938 3939
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
3940 3941
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;
3942
	int need_datasync = 0;
3943 3944
	uid_t i_uid;
	gid_t i_gid;
3945 3946 3947

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
3948
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3949
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3950

3951
	ext4_get_inode_flags(ei);
3952
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3953 3954
	i_uid = i_uid_read(inode);
	i_gid = i_gid_read(inode);
3955
	if (!(test_opt(inode->i_sb, NO_UID32))) {
3956 3957
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3958 3959 3960 3961
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
3962
		if (!ei->i_dtime) {
3963
			raw_inode->i_uid_high =
3964
				cpu_to_le16(high_16_bits(i_uid));
3965
			raw_inode->i_gid_high =
3966
				cpu_to_le16(high_16_bits(i_gid));
3967 3968 3969 3970 3971
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
3972 3973
		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
3974 3975 3976 3977
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
3978 3979 3980 3981 3982 3983

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

3984 3985
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
3986
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3987
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3988 3989
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
3990 3991
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
3992
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3993 3994 3995 3996
	if (ei->i_disksize != ext4_isize(raw_inode)) {
		ext4_isize_set(raw_inode, ei->i_disksize);
		need_datasync = 1;
	}
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
4012
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4013
			ext4_handle_sync(handle);
4014
			err = ext4_handle_dirty_super(handle, sb);
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
4029
	} else if (!ext4_has_inline_data(inode)) {
4030 4031
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
4032
	}
4033

4034 4035 4036 4037 4038
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
4039
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4040 4041
	}

4042 4043
	ext4_inode_csum_set(inode, raw_inode, ei);

4044
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4045
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4046 4047
	if (!err)
		err = rc;
4048
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4049

4050
	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4051
out_brelse:
4052
	brelse(bh);
4053
	ext4_std_error(inode->i_sb, err);
4054 4055 4056 4057
	return err;
}

/*
4058
 * ext4_write_inode()
4059 4060 4061 4062 4063
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
4064
 *   transaction to commit.
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
4075
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
4092
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4093
{
4094 4095
	int err;

4096 4097 4098
	if (current->flags & PF_MEMALLOC)
		return 0;

4099 4100 4101 4102 4103 4104
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
4105

4106
		if (wbc->sync_mode != WB_SYNC_ALL)
4107 4108 4109 4110 4111
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
4112

4113
		err = __ext4_get_inode_loc(inode, &iloc, 0);
4114 4115
		if (err)
			return err;
4116
		if (wbc->sync_mode == WB_SYNC_ALL)
4117 4118
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4119 4120
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
4121 4122
			err = -EIO;
		}
4123
		brelse(iloc.bh);
4124 4125
	}
	return err;
4126 4127
}

4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
/*
 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
 * buffers that are attached to a page stradding i_size and are undergoing
 * commit. In that case we have to wait for commit to finish and try again.
 */
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
	struct page *page;
	unsigned offset;
	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
	tid_t commit_tid = 0;
	int ret;

	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
	/*
	 * All buffers in the last page remain valid? Then there's nothing to
	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
	 * blocksize case
	 */
	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
		return;
	while (1) {
		page = find_lock_page(inode->i_mapping,
				      inode->i_size >> PAGE_CACHE_SHIFT);
		if (!page)
			return;
		ret = __ext4_journalled_invalidatepage(page, offset);
		unlock_page(page);
		page_cache_release(page);
		if (ret != -EBUSY)
			return;
		commit_tid = 0;
		read_lock(&journal->j_state_lock);
		if (journal->j_committing_transaction)
			commit_tid = journal->j_committing_transaction->t_tid;
		read_unlock(&journal->j_state_lock);
		if (commit_tid)
			jbd2_log_wait_commit(journal, commit_tid);
	}
}

4169
/*
4170
 * ext4_setattr()
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
4184 4185 4186 4187 4188 4189 4190 4191
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
4192
 */
4193
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4194 4195 4196
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
4197
	int orphan = 0;
4198 4199 4200 4201 4202 4203
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

4204
	if (is_quota_modification(inode, attr))
4205
		dquot_initialize(inode);
4206 4207
	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4208 4209 4210 4211
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
4212
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4213
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4214 4215 4216 4217
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4218
		error = dquot_transfer(inode, attr);
4219
		if (error) {
4220
			ext4_journal_stop(handle);
4221 4222 4223 4224 4225 4226 4227 4228
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
4229 4230
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
4231 4232
	}

4233
	if (attr->ia_valid & ATTR_SIZE) {
4234

4235
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4236 4237
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

4238 4239
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
4240 4241 4242
		}
	}

4243
	if (S_ISREG(inode->i_mode) &&
4244
	    attr->ia_valid & ATTR_SIZE &&
4245
	    (attr->ia_size < inode->i_size)) {
4246 4247
		handle_t *handle;

4248
		handle = ext4_journal_start(inode, 3);
4249 4250 4251 4252
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
4253 4254 4255 4256
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
4257 4258
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
4259 4260
		if (!error)
			error = rc;
4261
		ext4_journal_stop(handle);
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
4274
				orphan = 0;
4275 4276 4277 4278
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
4279 4280
	}

4281
	if (attr->ia_valid & ATTR_SIZE) {
4282 4283 4284 4285 4286 4287 4288 4289 4290
		if (attr->ia_size != inode->i_size) {
			loff_t oldsize = inode->i_size;

			i_size_write(inode, attr->ia_size);
			/*
			 * Blocks are going to be removed from the inode. Wait
			 * for dio in flight.  Temporarily disable
			 * dioread_nolock to prevent livelock.
			 */
4291
			if (orphan) {
4292 4293 4294 4295 4296 4297
				if (!ext4_should_journal_data(inode)) {
					ext4_inode_block_unlocked_dio(inode);
					inode_dio_wait(inode);
					ext4_inode_resume_unlocked_dio(inode);
				} else
					ext4_wait_for_tail_page_commit(inode);
4298
			}
4299 4300 4301 4302 4303
			/*
			 * Truncate pagecache after we've waited for commit
			 * in data=journal mode to make pages freeable.
			 */
			truncate_pagecache(inode, oldsize, inode->i_size);
4304
		}
4305
		ext4_truncate(inode);
4306
	}
4307

C
Christoph Hellwig 已提交
4308 4309 4310 4311 4312 4313 4314 4315 4316
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
4317
	if (orphan && inode->i_nlink)
4318
		ext4_orphan_del(NULL, inode);
4319 4320

	if (!rc && (ia_valid & ATTR_MODE))
4321
		rc = ext4_acl_chmod(inode);
4322 4323

err_out:
4324
	ext4_std_error(inode->i_sb, error);
4325 4326 4327 4328 4329
	if (!error)
		error = rc;
	return error;
}

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
4349 4350
	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
				EXT4_I(inode)->i_reserved_data_blocks);
4351 4352 4353 4354

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
4355

4356 4357
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
4358
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4359
		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4360
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4361
}
4362

4363
/*
4364 4365 4366
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
4367
 *
4368
 * If datablocks are discontiguous, they are possible to spread over
4369
 * different block groups too. If they are contiguous, with flexbg,
4370
 * they could still across block group boundary.
4371
 *
4372 4373
 * Also account for superblock, inode, quota and xattr blocks
 */
4374
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4375
{
4376 4377
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
4404 4405
	if (groups > ngroups)
		groups = ngroups;
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
L
Lucas De Marchi 已提交
4419
 * Calculate the total number of credits to reserve to fit
4420 4421
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
4422
 *
4423
 * This could be called via ext4_write_begin()
4424
 *
4425
 * We need to consider the worse case, when
4426
 * one new block per extent.
4427
 */
A
Alex Tomas 已提交
4428
int ext4_writepage_trans_blocks(struct inode *inode)
4429
{
4430
	int bpp = ext4_journal_blocks_per_page(inode);
4431 4432
	int ret;

4433
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
4434

4435
	/* Account for data blocks for journalled mode */
4436
	if (ext4_should_journal_data(inode))
4437
		ret += bpp;
4438 4439
	return ret;
}
4440 4441 4442 4443 4444

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
4445
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4446 4447 4448 4449 4450 4451 4452 4453 4454
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

4455
/*
4456
 * The caller must have previously called ext4_reserve_inode_write().
4457 4458
 * Give this, we know that the caller already has write access to iloc->bh.
 */
4459
int ext4_mark_iloc_dirty(handle_t *handle,
4460
			 struct inode *inode, struct ext4_iloc *iloc)
4461 4462 4463
{
	int err = 0;

4464
	if (IS_I_VERSION(inode))
4465 4466
		inode_inc_iversion(inode);

4467 4468 4469
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

4470
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4471
	err = ext4_do_update_inode(handle, inode, iloc);
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
4482 4483
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
4484
{
4485 4486 4487 4488 4489 4490 4491 4492 4493
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
4494 4495
		}
	}
4496
	ext4_std_error(inode->i_sb, err);
4497 4498 4499
	return err;
}

4500 4501 4502 4503
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
4504 4505 4506 4507
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
4520 4521
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 */
4546
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4547
{
4548
	struct ext4_iloc iloc;
4549 4550 4551
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
4552 4553

	might_sleep();
4554
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4555
	err = ext4_reserve_inode_write(handle, inode, &iloc);
4556 4557
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4558
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
4572 4573
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
4574 4575
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4576
					ext4_warning(inode->i_sb,
4577 4578 4579
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
4580 4581
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
4582 4583 4584 4585
				}
			}
		}
	}
4586
	if (!err)
4587
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4588 4589 4590 4591
	return err;
}

/*
4592
 * ext4_dirty_inode() is called from __mark_inode_dirty()
4593 4594 4595 4596 4597
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
4598
 * Also, dquot_alloc_block() will always dirty the inode when blocks
4599 4600 4601 4602 4603 4604
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
4605
void ext4_dirty_inode(struct inode *inode, int flags)
4606 4607 4608
{
	handle_t *handle;

4609
	handle = ext4_journal_start(inode, 2);
4610 4611
	if (IS_ERR(handle))
		goto out;
4612 4613 4614

	ext4_mark_inode_dirty(handle, inode);

4615
	ext4_journal_stop(handle);
4616 4617 4618 4619 4620 4621 4622 4623
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
4624
 * ext4_reserve_inode_write, this leaves behind no bh reference and
4625 4626 4627
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
4628
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4629
{
4630
	struct ext4_iloc iloc;
4631 4632 4633

	int err = 0;
	if (handle) {
4634
		err = ext4_get_inode_loc(inode, &iloc);
4635 4636
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
4637
			err = jbd2_journal_get_write_access(handle, iloc.bh);
4638
			if (!err)
4639
				err = ext4_handle_dirty_metadata(handle,
4640
								 NULL,
4641
								 iloc.bh);
4642 4643 4644
			brelse(iloc.bh);
		}
	}
4645
	ext4_std_error(inode->i_sb, err);
4646 4647 4648 4649
	return err;
}
#endif

4650
int ext4_change_inode_journal_flag(struct inode *inode, int val)
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

4666
	journal = EXT4_JOURNAL(inode);
4667 4668
	if (!journal)
		return 0;
4669
	if (is_journal_aborted(journal))
4670
		return -EROFS;
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
	/* We have to allocate physical blocks for delalloc blocks
	 * before flushing journal. otherwise delalloc blocks can not
	 * be allocated any more. even more truncate on delalloc blocks
	 * could trigger BUG by flushing delalloc blocks in journal.
	 * There is no delalloc block in non-journal data mode.
	 */
	if (val && test_opt(inode->i_sb, DELALLOC)) {
		err = ext4_alloc_da_blocks(inode);
		if (err < 0)
			return err;
	}
4682

4683 4684 4685 4686
	/* Wait for all existing dio workers */
	ext4_inode_block_unlocked_dio(inode);
	inode_dio_wait(inode);

4687
	jbd2_journal_lock_updates(journal);
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
4698
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4699 4700
	else {
		jbd2_journal_flush(journal);
4701
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4702
	}
4703
	ext4_set_aops(inode);
4704

4705
	jbd2_journal_unlock_updates(journal);
4706
	ext4_inode_resume_unlocked_dio(inode);
4707 4708 4709

	/* Finally we can mark the inode as dirty. */

4710
	handle = ext4_journal_start(inode, 1);
4711 4712 4713
	if (IS_ERR(handle))
		return PTR_ERR(handle);

4714
	err = ext4_mark_inode_dirty(handle, inode);
4715
	ext4_handle_sync(handle);
4716 4717
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
4718 4719 4720

	return err;
}
4721 4722 4723 4724 4725 4726

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

4727
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4728
{
4729
	struct page *page = vmf->page;
4730 4731
	loff_t size;
	unsigned long len;
4732
	int ret;
4733 4734 4735
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;
4736 4737 4738
	handle_t *handle;
	get_block_t *get_block;
	int retries = 0;
4739

4740
	sb_start_pagefault(inode->i_sb);
4741
	file_update_time(vma->vm_file);
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
	/* Delalloc case is easy... */
	if (test_opt(inode->i_sb, DELALLOC) &&
	    !ext4_should_journal_data(inode) &&
	    !ext4_nonda_switch(inode->i_sb)) {
		do {
			ret = __block_page_mkwrite(vma, vmf,
						   ext4_da_get_block_prep);
		} while (ret == -ENOSPC &&
		       ext4_should_retry_alloc(inode->i_sb, &retries));
		goto out_ret;
4752
	}
4753 4754

	lock_page(page);
4755 4756 4757 4758 4759 4760
	size = i_size_read(inode);
	/* Page got truncated from under us? */
	if (page->mapping != mapping || page_offset(page) > size) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
4761
	}
4762 4763 4764 4765 4766

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
4767
	/*
4768 4769
	 * Return if we have all the buffers mapped. This avoids the need to do
	 * journal_start/journal_stop which can block and take a long time
4770
	 */
4771
	if (page_has_buffers(page)) {
4772 4773 4774
		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
					    0, len, NULL,
					    ext4_bh_unmapped)) {
4775 4776 4777 4778
			/* Wait so that we don't change page under IO */
			wait_on_page_writeback(page);
			ret = VM_FAULT_LOCKED;
			goto out;
4779
		}
4780
	}
4781
	unlock_page(page);
4782 4783 4784 4785 4786 4787 4788 4789
	/* OK, we need to fill the hole... */
	if (ext4_should_dioread_nolock(inode))
		get_block = ext4_get_block_write;
	else
		get_block = ext4_get_block;
retry_alloc:
	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
4790
		ret = VM_FAULT_SIGBUS;
4791 4792 4793 4794
		goto out;
	}
	ret = __block_page_mkwrite(vma, vmf, get_block);
	if (!ret && ext4_should_journal_data(inode)) {
4795
		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4796 4797 4798
			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
			unlock_page(page);
			ret = VM_FAULT_SIGBUS;
4799
			ext4_journal_stop(handle);
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
			goto out;
		}
		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
	}
	ext4_journal_stop(handle);
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry_alloc;
out_ret:
	ret = block_page_mkwrite_return(ret);
out:
4810
	sb_end_pagefault(inode->i_sb);
4811 4812
	return ret;
}