i915_gem.c 104.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
41 42
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 44 45
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
46 47
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
48
				struct drm_i915_gem_pwrite *args,
49
				struct drm_file *file);
50

51 52 53 54 55 56
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

57
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58
				    struct shrink_control *sc);
59
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60

61 62 63 64 65 66 67 68
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
69
	obj->fence_dirty = false;
70 71 72
	obj->fence_reg = I915_FENCE_REG_NONE;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

88 89
static int
i915_gem_wait_for_error(struct drm_device *dev)
90 91 92 93 94 95 96 97 98 99 100 101 102
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

103 104 105 106 107 108 109 110 111 112 113
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
114 115
}

116
int i915_mutex_lock_interruptible(struct drm_device *dev)
117 118 119
{
	int ret;

120
	ret = i915_gem_wait_for_error(dev);
121 122 123 124 125 126 127
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

128
	WARN_ON(i915_verify_lists(dev));
129 130
	return 0;
}
131

132
static inline bool
133
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
134
{
135
	return !obj->active;
136 137
}

J
Jesse Barnes 已提交
138 139
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
140
		    struct drm_file *file)
J
Jesse Barnes 已提交
141 142
{
	struct drm_i915_gem_init *args = data;
143

144 145 146
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

147 148 149
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
150

151 152 153 154
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
155
	mutex_lock(&dev->struct_mutex);
156 157
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
158 159
	mutex_unlock(&dev->struct_mutex);

160
	return 0;
161 162
}

163 164
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165
			    struct drm_file *file)
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
168
	struct drm_i915_gem_get_aperture *args = data;
169 170
	struct drm_i915_gem_object *obj;
	size_t pinned;
171

172
	pinned = 0;
173
	mutex_lock(&dev->struct_mutex);
174 175 176
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
177
	mutex_unlock(&dev->struct_mutex);
178

179
	args->aper_size = dev_priv->mm.gtt_total;
180
	args->aper_available_size = args->aper_size - pinned;
181

182 183 184
	return 0;
}

185 186 187 188 189
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
190
{
191
	struct drm_i915_gem_object *obj;
192 193
	int ret;
	u32 handle;
194

195
	size = roundup(size, PAGE_SIZE);
196 197
	if (size == 0)
		return -EINVAL;
198 199

	/* Allocate the new object */
200
	obj = i915_gem_alloc_object(dev, size);
201 202 203
	if (obj == NULL)
		return -ENOMEM;

204
	ret = drm_gem_handle_create(file, &obj->base, &handle);
205
	if (ret) {
206 207
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208
		kfree(obj);
209
		return ret;
210
	}
211

212
	/* drop reference from allocate - handle holds it now */
213
	drm_gem_object_unreference(&obj->base);
214 215
	trace_i915_gem_object_create(obj);

216
	*handle_p = handle;
217 218 219
	return 0;
}

220 221 222 223 224 225
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
226
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
247

248 249 250 251
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

252
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253
{
254
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255 256

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257
		obj->tiling_mode != I915_TILING_NONE;
258 259
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

286
static inline int
287 288
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

312 313 314
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
315
static int
316 317 318 319 320 321 322
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

323
	if (unlikely(page_do_bit17_swizzling))
324 325 326 327 328 329 330 331 332 333 334 335 336 337
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

338 339 340 341
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
342
	if (unlikely(swizzled)) {
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

360 361 362 363 364 365 366 367 368 369 370 371
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
372 373 374
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
375 376 377 378 379 380 381 382 383 384 385 386 387 388

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

389
static int
390 391 392 393
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
394
{
395
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
396
	char __user *user_data;
397
	ssize_t remain;
398
	loff_t offset;
399
	int shmem_page_offset, page_length, ret = 0;
400
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
401
	int hit_slowpath = 0;
402
	int prefaulted = 0;
403
	int needs_clflush = 0;
404
	int release_page;
405

406
	user_data = (char __user *) (uintptr_t) args->data_ptr;
407 408
	remain = args->size;

409
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
410

411 412 413 414 415 416 417 418 419 420 421
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
422

423
	offset = args->offset;
424 425

	while (remain > 0) {
426 427
		struct page *page;

428 429 430 431 432
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
433
		shmem_page_offset = offset_in_page(offset);
434 435 436 437
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

438 439 440 441 442 443 444 445 446 447
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
448
		}
449

450 451 452
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

453 454 455 456 457
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
458 459

		hit_slowpath = 1;
460
		page_cache_get(page);
461 462
		mutex_unlock(&dev->struct_mutex);

463
		if (!prefaulted) {
464
			ret = fault_in_multipages_writeable(user_data, remain);
465 466 467 468 469 470 471
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
472

473 474 475
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
476

477
		mutex_lock(&dev->struct_mutex);
478
		page_cache_release(page);
479
next_page:
480
		mark_page_accessed(page);
481 482
		if (release_page)
			page_cache_release(page);
483

484 485 486 487 488
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

489
		remain -= page_length;
490
		user_data += page_length;
491 492 493
		offset += page_length;
	}

494
out:
495 496 497 498 499
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
500 501 502 503

	return ret;
}

504 505 506 507 508 509 510
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511
		     struct drm_file *file)
512 513
{
	struct drm_i915_gem_pread *args = data;
514
	struct drm_i915_gem_object *obj;
515
	int ret = 0;
516

517 518 519 520 521 522 523 524
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

525
	ret = i915_mutex_lock_interruptible(dev);
526
	if (ret)
527
		return ret;
528

529
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530
	if (&obj->base == NULL) {
531 532
		ret = -ENOENT;
		goto unlock;
533
	}
534

535
	/* Bounds check source.  */
536 537
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
538
		ret = -EINVAL;
539
		goto out;
C
Chris Wilson 已提交
540 541
	}

542 543 544 545 546 547 548 549
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
550 551
	trace_i915_gem_object_pread(obj, args->offset, args->size);

552
	ret = i915_gem_shmem_pread(dev, obj, args, file);
553

554
out:
555
	drm_gem_object_unreference(&obj->base);
556
unlock:
557
	mutex_unlock(&dev->struct_mutex);
558
	return ret;
559 560
}

561 562
/* This is the fast write path which cannot handle
 * page faults in the source data
563
 */
564 565 566 567 568 569

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
570
{
571 572
	void __iomem *vaddr_atomic;
	void *vaddr;
573
	unsigned long unwritten;
574

P
Peter Zijlstra 已提交
575
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
576 577 578
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
579
						      user_data, length);
P
Peter Zijlstra 已提交
580
	io_mapping_unmap_atomic(vaddr_atomic);
581
	return unwritten;
582 583
}

584 585 586 587
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
588
static int
589 590
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
591
			 struct drm_i915_gem_pwrite *args,
592
			 struct drm_file *file)
593
{
594
	drm_i915_private_t *dev_priv = dev->dev_private;
595
	ssize_t remain;
596
	loff_t offset, page_base;
597
	char __user *user_data;
D
Daniel Vetter 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
611 612 613 614

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

615
	offset = obj->gtt_offset + args->offset;
616 617 618 619

	while (remain > 0) {
		/* Operation in this page
		 *
620 621 622
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
623
		 */
624 625
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
626 627 628 629 630
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
631 632
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
633
		 */
634
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
635 636 637 638
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
639

640 641 642
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
643 644
	}

D
Daniel Vetter 已提交
645 646 647
out_unpin:
	i915_gem_object_unpin(obj);
out:
648
	return ret;
649 650
}

651 652 653 654
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
655
static int
656 657 658 659 660
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
661
{
662
	char *vaddr;
663
	int ret;
664

665
	if (unlikely(page_do_bit17_swizzling))
666
		return -EINVAL;
667

668 669 670 671 672 673 674 675 676 677 678
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
679 680 681 682

	return ret;
}

683 684
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
685
static int
686 687 688 689 690
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
691
{
692 693
	char *vaddr;
	int ret;
694

695
	vaddr = kmap(page);
696
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
697 698 699
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
700 701
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
702 703
						user_data,
						page_length);
704 705 706 707 708
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
709 710 711
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
712
	kunmap(page);
713

714
	return ret;
715 716 717
}

static int
718 719 720 721
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
722
{
723
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
724
	ssize_t remain;
725 726
	loff_t offset;
	char __user *user_data;
727
	int shmem_page_offset, page_length, ret = 0;
728
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
729
	int hit_slowpath = 0;
730 731
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
732
	int release_page;
733

734
	user_data = (char __user *) (uintptr_t) args->data_ptr;
735 736
	remain = args->size;

737
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

756
	offset = args->offset;
757
	obj->dirty = 1;
758

759
	while (remain > 0) {
760
		struct page *page;
761
		int partial_cacheline_write;
762

763 764 765 766 767
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
768
		shmem_page_offset = offset_in_page(offset);
769 770 771 772 773

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

774 775 776 777 778 779 780
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

781 782 783 784 785 786 787 788 789 790
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
791 792
		}

793 794 795
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

796 797 798 799 800 801
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
802 803

		hit_slowpath = 1;
804
		page_cache_get(page);
805 806
		mutex_unlock(&dev->struct_mutex);

807 808 809 810
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
811

812
		mutex_lock(&dev->struct_mutex);
813
		page_cache_release(page);
814
next_page:
815 816
		set_page_dirty(page);
		mark_page_accessed(page);
817 818
		if (release_page)
			page_cache_release(page);
819

820 821 822 823 824
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

825
		remain -= page_length;
826
		user_data += page_length;
827
		offset += page_length;
828 829
	}

830
out:
831 832 833 834 835 836 837 838 839 840
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
841
	}
842

843 844 845
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

846
	return ret;
847 848 849 850 851 852 853 854 855
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
856
		      struct drm_file *file)
857 858
{
	struct drm_i915_gem_pwrite *args = data;
859
	struct drm_i915_gem_object *obj;
860 861 862 863 864 865 866 867 868 869
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

870 871
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
872 873
	if (ret)
		return -EFAULT;
874

875
	ret = i915_mutex_lock_interruptible(dev);
876
	if (ret)
877
		return ret;
878

879
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
880
	if (&obj->base == NULL) {
881 882
		ret = -ENOENT;
		goto unlock;
883
	}
884

885
	/* Bounds check destination. */
886 887
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
888
		ret = -EINVAL;
889
		goto out;
C
Chris Wilson 已提交
890 891
	}

892 893 894 895 896 897 898 899
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
900 901
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
902
	ret = -EFAULT;
903 904 905 906 907 908
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
909
	if (obj->phys_obj) {
910
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
911 912 913 914
		goto out;
	}

	if (obj->gtt_space &&
915
	    obj->cache_level == I915_CACHE_NONE &&
916
	    obj->tiling_mode == I915_TILING_NONE &&
917
	    obj->map_and_fenceable &&
918
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
919
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
920 921 922
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
923
	}
924

925
	if (ret == -EFAULT)
D
Daniel Vetter 已提交
926
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
927

928
out:
929
	drm_gem_object_unreference(&obj->base);
930
unlock:
931
	mutex_unlock(&dev->struct_mutex);
932 933 934 935
	return ret;
}

/**
936 937
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
938 939 940
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
941
			  struct drm_file *file)
942 943
{
	struct drm_i915_gem_set_domain *args = data;
944
	struct drm_i915_gem_object *obj;
945 946
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
947 948
	int ret;

949
	/* Only handle setting domains to types used by the CPU. */
950
	if (write_domain & I915_GEM_GPU_DOMAINS)
951 952
		return -EINVAL;

953
	if (read_domains & I915_GEM_GPU_DOMAINS)
954 955 956 957 958 959 960 961
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

962
	ret = i915_mutex_lock_interruptible(dev);
963
	if (ret)
964
		return ret;
965

966
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
967
	if (&obj->base == NULL) {
968 969
		ret = -ENOENT;
		goto unlock;
970
	}
971

972 973
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
974 975 976 977 978 979 980

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
981
	} else {
982
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
983 984
	}

985
	drm_gem_object_unreference(&obj->base);
986
unlock:
987 988 989 990 991 992 993 994 995
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
996
			 struct drm_file *file)
997 998
{
	struct drm_i915_gem_sw_finish *args = data;
999
	struct drm_i915_gem_object *obj;
1000 1001
	int ret = 0;

1002
	ret = i915_mutex_lock_interruptible(dev);
1003
	if (ret)
1004
		return ret;
1005

1006
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1007
	if (&obj->base == NULL) {
1008 1009
		ret = -ENOENT;
		goto unlock;
1010 1011 1012
	}

	/* Pinned buffers may be scanout, so flush the cache */
1013
	if (obj->pin_count)
1014 1015
		i915_gem_object_flush_cpu_write_domain(obj);

1016
	drm_gem_object_unreference(&obj->base);
1017
unlock:
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1031
		    struct drm_file *file)
1032 1033 1034 1035 1036
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1037
	obj = drm_gem_object_lookup(dev, file, args->handle);
1038
	if (obj == NULL)
1039
		return -ENOENT;
1040

1041 1042 1043 1044 1045 1046 1047 1048
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1049
	addr = vm_mmap(obj->filp, 0, args->size,
1050 1051
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1052
	drm_gem_object_unreference_unlocked(obj);
1053 1054 1055 1056 1057 1058 1059 1060
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1079 1080
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1081
	drm_i915_private_t *dev_priv = dev->dev_private;
1082 1083 1084
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1085
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1086 1087 1088 1089 1090

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1091 1092 1093
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1094

C
Chris Wilson 已提交
1095 1096
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1097
	/* Now bind it into the GTT if needed */
1098 1099 1100 1101
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1102
	}
1103
	if (!obj->gtt_space) {
1104
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1105 1106
		if (ret)
			goto unlock;
1107

1108 1109 1110 1111
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1112

1113 1114 1115
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1116
	ret = i915_gem_object_get_fence(obj);
1117 1118
	if (ret)
		goto unlock;
1119

1120 1121
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1122

1123 1124
	obj->fault_mappable = true;

1125
	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1126 1127 1128 1129
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1130
unlock:
1131
	mutex_unlock(&dev->struct_mutex);
1132
out:
1133
	switch (ret) {
1134
	case -EIO:
1135
	case -EAGAIN:
1136 1137 1138 1139 1140 1141 1142
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1143
		set_need_resched();
1144 1145
	case 0:
	case -ERESTARTSYS:
1146
	case -EINTR:
1147
		return VM_FAULT_NOPAGE;
1148 1149 1150
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1151
		return VM_FAULT_SIGBUS;
1152 1153 1154
	}
}

1155 1156 1157 1158
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1159
 * Preserve the reservation of the mmapping with the DRM core code, but
1160 1161 1162 1163 1164 1165 1166 1167 1168
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1169
void
1170
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1171
{
1172 1173
	if (!obj->fault_mappable)
		return;
1174

1175 1176 1177 1178
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1179

1180
	obj->fault_mappable = false;
1181 1182
}

1183
static uint32_t
1184
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1185
{
1186
	uint32_t gtt_size;
1187 1188

	if (INTEL_INFO(dev)->gen >= 4 ||
1189 1190
	    tiling_mode == I915_TILING_NONE)
		return size;
1191 1192 1193

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1194
		gtt_size = 1024*1024;
1195
	else
1196
		gtt_size = 512*1024;
1197

1198 1199
	while (gtt_size < size)
		gtt_size <<= 1;
1200

1201
	return gtt_size;
1202 1203
}

1204 1205 1206 1207 1208
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1209
 * potential fence register mapping.
1210 1211
 */
static uint32_t
1212 1213 1214
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1215 1216 1217 1218 1219
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1220
	if (INTEL_INFO(dev)->gen >= 4 ||
1221
	    tiling_mode == I915_TILING_NONE)
1222 1223
		return 4096;

1224 1225 1226 1227
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1228
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1229 1230
}

1231 1232 1233
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1234 1235 1236
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1237 1238 1239 1240
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1241
uint32_t
1242 1243 1244
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1245 1246 1247 1248 1249
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1250
	    tiling_mode == I915_TILING_NONE)
1251 1252
		return 4096;

1253 1254 1255
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1256
	 */
1257
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1258 1259
}

1260
int
1261 1262 1263 1264
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1265
{
1266
	struct drm_i915_private *dev_priv = dev->dev_private;
1267
	struct drm_i915_gem_object *obj;
1268 1269
	int ret;

1270
	ret = i915_mutex_lock_interruptible(dev);
1271
	if (ret)
1272
		return ret;
1273

1274
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1275
	if (&obj->base == NULL) {
1276 1277 1278
		ret = -ENOENT;
		goto unlock;
	}
1279

1280
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1281
		ret = -E2BIG;
1282
		goto out;
1283 1284
	}

1285
	if (obj->madv != I915_MADV_WILLNEED) {
1286
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1287 1288
		ret = -EINVAL;
		goto out;
1289 1290
	}

1291
	if (!obj->base.map_list.map) {
1292
		ret = drm_gem_create_mmap_offset(&obj->base);
1293 1294
		if (ret)
			goto out;
1295 1296
	}

1297
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1298

1299
out:
1300
	drm_gem_object_unreference(&obj->base);
1301
unlock:
1302
	mutex_unlock(&dev->struct_mutex);
1303
	return ret;
1304 1305
}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

1330
int
1331
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1332 1333 1334 1335 1336 1337 1338
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

1339 1340 1341
	if (obj->pages || obj->sg_table)
		return 0;

1342 1343 1344
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1345 1346 1347 1348
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1349 1350
		return -ENOMEM;

1351
	inode = obj->base.filp->f_path.dentry->d_inode;
1352
	mapping = inode->i_mapping;
1353 1354
	gfpmask |= mapping_gfp_mask(mapping);

1355
	for (i = 0; i < page_count; i++) {
1356
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1357 1358 1359
		if (IS_ERR(page))
			goto err_pages;

1360
		obj->pages[i] = page;
1361 1362
	}

1363
	if (i915_gem_object_needs_bit17_swizzle(obj))
1364 1365 1366 1367 1368 1369
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1370
		page_cache_release(obj->pages[i]);
1371

1372 1373
	drm_free_large(obj->pages);
	obj->pages = NULL;
1374 1375 1376
	return PTR_ERR(page);
}

1377
static void
1378
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1379
{
1380
	int page_count = obj->base.size / PAGE_SIZE;
1381 1382
	int i;

1383 1384 1385
	if (!obj->pages)
		return;

1386
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1387

1388
	if (i915_gem_object_needs_bit17_swizzle(obj))
1389 1390
		i915_gem_object_save_bit_17_swizzle(obj);

1391 1392
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1393 1394

	for (i = 0; i < page_count; i++) {
1395 1396
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1397

1398 1399
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1400

1401
		page_cache_release(obj->pages[i]);
1402
	}
1403
	obj->dirty = 0;
1404

1405 1406
	drm_free_large(obj->pages);
	obj->pages = NULL;
1407 1408
}

1409
void
1410
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1411 1412
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1413
{
1414
	struct drm_device *dev = obj->base.dev;
1415
	struct drm_i915_private *dev_priv = dev->dev_private;
1416

1417
	BUG_ON(ring == NULL);
1418
	obj->ring = ring;
1419 1420

	/* Add a reference if we're newly entering the active list. */
1421 1422 1423
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1424
	}
1425

1426
	/* Move from whatever list we were on to the tail of execution. */
1427 1428
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1429

1430
	obj->last_rendering_seqno = seqno;
1431

1432
	if (obj->fenced_gpu_access) {
1433 1434
		obj->last_fenced_seqno = seqno;

1435 1436 1437 1438 1439 1440 1441 1442
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1443 1444 1445 1446 1447 1448 1449 1450
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1451
	obj->last_fenced_seqno = 0;
1452 1453
}

1454
static void
1455
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1456
{
1457
	struct drm_device *dev = obj->base.dev;
1458 1459
	drm_i915_private_t *dev_priv = dev->dev_private;

1460 1461
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1472
	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1473 1474 1475 1476 1477 1478 1479 1480 1481

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1482
	obj->pending_gpu_write = false;
1483 1484 1485
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1486
}
1487

1488 1489
/* Immediately discard the backing storage */
static void
1490
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1491
{
C
Chris Wilson 已提交
1492
	struct inode *inode;
1493

1494 1495 1496
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1497
	 * backing pages, *now*.
1498
	 */
1499
	inode = obj->base.filp->f_path.dentry->d_inode;
1500
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1501

1502 1503 1504
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1505
	obj->madv = __I915_MADV_PURGED;
1506 1507 1508
}

static inline int
1509
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1510
{
1511
	return obj->madv == I915_MADV_DONTNEED;
1512 1513
}

1514
static void
C
Chris Wilson 已提交
1515 1516
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1517
{
1518
	struct drm_i915_gem_object *obj, *next;
1519

1520
	list_for_each_entry_safe(obj, next,
1521
				 &ring->gpu_write_list,
1522
				 gpu_write_list) {
1523 1524
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1525

1526 1527
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1528
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1529
						       i915_gem_next_request_seqno(ring));
1530 1531

			trace_i915_gem_object_change_domain(obj,
1532
							    obj->base.read_domains,
1533 1534 1535 1536
							    old_write_domain);
		}
	}
}
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1560
int
C
Chris Wilson 已提交
1561
i915_add_request(struct intel_ring_buffer *ring,
1562
		 struct drm_file *file,
C
Chris Wilson 已提交
1563
		 struct drm_i915_gem_request *request)
1564
{
C
Chris Wilson 已提交
1565
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566
	uint32_t seqno;
1567
	u32 request_ring_position;
1568
	int was_empty;
1569 1570
	int ret;

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (ring->gpu_caches_dirty) {
		ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
		if (ret)
			return ret;

		ring->gpu_caches_dirty = false;
	}

1586
	BUG_ON(request == NULL);
1587
	seqno = i915_gem_next_request_seqno(ring);
1588

1589 1590 1591 1592 1593 1594 1595
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1596 1597 1598
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1599

C
Chris Wilson 已提交
1600
	trace_i915_gem_request_add(ring, seqno);
1601 1602

	request->seqno = seqno;
1603
	request->ring = ring;
1604
	request->tail = request_ring_position;
1605
	request->emitted_jiffies = jiffies;
1606 1607 1608
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1609 1610 1611
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1612
		spin_lock(&file_priv->mm.lock);
1613
		request->file_priv = file_priv;
1614
		list_add_tail(&request->client_list,
1615
			      &file_priv->mm.request_list);
1616
		spin_unlock(&file_priv->mm.lock);
1617
	}
1618

1619
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1620

B
Ben Gamari 已提交
1621
	if (!dev_priv->mm.suspended) {
1622 1623 1624 1625 1626
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1627
		if (was_empty)
1628 1629
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1630
	}
1631 1632 1633

	WARN_ON(!list_empty(&ring->gpu_write_list));

1634
	return 0;
1635 1636
}

1637 1638
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1639
{
1640
	struct drm_i915_file_private *file_priv = request->file_priv;
1641

1642 1643
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1644

1645
	spin_lock(&file_priv->mm.lock);
1646 1647 1648 1649
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1650
	spin_unlock(&file_priv->mm.lock);
1651 1652
}

1653 1654
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1655
{
1656 1657
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1658

1659 1660 1661
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1662

1663
		list_del(&request->list);
1664
		i915_gem_request_remove_from_client(request);
1665 1666
		kfree(request);
	}
1667

1668
	while (!list_empty(&ring->active_list)) {
1669
		struct drm_i915_gem_object *obj;
1670

1671 1672 1673
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1674

1675 1676 1677
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1678 1679 1680
	}
}

1681 1682 1683 1684 1685
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1686
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1687
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1688

1689
		i915_gem_write_fence(dev, i, NULL);
1690

1691 1692
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
1693

1694 1695 1696
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
1697
	}
1698 1699

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1700 1701
}

1702
void i915_gem_reset(struct drm_device *dev)
1703
{
1704
	struct drm_i915_private *dev_priv = dev->dev_private;
1705
	struct drm_i915_gem_object *obj;
1706
	struct intel_ring_buffer *ring;
1707
	int i;
1708

1709 1710
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
1711 1712 1713 1714 1715 1716

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1717
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1718 1719
				      struct drm_i915_gem_object,
				      mm_list);
1720

1721 1722 1723
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1724 1725 1726 1727 1728
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1729
	list_for_each_entry(obj,
1730
			    &dev_priv->mm.inactive_list,
1731
			    mm_list)
1732
	{
1733
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1734
	}
1735 1736

	/* The fence registers are invalidated so clear them out */
1737
	i915_gem_reset_fences(dev);
1738 1739 1740 1741 1742
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1743
void
C
Chris Wilson 已提交
1744
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1745 1746
{
	uint32_t seqno;
1747
	int i;
1748

C
Chris Wilson 已提交
1749
	if (list_empty(&ring->request_list))
1750 1751
		return;

C
Chris Wilson 已提交
1752
	WARN_ON(i915_verify_lists(ring->dev));
1753

1754
	seqno = ring->get_seqno(ring);
1755

1756
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1757 1758 1759
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1760
	while (!list_empty(&ring->request_list)) {
1761 1762
		struct drm_i915_gem_request *request;

1763
		request = list_first_entry(&ring->request_list,
1764 1765 1766
					   struct drm_i915_gem_request,
					   list);

1767
		if (!i915_seqno_passed(seqno, request->seqno))
1768 1769
			break;

C
Chris Wilson 已提交
1770
		trace_i915_gem_request_retire(ring, request->seqno);
1771 1772 1773 1774 1775 1776
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1777 1778

		list_del(&request->list);
1779
		i915_gem_request_remove_from_client(request);
1780 1781
		kfree(request);
	}
1782

1783 1784 1785 1786
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1787
		struct drm_i915_gem_object *obj;
1788

1789
		obj = list_first_entry(&ring->active_list,
1790 1791
				      struct drm_i915_gem_object,
				      ring_list);
1792

1793
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1794
			break;
1795

1796
		if (obj->base.write_domain != 0)
1797 1798 1799
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1800
	}
1801

C
Chris Wilson 已提交
1802 1803
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1804
		ring->irq_put(ring);
C
Chris Wilson 已提交
1805
		ring->trace_irq_seqno = 0;
1806
	}
1807

C
Chris Wilson 已提交
1808
	WARN_ON(i915_verify_lists(ring->dev));
1809 1810
}

1811 1812 1813 1814
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1815
	struct intel_ring_buffer *ring;
1816
	int i;
1817

1818 1819
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
1820 1821
}

1822
static void
1823 1824 1825 1826
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1827
	struct intel_ring_buffer *ring;
1828 1829
	bool idle;
	int i;
1830 1831 1832 1833 1834

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1835 1836 1837 1838 1839 1840
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1841
	i915_gem_retire_requests(dev);
1842

1843 1844 1845 1846
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
1847
	for_each_ring(ring, dev_priv, i) {
1848
		if (ring->gpu_caches_dirty) {
1849 1850 1851
			struct drm_i915_gem_request *request;

			request = kzalloc(sizeof(*request), GFP_KERNEL);
1852
			if (request == NULL ||
C
Chris Wilson 已提交
1853
			    i915_add_request(ring, NULL, request))
1854 1855 1856 1857 1858 1859 1860
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1861
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1862

1863 1864 1865
	mutex_unlock(&dev->struct_mutex);
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
static int
i915_gem_check_wedge(struct drm_i915_private *dev_priv)
{
	BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));

	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
	int ret = 0;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	if (seqno == ring->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(ring, NULL, request);
		if (ret) {
			kfree(request);
			return ret;
		}

		BUG_ON(seqno != request->seqno);
	}

	return ret;
}

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
1927
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1928
			bool interruptible, struct timespec *timeout)
1929 1930
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1931 1932 1933 1934
	struct timespec before, now, wait_time={1,0};
	unsigned long timeout_jiffies;
	long end;
	bool wait_forever = true;
1935 1936 1937 1938 1939

	if (i915_seqno_passed(ring->get_seqno(ring), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);
1940 1941 1942 1943 1944 1945 1946 1947

	if (timeout != NULL) {
		wait_time = *timeout;
		wait_forever = false;
	}

	timeout_jiffies = timespec_to_jiffies(&wait_time);

1948 1949 1950
	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

1951 1952 1953
	/* Record current time in case interrupted by signal, or wedged * */
	getrawmonotonic(&before);

1954 1955 1956
#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring), seqno) || \
	atomic_read(&dev_priv->mm.wedged))
1957 1958 1959 1960 1961 1962 1963 1964
	do {
		if (interruptible)
			end = wait_event_interruptible_timeout(ring->irq_queue,
							       EXIT_COND,
							       timeout_jiffies);
		else
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
						 timeout_jiffies);
1965

1966 1967 1968 1969 1970
		if (atomic_read(&dev_priv->mm.wedged))
			end = -EAGAIN;
	} while (end == 0 && wait_forever);

	getrawmonotonic(&now);
1971 1972 1973 1974 1975

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
	}

	switch (end) {
	case -EAGAIN: /* Wedged */
	case -ERESTARTSYS: /* Signal */
		return (int)end;
	case 0: /* Timeout */
		if (timeout)
			set_normalized_timespec(timeout, 0, 0);
		return -ETIME;
	default: /* Completed */
		WARN_ON(end < 0); /* We're not aware of other errors */
		return 0;
	}
1993 1994
}

C
Chris Wilson 已提交
1995 1996 1997 1998
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1999
int
2000
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
2001
{
C
Chris Wilson 已提交
2002
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2003 2004 2005 2006
	int ret = 0;

	BUG_ON(seqno == 0);

2007 2008 2009
	ret = i915_gem_check_wedge(dev_priv);
	if (ret)
		return ret;
2010

2011 2012 2013
	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;
2014

2015
	ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
2016 2017 2018 2019 2020 2021 2022 2023

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
2024
int
2025
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2026 2027 2028
{
	int ret;

2029 2030
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2031
	 */
2032
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2033 2034 2035 2036

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
2037
	if (obj->active) {
2038
		ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2039
		if (ret)
2040
			return ret;
2041
		i915_gem_retire_requests_ring(obj->ring);
2042 2043 2044 2045 2046
	}

	return 0;
}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
		ret = i915_gem_object_flush_gpu_write_domain(obj);
		if (ret)
			return ret;

		ret = i915_gem_check_olr(obj->ring,
					 obj->last_rendering_seqno);
		if (ret)
			return ret;
		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
	struct intel_ring_buffer *ring = NULL;
2100
	struct timespec timeout_stack, *timeout = NULL;
2101 2102 2103
	u32 seqno = 0;
	int ret = 0;

2104 2105 2106 2107
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2119 2120
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	if (ret)
		goto out;

	if (obj->active) {
		seqno = obj->last_rendering_seqno;
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

2143 2144 2145 2146 2147
	ret = __wait_seqno(ring, seqno, true, timeout);
	if (timeout) {
		WARN_ON(!timespec_valid(timeout));
		args->timeout_ns = timespec_to_ns(timeout);
	}
2148 2149 2150 2151 2152 2153 2154 2155
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2179
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2180 2181 2182 2183 2184 2185 2186 2187
		return i915_gem_object_wait_rendering(obj);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

2188 2189 2190
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2191

2192
	ret = to->sync_to(to, from, seqno);
2193 2194
	if (!ret)
		from->sync_seqno[idx] = seqno;
2195

2196
	return ret;
2197 2198
}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2209 2210 2211
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2223 2224 2225
/**
 * Unbinds an object from the GTT aperture.
 */
2226
int
2227
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2228
{
2229
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2230 2231
	int ret = 0;

2232
	if (obj->gtt_space == NULL)
2233 2234
		return 0;

2235 2236
	if (obj->pin_count)
		return -EBUSY;
2237

2238
	ret = i915_gem_object_finish_gpu(obj);
2239
	if (ret)
2240 2241 2242 2243 2244 2245
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2246
	i915_gem_object_finish_gtt(obj);
2247

2248 2249
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2250
	 * are flushed when we go to remap it.
2251
	 */
2252 2253
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2254
	if (ret == -ERESTARTSYS)
2255
		return ret;
2256
	if (ret) {
2257 2258 2259
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2260
		i915_gem_clflush_object(obj);
2261
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2262
	}
2263

2264
	/* release the fence reg _after_ flushing */
2265
	ret = i915_gem_object_put_fence(obj);
2266
	if (ret)
2267
		return ret;
2268

C
Chris Wilson 已提交
2269 2270
	trace_i915_gem_object_unbind(obj);

2271 2272
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2273 2274 2275 2276
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2277
	i915_gem_gtt_finish_object(obj);
2278

2279
	i915_gem_object_put_pages_gtt(obj);
2280

2281
	list_del_init(&obj->gtt_list);
2282
	list_del_init(&obj->mm_list);
2283
	/* Avoid an unnecessary call to unbind on rebind. */
2284
	obj->map_and_fenceable = true;
2285

2286 2287 2288
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2289

2290
	if (i915_gem_object_is_purgeable(obj))
2291 2292
		i915_gem_object_truncate(obj);

2293
	return ret;
2294 2295
}

2296
int
C
Chris Wilson 已提交
2297
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2298 2299 2300
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2301 2302
	int ret;

2303 2304 2305
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2306 2307
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2308 2309 2310 2311
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2312 2313 2314
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2315
	return 0;
2316 2317
}

2318
static int i915_ring_idle(struct intel_ring_buffer *ring)
2319
{
2320 2321
	int ret;

2322
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2323 2324
		return 0;

2325
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2326
		ret = i915_gem_flush_ring(ring,
2327
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2328 2329 2330 2331
		if (ret)
			return ret;
	}

2332
	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2333 2334
}

2335
int i915_gpu_idle(struct drm_device *dev)
2336 2337
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2338
	struct intel_ring_buffer *ring;
2339
	int ret, i;
2340 2341

	/* Flush everything onto the inactive list. */
2342 2343
	for_each_ring(ring, dev_priv, i) {
		ret = i915_ring_idle(ring);
2344 2345
		if (ret)
			return ret;
2346 2347 2348 2349

		/* Is the device fubar? */
		if (WARN_ON(!list_empty(&ring->gpu_write_list)))
			return -EBUSY;
2350 2351 2352 2353

		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
		if (ret)
			return ret;
2354
	}
2355

2356
	return 0;
2357 2358
}

2359 2360
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2361 2362 2363 2364
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2365 2366
	if (obj) {
		u32 size = obj->gtt_space->size;
2367

2368 2369 2370 2371 2372
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2373

2374 2375 2376 2377 2378
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2379

2380 2381
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2382 2383
}

2384 2385
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2386 2387 2388 2389
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2390 2391
	if (obj) {
		u32 size = obj->gtt_space->size;
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2402

2403 2404
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2405 2406
}

2407 2408
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2409 2410
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2411
	u32 val;
2412

2413 2414 2415 2416
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2417

2418 2419 2420 2421 2422
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2423

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2449 2450
}

2451 2452
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2453 2454 2455 2456
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2457 2458 2459
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2460

2461 2462 2463 2464 2465
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2466

2467 2468
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2469

2470 2471 2472 2473 2474 2475 2476 2477
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2478

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2495 2496
}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2523
static int
C
Chris Wilson 已提交
2524
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2525 2526 2527 2528
{
	int ret;

	if (obj->fenced_gpu_access) {
2529
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2530
			ret = i915_gem_flush_ring(obj->ring,
2531 2532 2533 2534
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2535 2536 2537 2538

		obj->fenced_gpu_access = false;
	}

2539
	if (obj->last_fenced_seqno) {
2540
		ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2541 2542
		if (ret)
			return ret;
2543 2544 2545 2546

		obj->last_fenced_seqno = 0;
	}

2547 2548 2549 2550 2551 2552
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2553 2554 2555 2556 2557 2558
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2559
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2560 2561
	int ret;

C
Chris Wilson 已提交
2562
	ret = i915_gem_object_flush_fence(obj);
2563 2564 2565
	if (ret)
		return ret;

2566 2567
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2568

2569 2570 2571 2572
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2573 2574 2575 2576 2577

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2578
i915_find_fence_reg(struct drm_device *dev)
2579 2580
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2581
	struct drm_i915_fence_reg *reg, *avail;
2582
	int i;
2583 2584

	/* First try to find a free reg */
2585
	avail = NULL;
2586 2587 2588
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2589
			return reg;
2590

2591
		if (!reg->pin_count)
2592
			avail = reg;
2593 2594
	}

2595 2596
	if (avail == NULL)
		return NULL;
2597 2598

	/* None available, try to steal one or wait for a user to finish */
2599
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2600
		if (reg->pin_count)
2601 2602
			continue;

C
Chris Wilson 已提交
2603
		return reg;
2604 2605
	}

C
Chris Wilson 已提交
2606
	return NULL;
2607 2608
}

2609
/**
2610
 * i915_gem_object_get_fence - set up fencing for an object
2611 2612 2613 2614 2615 2616 2617 2618 2619
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2620 2621
 *
 * For an untiled surface, this removes any existing fence.
2622
 */
2623
int
2624
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2625
{
2626
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2627
	struct drm_i915_private *dev_priv = dev->dev_private;
2628
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2629
	struct drm_i915_fence_reg *reg;
2630
	int ret;
2631

2632 2633 2634
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2635
	if (obj->fence_dirty) {
2636 2637 2638 2639
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2640

2641
	/* Just update our place in the LRU if our fence is getting reused. */
2642 2643
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2644
		if (!obj->fence_dirty) {
2645 2646 2647 2648 2649 2650 2651 2652
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2653

2654 2655 2656 2657
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2658 2659 2660
			if (ret)
				return ret;

2661
			i915_gem_object_fence_lost(old);
2662
		}
2663
	} else
2664 2665
		return 0;

2666
	i915_gem_object_update_fence(obj, reg, enable);
2667
	obj->fence_dirty = false;
2668

2669
	return 0;
2670 2671
}

2672 2673 2674 2675
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2676
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2677
			    unsigned alignment,
2678
			    bool map_and_fenceable)
2679
{
2680
	struct drm_device *dev = obj->base.dev;
2681 2682
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2683
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2684
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2685
	bool mappable, fenceable;
2686
	int ret;
2687

2688
	if (obj->madv != I915_MADV_WILLNEED) {
2689 2690 2691 2692
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2703

2704
	if (alignment == 0)
2705 2706
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2707
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2708 2709 2710 2711
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2712
	size = map_and_fenceable ? fence_size : obj->base.size;
2713

2714 2715 2716
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2717
	if (obj->base.size >
2718
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2719 2720 2721 2722
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2723
 search_free:
2724
	if (map_and_fenceable)
2725 2726
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2727
						    size, alignment, 0,
2728 2729 2730 2731
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2732
						size, alignment, 0);
2733 2734

	if (free_space != NULL) {
2735
		if (map_and_fenceable)
2736
			obj->gtt_space =
2737
				drm_mm_get_block_range_generic(free_space,
2738
							       size, alignment, 0,
2739 2740 2741
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2742
			obj->gtt_space =
2743
				drm_mm_get_block(free_space, size, alignment);
2744
	}
2745
	if (obj->gtt_space == NULL) {
2746 2747 2748
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2749 2750
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2751
		if (ret)
2752
			return ret;
2753

2754 2755 2756
		goto search_free;
	}

2757
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2758
	if (ret) {
2759 2760
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2761 2762

		if (ret == -ENOMEM) {
2763 2764
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2765 2766
			if (ret) {
				/* now try to shrink everyone else */
2767 2768 2769
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2770 2771
				}

2772
				return -ENOMEM;
2773 2774 2775 2776 2777
			}

			goto search_free;
		}

2778 2779 2780
		return ret;
	}

2781
	ret = i915_gem_gtt_prepare_object(obj);
2782
	if (ret) {
2783
		i915_gem_object_put_pages_gtt(obj);
2784 2785
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2786

2787
		if (i915_gem_evict_everything(dev, false))
2788 2789 2790
			return ret;

		goto search_free;
2791 2792
	}

2793 2794
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2795

2796
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2797
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2798

2799 2800 2801 2802
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2803 2804
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2805

2806
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2807

2808
	fenceable =
2809
		obj->gtt_space->size == fence_size &&
2810
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2811

2812
	mappable =
2813
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2814

2815
	obj->map_and_fenceable = mappable && fenceable;
2816

C
Chris Wilson 已提交
2817
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2818 2819 2820 2821
	return 0;
}

void
2822
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2823 2824 2825 2826 2827
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2828
	if (obj->pages == NULL)
2829 2830
		return;

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2842
	trace_i915_gem_object_clflush(obj);
2843

2844
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2845 2846
}

2847
/** Flushes any GPU write domain for the object if it's dirty. */
2848
static int
2849
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2850
{
2851
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2852
		return 0;
2853 2854

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2855
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2856 2857 2858 2859
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2860
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2861
{
C
Chris Wilson 已提交
2862 2863
	uint32_t old_write_domain;

2864
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2865 2866
		return;

2867
	/* No actual flushing is required for the GTT write domain.  Writes
2868 2869
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2870 2871 2872 2873
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2874
	 */
2875 2876
	wmb();

2877 2878
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2879 2880

	trace_i915_gem_object_change_domain(obj,
2881
					    obj->base.read_domains,
C
Chris Wilson 已提交
2882
					    old_write_domain);
2883 2884 2885 2886
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2887
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2888
{
C
Chris Wilson 已提交
2889
	uint32_t old_write_domain;
2890

2891
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2892 2893 2894
		return;

	i915_gem_clflush_object(obj);
2895
	intel_gtt_chipset_flush();
2896 2897
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2898 2899

	trace_i915_gem_object_change_domain(obj,
2900
					    obj->base.read_domains,
C
Chris Wilson 已提交
2901
					    old_write_domain);
2902 2903
}

2904 2905 2906 2907 2908 2909
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2910
int
2911
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2912
{
2913
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
2914
	uint32_t old_write_domain, old_read_domains;
2915
	int ret;
2916

2917
	/* Not valid to be called on unbound objects. */
2918
	if (obj->gtt_space == NULL)
2919 2920
		return -EINVAL;

2921 2922 2923
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2924 2925 2926 2927
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2928
	if (obj->pending_gpu_write || write) {
2929
		ret = i915_gem_object_wait_rendering(obj);
2930 2931 2932
		if (ret)
			return ret;
	}
2933

2934
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2935

2936 2937
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2938

2939 2940 2941
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2942 2943
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2944
	if (write) {
2945 2946 2947
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2948 2949
	}

C
Chris Wilson 已提交
2950 2951 2952 2953
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2954 2955 2956 2957
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

2958 2959 2960
	return 0;
}

2961 2962 2963
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2964 2965
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2993 2994
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2995 2996 2997
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

3027
/*
3028 3029 3030
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3031 3032
 */
int
3033 3034
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3035
				     struct intel_ring_buffer *pipelined)
3036
{
3037
	u32 old_read_domains, old_write_domain;
3038 3039
	int ret;

3040 3041 3042 3043
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3044
	if (pipelined != obj->ring) {
3045 3046
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3047 3048 3049
			return ret;
	}

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3063 3064 3065 3066 3067 3068 3069 3070
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

3071 3072
	i915_gem_object_flush_cpu_write_domain(obj);

3073
	old_write_domain = obj->base.write_domain;
3074
	old_read_domains = obj->base.read_domains;
3075 3076 3077 3078 3079

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3080
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3081 3082 3083

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3084
					    old_write_domain);
3085 3086 3087 3088

	return 0;
}

3089
int
3090
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3091
{
3092 3093
	int ret;

3094
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3095 3096
		return 0;

3097
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3098
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3099 3100 3101
		if (ret)
			return ret;
	}
3102

3103 3104 3105 3106
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

3107 3108
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3109
	return 0;
3110 3111
}

3112 3113 3114 3115 3116 3117
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3118
int
3119
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3120
{
C
Chris Wilson 已提交
3121
	uint32_t old_write_domain, old_read_domains;
3122 3123
	int ret;

3124 3125 3126
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3127 3128 3129 3130
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3131 3132 3133 3134 3135
	if (write || obj->pending_gpu_write) {
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;
	}
3136

3137
	i915_gem_object_flush_gtt_write_domain(obj);
3138

3139 3140
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3141

3142
	/* Flush the CPU cache if it's still invalid. */
3143
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3144 3145
		i915_gem_clflush_object(obj);

3146
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3147 3148 3149 3150 3151
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3152
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3153 3154 3155 3156 3157

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3158 3159
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3160
	}
3161

C
Chris Wilson 已提交
3162 3163 3164 3165
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3166 3167 3168
	return 0;
}

3169 3170 3171
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3172 3173 3174 3175
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3176 3177 3178
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3179
static int
3180
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3181
{
3182 3183
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3184
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3185 3186 3187 3188
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3189

3190 3191 3192
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3193
	spin_lock(&file_priv->mm.lock);
3194
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3195 3196
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3197

3198 3199
		ring = request->ring;
		seqno = request->seqno;
3200
	}
3201
	spin_unlock(&file_priv->mm.lock);
3202

3203 3204
	if (seqno == 0)
		return 0;
3205

3206
	ret = __wait_seqno(ring, seqno, true, NULL);
3207 3208
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3209 3210 3211 3212

	return ret;
}

3213
int
3214 3215
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3216
		    bool map_and_fenceable)
3217 3218 3219
{
	int ret;

3220
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3221

3222 3223 3224 3225
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3226
			     "bo is already pinned with incorrect alignment:"
3227 3228
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3229
			     obj->gtt_offset, alignment,
3230
			     map_and_fenceable,
3231
			     obj->map_and_fenceable);
3232 3233 3234 3235 3236 3237
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3238
	if (obj->gtt_space == NULL) {
3239
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3240
						  map_and_fenceable);
3241
		if (ret)
3242
			return ret;
3243
	}
J
Jesse Barnes 已提交
3244

3245 3246 3247
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3248
	obj->pin_count++;
3249
	obj->pin_mappable |= map_and_fenceable;
3250 3251 3252 3253 3254

	return 0;
}

void
3255
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3256
{
3257 3258
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3259

3260
	if (--obj->pin_count == 0)
3261
		obj->pin_mappable = false;
3262 3263 3264 3265
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3266
		   struct drm_file *file)
3267 3268
{
	struct drm_i915_gem_pin *args = data;
3269
	struct drm_i915_gem_object *obj;
3270 3271
	int ret;

3272 3273 3274
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3275

3276
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3277
	if (&obj->base == NULL) {
3278 3279
		ret = -ENOENT;
		goto unlock;
3280 3281
	}

3282
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3283
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3284 3285
		ret = -EINVAL;
		goto out;
3286 3287
	}

3288
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3289 3290
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3291 3292
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3293 3294
	}

3295 3296 3297
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3298
		ret = i915_gem_object_pin(obj, args->alignment, true);
3299 3300
		if (ret)
			goto out;
3301 3302 3303 3304 3305
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3306
	i915_gem_object_flush_cpu_write_domain(obj);
3307
	args->offset = obj->gtt_offset;
3308
out:
3309
	drm_gem_object_unreference(&obj->base);
3310
unlock:
3311
	mutex_unlock(&dev->struct_mutex);
3312
	return ret;
3313 3314 3315 3316
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3317
		     struct drm_file *file)
3318 3319
{
	struct drm_i915_gem_pin *args = data;
3320
	struct drm_i915_gem_object *obj;
3321
	int ret;
3322

3323 3324 3325
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3326

3327
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3328
	if (&obj->base == NULL) {
3329 3330
		ret = -ENOENT;
		goto unlock;
3331
	}
3332

3333
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3334 3335
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3336 3337
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3338
	}
3339 3340 3341
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3342 3343
		i915_gem_object_unpin(obj);
	}
3344

3345
out:
3346
	drm_gem_object_unreference(&obj->base);
3347
unlock:
3348
	mutex_unlock(&dev->struct_mutex);
3349
	return ret;
3350 3351 3352 3353
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3354
		    struct drm_file *file)
3355 3356
{
	struct drm_i915_gem_busy *args = data;
3357
	struct drm_i915_gem_object *obj;
3358 3359
	int ret;

3360
	ret = i915_mutex_lock_interruptible(dev);
3361
	if (ret)
3362
		return ret;
3363

3364
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3365
	if (&obj->base == NULL) {
3366 3367
		ret = -ENOENT;
		goto unlock;
3368
	}
3369

3370 3371 3372 3373
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3374
	 */
3375
	ret = i915_gem_object_flush_active(obj);
3376

3377
	args->busy = obj->active;
3378

3379
	drm_gem_object_unreference(&obj->base);
3380
unlock:
3381
	mutex_unlock(&dev->struct_mutex);
3382
	return ret;
3383 3384 3385 3386 3387 3388
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3389
	return i915_gem_ring_throttle(dev, file_priv);
3390 3391
}

3392 3393 3394 3395 3396
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3397
	struct drm_i915_gem_object *obj;
3398
	int ret;
3399 3400 3401 3402 3403 3404 3405 3406 3407

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3408 3409 3410 3411
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3412
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3413
	if (&obj->base == NULL) {
3414 3415
		ret = -ENOENT;
		goto unlock;
3416 3417
	}

3418
	if (obj->pin_count) {
3419 3420
		ret = -EINVAL;
		goto out;
3421 3422
	}

3423 3424
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3425

3426
	/* if the object is no longer bound, discard its backing storage */
3427 3428
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3429 3430
		i915_gem_object_truncate(obj);

3431
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3432

3433
out:
3434
	drm_gem_object_unreference(&obj->base);
3435
unlock:
3436
	mutex_unlock(&dev->struct_mutex);
3437
	return ret;
3438 3439
}

3440 3441
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3442
{
3443
	struct drm_i915_private *dev_priv = dev->dev_private;
3444
	struct drm_i915_gem_object *obj;
3445
	struct address_space *mapping;
3446
	u32 mask;
3447

3448 3449 3450
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3451

3452 3453 3454 3455
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3456

3457 3458 3459 3460 3461 3462 3463
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3464
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3465
	mapping_set_gfp_mask(mapping, mask);
3466

3467 3468
	i915_gem_info_add_obj(dev_priv, size);

3469 3470
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3471

3472 3473
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3489
	obj->base.driver_private = NULL;
3490
	obj->fence_reg = I915_FENCE_REG_NONE;
3491
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3492
	INIT_LIST_HEAD(&obj->gtt_list);
3493
	INIT_LIST_HEAD(&obj->ring_list);
3494
	INIT_LIST_HEAD(&obj->exec_list);
3495 3496
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3497 3498
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3499

3500
	return obj;
3501 3502 3503 3504 3505
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3506

3507 3508 3509
	return 0;
}

3510
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3511
{
3512
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3513
	struct drm_device *dev = obj->base.dev;
3514
	drm_i915_private_t *dev_priv = dev->dev_private;
3515

3516 3517
	trace_i915_gem_object_destroy(obj);

3518 3519 3520
	if (gem_obj->import_attach)
		drm_prime_gem_destroy(gem_obj, obj->sg_table);

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3536
	if (obj->base.map_list.map)
3537
		drm_gem_free_mmap_offset(&obj->base);
3538

3539 3540
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3541

3542 3543
	kfree(obj->bit_17);
	kfree(obj);
3544 3545
}

3546 3547 3548 3549 3550
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3551

3552
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3553

3554
	if (dev_priv->mm.suspended) {
3555 3556
		mutex_unlock(&dev->struct_mutex);
		return 0;
3557 3558
	}

3559
	ret = i915_gpu_idle(dev);
3560 3561
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3562
		return ret;
3563
	}
3564
	i915_gem_retire_requests(dev);
3565

3566
	/* Under UMS, be paranoid and evict. */
3567 3568
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_gem_evict_everything(dev, false);
3569

3570 3571
	i915_gem_reset_fences(dev);

3572 3573 3574 3575 3576
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3577
	del_timer_sync(&dev_priv->hangcheck_timer);
3578 3579

	i915_kernel_lost_context(dev);
3580
	i915_gem_cleanup_ringbuffer(dev);
3581

3582 3583
	mutex_unlock(&dev->struct_mutex);

3584 3585 3586
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3587 3588 3589
	return 0;
}

B
Ben Widawsky 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
void i915_gem_l3_remap(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 misccpctl;
	int i;

	if (!IS_IVYBRIDGE(dev))
		return;

	if (!dev_priv->mm.l3_remap_info)
		return;

	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	POSTING_READ(GEN7_MISCCPCTL);

	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG("0x%x was already programmed to %x\n",
				  GEN7_L3LOG_BASE + i, remap);
		if (remap && !dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
	}

	/* Make sure all the writes land before disabling dop clock gating */
	POSTING_READ(GEN7_L3LOG_BASE);

	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

3622 3623 3624 3625
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3626
	if (INTEL_INFO(dev)->gen < 5 ||
3627 3628 3629 3630 3631 3632
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3633 3634 3635
	if (IS_GEN5(dev))
		return;

3636 3637
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3638
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3639
	else
3640
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3641
}
D
Daniel Vetter 已提交
3642 3643 3644 3645 3646 3647

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3648 3649 3650
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3651 3652 3653 3654 3655
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3674 3675 3676 3677
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3678 3679 3680 3681
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3682 3683 3684 3685 3686

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3687 3688
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3689
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3690 3691 3692 3693 3694
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

3695
	for_each_ring(ring, dev_priv, i) {
D
Daniel Vetter 已提交
3696 3697
		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3698
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3699 3700 3701 3702 3703 3704

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3705
int
3706
i915_gem_init_hw(struct drm_device *dev)
3707 3708 3709
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3710

D
Daniel Vetter 已提交
3711 3712 3713
	if (!intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
3714 3715
	i915_gem_l3_remap(dev);

3716 3717
	i915_gem_init_swizzling(dev);

3718
	ret = intel_init_render_ring_buffer(dev);
3719
	if (ret)
3720
		return ret;
3721 3722

	if (HAS_BSD(dev)) {
3723
		ret = intel_init_bsd_ring_buffer(dev);
3724 3725
		if (ret)
			goto cleanup_render_ring;
3726
	}
3727

3728 3729 3730 3731 3732 3733
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3734 3735
	dev_priv->next_seqno = 1;

3736 3737 3738 3739 3740
	/*
	 * XXX: There was some w/a described somewhere suggesting loading
	 * contexts before PPGTT.
	 */
	i915_gem_context_init(dev);
D
Daniel Vetter 已提交
3741 3742
	i915_gem_init_ppgtt(dev);

3743 3744
	return 0;

3745
cleanup_bsd_ring:
3746
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3747
cleanup_render_ring:
3748
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3749 3750 3751
	return ret;
}

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

3811 3812 3813
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
3814 3815 3816
	return 0;
}

3817 3818 3819 3820
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3821
	struct intel_ring_buffer *ring;
3822
	int i;
3823

3824 3825
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
3826 3827
}

3828 3829 3830 3831 3832
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3833
	int ret;
3834

J
Jesse Barnes 已提交
3835 3836 3837
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3838
	if (atomic_read(&dev_priv->mm.wedged)) {
3839
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3840
		atomic_set(&dev_priv->mm.wedged, 0);
3841 3842 3843
	}

	mutex_lock(&dev->struct_mutex);
3844 3845
	dev_priv->mm.suspended = 0;

3846
	ret = i915_gem_init_hw(dev);
3847 3848
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3849
		return ret;
3850
	}
3851

3852
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3853 3854 3855
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
	mutex_unlock(&dev->struct_mutex);
3856

3857 3858 3859
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3860

3861
	return 0;
3862 3863 3864 3865 3866 3867 3868 3869

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3870 3871 3872 3873 3874 3875
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3876 3877 3878
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3879
	drm_irq_uninstall(dev);
3880
	return i915_gem_idle(dev);
3881 3882 3883 3884 3885 3886 3887
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3888 3889 3890
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3891 3892 3893
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3894 3895
}

3896 3897 3898 3899 3900 3901 3902 3903
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3904 3905 3906
void
i915_gem_load(struct drm_device *dev)
{
3907
	int i;
3908 3909
	drm_i915_private_t *dev_priv = dev->dev_private;

3910
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3911 3912
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3913
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
D
Daniel Vetter 已提交
3914
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3915 3916
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3917
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3918
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3919 3920
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3921
	init_completion(&dev_priv->error_completion);
3922

3923 3924
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
3925 3926
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3927 3928
	}

3929 3930
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3931
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3932 3933
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3934

3935
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3936 3937 3938 3939
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3940
	/* Initialize fence registers to zero */
3941
	i915_gem_reset_fences(dev);
3942

3943
	i915_gem_detect_bit_6_swizzle(dev);
3944
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3945

3946 3947
	dev_priv->mm.interruptible = true;

3948 3949 3950
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3951
}
3952 3953 3954 3955 3956

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3957 3958
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3959 3960 3961 3962 3963 3964 3965 3966
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3967
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3968 3969 3970 3971 3972
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3973
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3986
	kfree(phys_obj);
3987 3988 3989
	return ret;
}

3990
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4015
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4016 4017 4018 4019
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
4020
				 struct drm_i915_gem_object *obj)
4021
{
4022
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4023
	char *vaddr;
4024 4025 4026
	int i;
	int page_count;

4027
	if (!obj->phys_obj)
4028
		return;
4029
	vaddr = obj->phys_obj->handle->vaddr;
4030

4031
	page_count = obj->base.size / PAGE_SIZE;
4032
	for (i = 0; i < page_count; i++) {
4033
		struct page *page = shmem_read_mapping_page(mapping, i);
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4045
	}
4046
	intel_gtt_chipset_flush();
4047

4048 4049
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4050 4051 4052 4053
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4054
			    struct drm_i915_gem_object *obj,
4055 4056
			    int id,
			    int align)
4057
{
4058
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4059 4060 4061 4062 4063 4064 4065 4066
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4067 4068
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4069 4070 4071 4072 4073 4074 4075
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4076
						obj->base.size, align);
4077
		if (ret) {
4078 4079
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4080
			return ret;
4081 4082 4083 4084
		}
	}

	/* bind to the object */
4085 4086
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4087

4088
	page_count = obj->base.size / PAGE_SIZE;
4089 4090

	for (i = 0; i < page_count; i++) {
4091 4092 4093
		struct page *page;
		char *dst, *src;

4094
		page = shmem_read_mapping_page(mapping, i);
4095 4096
		if (IS_ERR(page))
			return PTR_ERR(page);
4097

4098
		src = kmap_atomic(page);
4099
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4100
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4101
		kunmap_atomic(src);
4102

4103 4104 4105
		mark_page_accessed(page);
		page_cache_release(page);
	}
4106

4107 4108 4109 4110
	return 0;
}

static int
4111 4112
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4113 4114 4115
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4116
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4117
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4118

4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4132

4133
	intel_gtt_chipset_flush();
4134 4135
	return 0;
}
4136

4137
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4138
{
4139
	struct drm_i915_file_private *file_priv = file->driver_priv;
4140 4141 4142 4143 4144

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4145
	spin_lock(&file_priv->mm.lock);
4146 4147 4148 4149 4150 4151 4152 4153 4154
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4155
	spin_unlock(&file_priv->mm.lock);
4156
}
4157

4158 4159 4160 4161 4162 4163 4164
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4165
		      list_empty(&dev_priv->mm.active_list);
4166 4167 4168 4169

	return !lists_empty;
}

4170
static int
4171
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4172
{
4173 4174 4175 4176 4177 4178
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4179
	int nr_to_scan = sc->nr_to_scan;
4180 4181 4182
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4183
		return 0;
4184 4185 4186

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4187 4188 4189 4190 4191 4192 4193
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4194 4195
	}

4196
rescan:
4197
	/* first scan for clean buffers */
4198
	i915_gem_retire_requests(dev);
4199

4200 4201 4202 4203
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4204 4205
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4206
				break;
4207 4208 4209 4210
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4211 4212 4213 4214
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4215 4216
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4217
			nr_to_scan--;
4218
		else
4219 4220 4221 4222
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4223 4224 4225 4226 4227 4228
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4229
		if (i915_gpu_idle(dev) == 0)
4230 4231
			goto rescan;
	}
4232 4233
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4234
}