hugetlb.c 93.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25
#include <linux/jhash.h>
26

D
David Gibson 已提交
27 28
#include <asm/page.h>
#include <asm/pgtable.h>
29
#include <asm/tlb.h>
D
David Gibson 已提交
30

31
#include <linux/io.h>
D
David Gibson 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include <linux/node.h>
35
#include "internal.h"
L
Linus Torvalds 已提交
36 37

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
38
unsigned long hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42 43
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

44 45
__initdata LIST_HEAD(huge_boot_pages);

46 47 48
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
49
static unsigned long __initdata default_hstate_size;
50

51
/*
52 53
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
54
 */
55
DEFINE_SPINLOCK(hugetlb_lock);
56

57 58 59 60 61 62 63
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
139
	return subpool_inode(file_inode(vma->vm_file));
140 141
}

142 143 144
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
145
 *
146 147
 * The region data structures are embedded into a resv_map and
 * protected by a resv_map's lock
148 149 150 151 152 153 154
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

155
static long region_add(struct resv_map *resv, long f, long t)
156
{
157
	struct list_head *head = &resv->regions;
158 159
	struct file_region *rg, *nrg, *trg;

160
	spin_lock(&resv->lock);
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
190
	spin_unlock(&resv->lock);
191 192 193
	return 0;
}

194
static long region_chg(struct resv_map *resv, long f, long t)
195
{
196
	struct list_head *head = &resv->regions;
197
	struct file_region *rg, *nrg = NULL;
198 199
	long chg = 0;

200 201
retry:
	spin_lock(&resv->lock);
202 203 204 205 206 207 208 209 210
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
211 212 213 214 215 216 217 218 219 220 221
		if (!nrg) {
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
222

223 224 225
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
226 227 228 229 230 231 232 233 234 235 236 237
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
238
			goto out;
239

L
Lucas De Marchi 已提交
240
		/* We overlap with this area, if it extends further than
241 242 243 244 245 246 247 248
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
249 250 251 252 253 254 255 256

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
257 258 259
	return chg;
}

260
static long region_truncate(struct resv_map *resv, long end)
261
{
262
	struct list_head *head = &resv->regions;
263 264 265
	struct file_region *rg, *trg;
	long chg = 0;

266
	spin_lock(&resv->lock);
267 268 269 270 271
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
272
		goto out;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
289 290 291

out:
	spin_unlock(&resv->lock);
292 293 294
	return chg;
}

295
static long region_count(struct resv_map *resv, long f, long t)
296
{
297
	struct list_head *head = &resv->regions;
298 299 300
	struct file_region *rg;
	long chg = 0;

301
	spin_lock(&resv->lock);
302 303
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
304 305
		long seg_from;
		long seg_to;
306 307 308 309 310 311 312 313 314 315 316

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
317
	spin_unlock(&resv->lock);
318 319 320 321

	return chg;
}

322 323 324 325
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
326 327
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
328
{
329 330
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
331 332
}

333 334 335 336 337 338
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

339 340 341 342 343 344 345 346 347 348 349 350 351
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

352
	return 1UL << huge_page_shift(hstate);
353
}
354
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355

356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

369 370 371 372 373 374 375
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
376
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377

378 379 380 381 382 383 384 385 386
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
387 388 389 390 391 392 393 394 395
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
396
 */
397 398 399 400 401 402 403 404 405 406 407
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

408
struct resv_map *resv_map_alloc(void)
409 410 411 412 413 414
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
415
	spin_lock_init(&resv_map->lock);
416 417 418 419 420
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

421
void resv_map_release(struct kref *ref)
422 423 424 425
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
426
	region_truncate(resv_map, 0);
427 428 429
	kfree(resv_map);
}

430 431 432 433 434
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

435
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436 437
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
438 439 440 441 442 443 444
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
445 446
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
447
	}
448 449
}

450
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451 452
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
453
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
454

455 456
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
457 458 459 460 461
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
462
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
463 464

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465 466 467 468 469
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
470 471

	return (get_vma_private_data(vma) & flag) != 0;
472 473
}

474
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475 476 477
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
478
	if (!(vma->vm_flags & VM_MAYSHARE))
479 480 481 482
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
483
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484
{
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
500 501

	/* Shared mappings always use reserves */
502
	if (vma->vm_flags & VM_MAYSHARE)
503
		return 1;
504 505 506 507 508

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
509 510
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
511

512
	return 0;
513 514
}

515
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
516 517
{
	int nid = page_to_nid(page);
518
	list_move(&page->lru, &h->hugepage_freelists[nid]);
519 520
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
521 522
}

523 524 525 526
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

527 528 529 530 531 532 533 534
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
535
		return NULL;
536
	list_move(&page->lru, &h->hugepage_activelist);
537
	set_page_refcounted(page);
538 539 540 541 542
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

543 544 545 546 547 548 549 550 551
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_support(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

552 553
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
554 555
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
556
{
557
	struct page *page = NULL;
558
	struct mempolicy *mpol;
559
	nodemask_t *nodemask;
560
	struct zonelist *zonelist;
561 562
	struct zone *zone;
	struct zoneref *z;
563
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
564

565 566 567 568 569
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
570
	if (!vma_has_reserves(vma, chg) &&
571
			h->free_huge_pages - h->resv_huge_pages == 0)
572
		goto err;
573

574
	/* If reserves cannot be used, ensure enough pages are in the pool */
575
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576
		goto err;
577

578
retry_cpuset:
579
	cpuset_mems_cookie = read_mems_allowed_begin();
580
	zonelist = huge_zonelist(vma, address,
581
					htlb_alloc_mask(h), &mpol, &nodemask);
582

583 584
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
585
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
586 587
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
588 589 590 591 592
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

593
				SetPagePrivate(page);
594
				h->resv_huge_pages--;
595 596
				break;
			}
A
Andrew Morton 已提交
597
		}
L
Linus Torvalds 已提交
598
	}
599

600
	mpol_cond_put(mpol);
601
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602
		goto retry_cpuset;
L
Linus Torvalds 已提交
603
	return page;
604 605 606

err:
	return NULL;
L
Linus Torvalds 已提交
607 608
}

609
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
610 611
{
	int i;
612

613 614
	VM_BUG_ON(h->order >= MAX_ORDER);

615 616 617
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
618 619 620 621
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
622
	}
623
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
624 625
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
626
	arch_release_hugepage(page);
627
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
628 629
}

630 631 632 633 634 635 636 637 638 639 640
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

641 642
static void free_huge_page(struct page *page)
{
643 644 645 646
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
647
	struct hstate *h = page_hstate(page);
648
	int nid = page_to_nid(page);
649 650
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
651
	bool restore_reserve;
652

653
	set_page_private(page, 0);
654
	page->mapping = NULL;
655
	BUG_ON(page_count(page));
656
	BUG_ON(page_mapcount(page));
657
	restore_reserve = PagePrivate(page);
658
	ClearPagePrivate(page);
659 660

	spin_lock(&hugetlb_lock);
661 662
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
663 664 665
	if (restore_reserve)
		h->resv_huge_pages++;

666
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
667 668
		/* remove the page from active list */
		list_del(&page->lru);
669 670 671
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
672
	} else {
673
		arch_clear_hugepage_flags(page);
674
		enqueue_huge_page(h, page);
675
	}
676
	spin_unlock(&hugetlb_lock);
677
	hugepage_subpool_put_pages(spool, 1);
678 679
}

680
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
681
{
682
	INIT_LIST_HEAD(&page->lru);
683 684
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
685
	set_hugetlb_cgroup(page, NULL);
686 687
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
688 689 690 691
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

692 693
static void __init prep_compound_gigantic_page(struct page *page,
					       unsigned long order)
694 695 696 697 698 699 700 701
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
702
	__ClearPageReserved(page);
703 704
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
705 706 707 708 709 710 711 712 713 714 715 716 717
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
718
		set_page_count(p, 0);
719 720 721 722
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
723 724 725 726 727
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
728 729 730 731 732 733
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
734
	return get_compound_page_dtor(page) == free_huge_page;
735
}
736 737
EXPORT_SYMBOL_GPL(PageHuge);

738 739 740 741 742 743 744 745 746
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

747
	return get_compound_page_dtor(page_head) == free_huge_page;
748 749
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

767
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
768 769
{
	struct page *page;
770

771 772 773
	if (h->order >= MAX_ORDER)
		return NULL;

774
	page = alloc_pages_exact_node(nid,
775
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
776
						__GFP_REPEAT|__GFP_NOWARN,
777
		huge_page_order(h));
L
Linus Torvalds 已提交
778
	if (page) {
779
		if (arch_prepare_hugepage(page)) {
780
			__free_pages(page, huge_page_order(h));
781
			return NULL;
782
		}
783
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
784
	}
785 786 787 788

	return page;
}

789
/*
790 791 792 793 794
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
795
 */
796
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
797
{
798
	nid = next_node(nid, *nodes_allowed);
799
	if (nid == MAX_NUMNODES)
800
		nid = first_node(*nodes_allowed);
801 802 803 804 805
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

806 807 808 809 810 811 812
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

813
/*
814 815 816 817
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
818
 */
819 820
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
821
{
822 823 824 825 826 827
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
828 829

	return nid;
830 831
}

832
/*
833 834 835 836
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
837
 */
838
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
839
{
840 841 842 843 844 845
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
846 847

	return nid;
848 849
}

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

884 885 886 887 888 889
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
890 891
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
892
{
893
	int nr_nodes, node;
894 895
	int ret = 0;

896
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
897 898 899 900
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
901 902
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
903
			struct page *page =
904
				list_entry(h->hugepage_freelists[node].next,
905 906 907
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
908
			h->free_huge_pages_node[node]--;
909 910
			if (acct_surplus) {
				h->surplus_huge_pages--;
911
				h->surplus_huge_pages_node[node]--;
912
			}
913 914
			update_and_free_page(h, page);
			ret = 1;
915
			break;
916
		}
917
	}
918 919 920 921

	return ret;
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

960
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
961 962
{
	struct page *page;
963
	unsigned int r_nid;
964

965 966 967
	if (h->order >= MAX_ORDER)
		return NULL;

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
992
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
993 994 995
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
996 997
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
998 999 1000
	}
	spin_unlock(&hugetlb_lock);

1001
	if (nid == NUMA_NO_NODE)
1002
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1003 1004 1005 1006
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
1007
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1008
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1009

1010 1011
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
1012
		page = NULL;
1013 1014
	}

1015
	spin_lock(&hugetlb_lock);
1016
	if (page) {
1017
		INIT_LIST_HEAD(&page->lru);
1018
		r_nid = page_to_nid(page);
1019
		set_compound_page_dtor(page, free_huge_page);
1020
		set_hugetlb_cgroup(page, NULL);
1021 1022 1023
		/*
		 * We incremented the global counters already
		 */
1024 1025
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1026
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1027
	} else {
1028 1029
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1030
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1031
	}
1032
	spin_unlock(&hugetlb_lock);
1033 1034 1035 1036

	return page;
}

1037 1038 1039 1040 1041 1042 1043
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1044
	struct page *page = NULL;
1045 1046

	spin_lock(&hugetlb_lock);
1047 1048
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1049 1050
	spin_unlock(&hugetlb_lock);

1051
	if (!page)
1052 1053 1054 1055 1056
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1057
/*
L
Lucas De Marchi 已提交
1058
 * Increase the hugetlb pool such that it can accommodate a reservation
1059 1060
 * of size 'delta'.
 */
1061
static int gather_surplus_pages(struct hstate *h, int delta)
1062 1063 1064 1065 1066
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1067
	bool alloc_ok = true;
1068

1069
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1070
	if (needed <= 0) {
1071
		h->resv_huge_pages += delta;
1072
		return 0;
1073
	}
1074 1075 1076 1077 1078 1079 1080 1081

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1082
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1083 1084 1085 1086
		if (!page) {
			alloc_ok = false;
			break;
		}
1087 1088
		list_add(&page->lru, &surplus_list);
	}
1089
	allocated += i;
1090 1091 1092 1093 1094 1095

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1096 1097
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1108 1109
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1110
	 * needed to accommodate the reservation.  Add the appropriate number
1111
	 * of pages to the hugetlb pool and free the extras back to the buddy
1112 1113 1114
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1115 1116
	 */
	needed += allocated;
1117
	h->resv_huge_pages += delta;
1118
	ret = 0;
1119

1120
	/* Free the needed pages to the hugetlb pool */
1121
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1122 1123
		if ((--needed) < 0)
			break;
1124 1125 1126 1127 1128
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1129
		VM_BUG_ON_PAGE(page_count(page), page);
1130
		enqueue_huge_page(h, page);
1131
	}
1132
free:
1133
	spin_unlock(&hugetlb_lock);
1134 1135

	/* Free unnecessary surplus pages to the buddy allocator */
1136 1137
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1138
	spin_lock(&hugetlb_lock);
1139 1140 1141 1142 1143 1144 1145 1146

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1147
 * Called with hugetlb_lock held.
1148
 */
1149 1150
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1151 1152 1153
{
	unsigned long nr_pages;

1154
	/* Uncommit the reservation */
1155
	h->resv_huge_pages -= unused_resv_pages;
1156

1157 1158 1159 1160
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1161
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1162

1163 1164
	/*
	 * We want to release as many surplus pages as possible, spread
1165 1166 1167 1168 1169
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1170 1171
	 */
	while (nr_pages--) {
1172
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1173
			break;
1174 1175 1176
	}
}

1177 1178 1179
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1180 1181 1182 1183 1184 1185
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1186
 */
1187
static long vma_needs_reservation(struct hstate *h,
1188
			struct vm_area_struct *vma, unsigned long addr)
1189
{
1190 1191 1192
	struct resv_map *resv;
	pgoff_t idx;
	long chg;
1193

1194 1195
	resv = vma_resv_map(vma);
	if (!resv)
1196
		return 1;
1197

1198 1199
	idx = vma_hugecache_offset(h, vma, addr);
	chg = region_chg(resv, idx, idx + 1);
1200

1201 1202 1203 1204
	if (vma->vm_flags & VM_MAYSHARE)
		return chg;
	else
		return chg < 0 ? chg : 0;
1205
}
1206 1207
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1208
{
1209 1210
	struct resv_map *resv;
	pgoff_t idx;
1211

1212 1213 1214
	resv = vma_resv_map(vma);
	if (!resv)
		return;
1215

1216 1217
	idx = vma_hugecache_offset(h, vma, addr);
	region_add(resv, idx, idx + 1);
1218 1219
}

1220
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1221
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1222
{
1223
	struct hugepage_subpool *spool = subpool_vma(vma);
1224
	struct hstate *h = hstate_vma(vma);
1225
	struct page *page;
1226
	long chg;
1227 1228
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1229

1230
	idx = hstate_index(h);
1231
	/*
1232 1233 1234 1235 1236 1237
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1238
	 */
1239
	chg = vma_needs_reservation(h, vma, addr);
1240
	if (chg < 0)
1241
		return ERR_PTR(-ENOMEM);
1242 1243
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1244
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1245

1246 1247
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1248 1249
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1250 1251
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1252
	spin_lock(&hugetlb_lock);
1253
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1254
	if (!page) {
1255
		spin_unlock(&hugetlb_lock);
1256
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1257
		if (!page) {
1258 1259 1260
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1261 1262
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1263
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1264
		}
1265 1266
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1267
		/* Fall through */
K
Ken Chen 已提交
1268
	}
1269 1270
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1271

1272
	set_page_private(page, (unsigned long)spool);
1273

1274
	vma_commit_reservation(h, vma, addr);
1275
	return page;
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1292
int __weak alloc_bootmem_huge_page(struct hstate *h)
1293 1294
{
	struct huge_bootmem_page *m;
1295
	int nr_nodes, node;
1296

1297
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1298 1299
		void *addr;

1300 1301 1302
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1303 1304 1305 1306 1307 1308 1309
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1310
			goto found;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1323
static void __init prep_compound_huge_page(struct page *page, int order)
1324 1325 1326 1327 1328 1329 1330
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1331 1332 1333 1334 1335 1336 1337
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1338 1339 1340 1341
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1342 1343
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1344 1345 1346
#else
		page = virt_to_page(m);
#endif
1347
		WARN_ON(page_count(page) != 1);
1348
		prep_compound_huge_page(page, h->order);
1349
		WARN_ON(PageReserved(page));
1350
		prep_new_huge_page(h, page, page_to_nid(page));
1351 1352 1353 1354 1355 1356 1357
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1358
			adjust_managed_page_count(page, 1 << h->order);
1359 1360 1361
	}
}

1362
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1363 1364
{
	unsigned long i;
1365

1366
	for (i = 0; i < h->max_huge_pages; ++i) {
1367 1368 1369
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1370
		} else if (!alloc_fresh_huge_page(h,
1371
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1372 1373
			break;
	}
1374
	h->max_huge_pages = i;
1375 1376 1377 1378 1379 1380 1381
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1382 1383 1384
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1385 1386 1387
	}
}

A
Andi Kleen 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1399 1400 1401 1402 1403
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1404
		char buf[32];
1405
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1406 1407
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1408 1409 1410
	}
}

L
Linus Torvalds 已提交
1411
#ifdef CONFIG_HIGHMEM
1412 1413
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1414
{
1415 1416
	int i;

1417 1418 1419
	if (h->order >= MAX_ORDER)
		return;

1420
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1421
		struct page *page, *next;
1422 1423 1424
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1425
				return;
L
Linus Torvalds 已提交
1426 1427 1428
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1429
			update_and_free_page(h, page);
1430 1431
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1432 1433 1434 1435
		}
	}
}
#else
1436 1437
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1438 1439 1440 1441
{
}
#endif

1442 1443 1444 1445 1446
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1447 1448
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1449
{
1450
	int nr_nodes, node;
1451 1452 1453

	VM_BUG_ON(delta != -1 && delta != 1);

1454 1455 1456 1457
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1458
		}
1459 1460 1461 1462 1463
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1464
		}
1465 1466
	}
	return 0;
1467

1468 1469 1470 1471
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1472 1473
}

1474
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1475 1476
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1477
{
1478
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1479

1480 1481 1482
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1483 1484 1485 1486
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1487 1488 1489 1490 1491 1492
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1493
	 */
L
Linus Torvalds 已提交
1494
	spin_lock(&hugetlb_lock);
1495
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1496
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1497 1498 1499
			break;
	}

1500
	while (count > persistent_huge_pages(h)) {
1501 1502 1503 1504 1505 1506
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1507
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1508 1509 1510 1511
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1512 1513 1514
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1515 1516 1517 1518 1519 1520 1521 1522
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1523 1524 1525 1526 1527 1528 1529 1530
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1531
	 */
1532
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1533
	min_count = max(count, min_count);
1534
	try_to_free_low(h, min_count, nodes_allowed);
1535
	while (min_count < persistent_huge_pages(h)) {
1536
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1537 1538
			break;
	}
1539
	while (count < persistent_huge_pages(h)) {
1540
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1541 1542 1543
			break;
	}
out:
1544
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1545
	spin_unlock(&hugetlb_lock);
1546
	return ret;
L
Linus Torvalds 已提交
1547 1548
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1559 1560 1561
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1562 1563
{
	int i;
1564

1565
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1566 1567 1568
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1569
			return &hstates[i];
1570 1571 1572
		}

	return kobj_to_node_hstate(kobj, nidp);
1573 1574
}

1575
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1576 1577
					struct kobj_attribute *attr, char *buf)
{
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1589
}
1590

1591 1592 1593
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1594 1595
{
	int err;
1596
	int nid;
1597
	unsigned long count;
1598
	struct hstate *h;
1599
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1600

1601
	err = kstrtoul(buf, 10, &count);
1602
	if (err)
1603
		goto out;
1604

1605
	h = kobj_to_hstate(kobj, &nid);
1606 1607 1608 1609 1610
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1611 1612 1613 1614 1615 1616 1617
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1618
			nodes_allowed = &node_states[N_MEMORY];
1619 1620 1621 1622 1623 1624 1625 1626 1627
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1628
		nodes_allowed = &node_states[N_MEMORY];
1629

1630
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1631

1632
	if (nodes_allowed != &node_states[N_MEMORY])
1633 1634 1635
		NODEMASK_FREE(nodes_allowed);

	return len;
1636 1637 1638
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1651 1652 1653
}
HSTATE_ATTR(nr_hugepages);

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1675 1676 1677
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1678
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1679 1680
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1681

1682 1683 1684 1685 1686
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1687
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1688

1689 1690 1691
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1692
	err = kstrtoul(buf, 10, &input);
1693
	if (err)
1694
		return err;
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1718 1719 1720 1721 1722 1723
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1724
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1725 1726 1727 1728 1729 1730 1731
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1743 1744 1745 1746 1747 1748 1749 1750 1751
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1752 1753 1754
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1755 1756 1757 1758 1759 1760 1761
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1762 1763 1764
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1765 1766
{
	int retval;
1767
	int hi = hstate_index(h);
1768

1769 1770
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1771 1772
		return -ENOMEM;

1773
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1774
	if (retval)
1775
		kobject_put(hstate_kobjs[hi]);
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1790 1791
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1792
		if (err)
1793
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1794 1795 1796
	}
}

1797 1798 1799 1800
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1801 1802 1803
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1804 1805 1806 1807 1808 1809 1810 1811 1812
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1813
 * A subset of global hstate attributes for node devices
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1827
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1850
 * Unregister hstate attributes from a single node device.
1851 1852
 * No-op if no hstate attributes attached.
 */
1853
static void hugetlb_unregister_node(struct node *node)
1854 1855
{
	struct hstate *h;
1856
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1857 1858

	if (!nhs->hugepages_kobj)
1859
		return;		/* no hstate attributes */
1860

1861 1862 1863 1864 1865
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1866
		}
1867
	}
1868 1869 1870 1871 1872 1873

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1874
 * hugetlb module exit:  unregister hstate attributes from node devices
1875 1876 1877 1878 1879 1880 1881
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1882
	 * disable node device registrations.
1883 1884 1885 1886 1887 1888 1889
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1890
		hugetlb_unregister_node(node_devices[nid]);
1891 1892 1893
}

/*
1894
 * Register hstate attributes for a single node device.
1895 1896
 * No-op if attributes already registered.
 */
1897
static void hugetlb_register_node(struct node *node)
1898 1899
{
	struct hstate *h;
1900
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1901 1902 1903 1904 1905 1906
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1907
							&node->dev.kobj);
1908 1909 1910 1911 1912 1913 1914 1915
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1916 1917
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1918 1919 1920 1921 1922 1923 1924
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1925
 * hugetlb init time:  register hstate attributes for all registered node
1926 1927
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1928 1929 1930 1931 1932
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1933
	for_each_node_state(nid, N_MEMORY) {
1934
		struct node *node = node_devices[nid];
1935
		if (node->dev.id == nid)
1936 1937 1938 1939
			hugetlb_register_node(node);
	}

	/*
1940
	 * Let the node device driver know we're here so it can
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1962 1963 1964 1965
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1966 1967
	hugetlb_unregister_all_nodes();

1968
	for_each_hstate(h) {
1969
		kobject_put(hstate_kobjs[hstate_index(h)]);
1970 1971 1972
	}

	kobject_put(hugepages_kobj);
1973
	kfree(htlb_fault_mutex_table);
1974 1975 1976 1977 1978
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1979 1980
	int i;

1981 1982 1983 1984 1985 1986
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1987

1988 1989 1990 1991
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1992
	}
1993
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1994 1995
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1996 1997

	hugetlb_init_hstates();
1998
	gather_bootmem_prealloc();
1999 2000 2001
	report_hugepages();

	hugetlb_sysfs_init();
2002
	hugetlb_register_all_nodes();
2003
	hugetlb_cgroup_file_init();
2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
	htlb_fault_mutex_table =
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
	BUG_ON(!htlb_fault_mutex_table);

	for (i = 0; i < num_fault_mutexes; i++)
		mutex_init(&htlb_fault_mutex_table[i]);
2016 2017 2018 2019 2020 2021 2022 2023
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2024 2025
	unsigned long i;

2026
	if (size_to_hstate(PAGE_SIZE << order)) {
2027
		pr_warning("hugepagesz= specified twice, ignoring\n");
2028 2029
		return;
	}
2030
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2031
	BUG_ON(order == 0);
2032
	h = &hstates[hugetlb_max_hstate++];
2033 2034
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2035 2036 2037 2038
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2039
	INIT_LIST_HEAD(&h->hugepage_activelist);
2040 2041
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2042 2043
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2044

2045 2046 2047
	parsed_hstate = h;
}

2048
static int __init hugetlb_nrpages_setup(char *s)
2049 2050
{
	unsigned long *mhp;
2051
	static unsigned long *last_mhp;
2052 2053

	/*
2054
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2055 2056
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2057
	if (!hugetlb_max_hstate)
2058 2059 2060 2061
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2062
	if (mhp == last_mhp) {
2063 2064
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2065 2066 2067
		return 1;
	}

2068 2069 2070
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2071 2072 2073 2074 2075
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2076
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2077 2078 2079 2080
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2081 2082
	return 1;
}
2083 2084 2085 2086 2087 2088 2089 2090
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2104 2105 2106
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2107
{
2108 2109
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2110
	int ret;
2111

2112
	tmp = h->max_huge_pages;
2113

2114 2115 2116
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2117 2118
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2119 2120 2121
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2122

2123
	if (write) {
2124 2125
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2126 2127 2128
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2129
			nodes_allowed = &node_states[N_MEMORY];
2130 2131 2132
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2133
		if (nodes_allowed != &node_states[N_MEMORY])
2134 2135
			NODEMASK_FREE(nodes_allowed);
	}
2136 2137
out:
	return ret;
L
Linus Torvalds 已提交
2138
}
2139

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2157
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2158
			void __user *buffer,
2159 2160
			size_t *length, loff_t *ppos)
{
2161
	struct hstate *h = &default_hstate;
2162
	unsigned long tmp;
2163
	int ret;
2164

2165
	tmp = h->nr_overcommit_huge_pages;
2166

2167 2168 2169
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2170 2171
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2172 2173 2174
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2175 2176 2177 2178 2179 2180

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2181 2182
out:
	return ret;
2183 2184
}

L
Linus Torvalds 已提交
2185 2186
#endif /* CONFIG_SYSCTL */

2187
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2188
{
2189
	struct hstate *h = &default_hstate;
2190
	seq_printf(m,
2191 2192 2193 2194 2195
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2196 2197 2198 2199 2200
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2201 2202 2203 2204
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2205
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2206 2207
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2208 2209
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2210 2211 2212
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2213 2214
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2230 2231 2232
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2233 2234 2235 2236 2237 2238
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2239 2240
}

2241
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2264
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2265 2266
			goto out;

2267 2268
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2269 2270 2271 2272 2273 2274
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2275
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2276 2277 2278 2279 2280 2281

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2282 2283
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2284
	struct resv_map *resv = vma_resv_map(vma);
2285 2286 2287 2288 2289

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2290
	 * has a reference to the reservation map it cannot disappear until
2291 2292 2293
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2294
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2295
		kref_get(&resv->refs);
2296 2297
}

2298 2299
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2300
	struct hstate *h = hstate_vma(vma);
2301
	struct resv_map *resv = vma_resv_map(vma);
2302
	struct hugepage_subpool *spool = subpool_vma(vma);
2303
	unsigned long reserve, start, end;
2304

2305 2306
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2307

2308 2309
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2310

2311
	reserve = (end - start) - region_count(resv, start, end);
2312

2313 2314 2315 2316 2317
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
		hugetlb_acct_memory(h, -reserve);
		hugepage_subpool_put_pages(spool, reserve);
2318
	}
2319 2320
}

L
Linus Torvalds 已提交
2321 2322 2323 2324 2325 2326
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2327
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2328 2329
{
	BUG();
N
Nick Piggin 已提交
2330
	return 0;
L
Linus Torvalds 已提交
2331 2332
}

2333
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2334
	.fault = hugetlb_vm_op_fault,
2335
	.open = hugetlb_vm_op_open,
2336
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2337 2338
};

2339 2340
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2341 2342 2343
{
	pte_t entry;

2344
	if (writable) {
2345 2346
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2347
	} else {
2348 2349
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2350 2351 2352
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2353
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2354 2355 2356 2357

	return entry;
}

2358 2359 2360 2361 2362
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2363
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2364
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2365
		update_mmu_cache(vma, address, ptep);
2366 2367 2368
}


D
David Gibson 已提交
2369 2370 2371 2372 2373
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2374
	unsigned long addr;
2375
	int cow;
2376 2377
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2378 2379 2380
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2381 2382

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2383

2384 2385 2386 2387 2388
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2389
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2390
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2391 2392 2393
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2394
		dst_pte = huge_pte_alloc(dst, addr, sz);
2395 2396 2397 2398
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2399 2400 2401 2402 2403

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2404 2405 2406
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2407
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2408
			if (cow)
2409 2410
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2411 2412
			ptepage = pte_page(entry);
			get_page(ptepage);
2413
			page_dup_rmap(ptepage);
2414 2415
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2416 2417
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2418 2419
	}

2420 2421 2422 2423
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2424 2425
}

N
Naoya Horiguchi 已提交
2426 2427 2428 2429 2430 2431 2432
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2433
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2434
		return 1;
2435
	else
N
Naoya Horiguchi 已提交
2436 2437 2438
		return 0;
}

2439 2440 2441 2442 2443 2444 2445
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2446
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2447
		return 1;
2448
	else
2449 2450 2451
		return 0;
}

2452 2453 2454
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2455
{
2456
	int force_flush = 0;
D
David Gibson 已提交
2457 2458
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2459
	pte_t *ptep;
D
David Gibson 已提交
2460
	pte_t pte;
2461
	spinlock_t *ptl;
D
David Gibson 已提交
2462
	struct page *page;
2463 2464
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2465 2466
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2467

D
David Gibson 已提交
2468
	WARN_ON(!is_vm_hugetlb_page(vma));
2469 2470
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2471

2472
	tlb_start_vma(tlb, vma);
2473
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2474
again:
2475
	for (address = start; address < end; address += sz) {
2476
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2477
		if (!ptep)
2478 2479
			continue;

2480
		ptl = huge_pte_lock(h, mm, ptep);
2481
		if (huge_pmd_unshare(mm, &address, ptep))
2482
			goto unlock;
2483

2484 2485
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2486
			goto unlock;
2487 2488 2489 2490

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2491
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2492
			huge_pte_clear(mm, address, ptep);
2493
			goto unlock;
2494
		}
2495 2496

		page = pte_page(pte);
2497 2498 2499 2500 2501 2502 2503
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2504
				goto unlock;
2505 2506 2507 2508 2509 2510 2511 2512 2513

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2514
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2515
		tlb_remove_tlb_entry(tlb, ptep, address);
2516
		if (huge_pte_dirty(pte))
2517
			set_page_dirty(page);
2518

2519 2520
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2521 2522
		if (force_flush) {
			spin_unlock(ptl);
2523
			break;
2524
		}
2525
		/* Bail out after unmapping reference page if supplied */
2526 2527
		if (ref_page) {
			spin_unlock(ptl);
2528
			break;
2529 2530 2531
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2532
	}
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2543
	}
2544
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2545
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2546
}
D
David Gibson 已提交
2547

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2567
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2568
			  unsigned long end, struct page *ref_page)
2569
{
2570 2571 2572 2573 2574
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2575
	tlb_gather_mmu(&tlb, mm, start, end);
2576 2577
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2578 2579
}

2580 2581 2582 2583 2584 2585
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2586 2587
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2588
{
2589
	struct hstate *h = hstate_vma(vma);
2590 2591 2592 2593 2594 2595 2596 2597
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2598
	address = address & huge_page_mask(h);
2599 2600
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2601
	mapping = file_inode(vma->vm_file)->i_mapping;
2602

2603 2604 2605 2606 2607
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2608
	mutex_lock(&mapping->i_mmap_mutex);
2609
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2622 2623
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2624
	}
2625
	mutex_unlock(&mapping->i_mmap_mutex);
2626 2627 2628 2629

	return 1;
}

2630 2631
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2632 2633 2634
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2635
 */
2636
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2637
			unsigned long address, pte_t *ptep, pte_t pte,
2638
			struct page *pagecache_page, spinlock_t *ptl)
2639
{
2640
	struct hstate *h = hstate_vma(vma);
2641
	struct page *old_page, *new_page;
2642
	int outside_reserve = 0;
2643 2644
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2645 2646 2647

	old_page = pte_page(pte);

2648
retry_avoidcopy:
2649 2650
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2651 2652
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2653
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2654
		return 0;
2655 2656
	}

2657 2658 2659 2660 2661 2662 2663 2664 2665
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2666
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2667 2668 2669
			old_page != pagecache_page)
		outside_reserve = 1;

2670
	page_cache_get(old_page);
2671

2672 2673
	/* Drop page table lock as buddy allocator may be called */
	spin_unlock(ptl);
2674
	new_page = alloc_huge_page(vma, address, outside_reserve);
2675

2676
	if (IS_ERR(new_page)) {
2677
		long err = PTR_ERR(new_page);
2678
		page_cache_release(old_page);
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2691
				spin_lock(ptl);
2692
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2693 2694
				if (likely(ptep &&
					   pte_same(huge_ptep_get(ptep), pte)))
2695 2696
					goto retry_avoidcopy;
				/*
2697 2698
				 * race occurs while re-acquiring page table
				 * lock, and our job is done.
2699 2700
				 */
				return 0;
2701 2702 2703 2704
			}
			WARN_ON_ONCE(1);
		}

2705
		/* Caller expects lock to be held */
2706
		spin_lock(ptl);
2707 2708 2709 2710
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2711 2712
	}

2713 2714 2715 2716
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2717
	if (unlikely(anon_vma_prepare(vma))) {
2718 2719
		page_cache_release(new_page);
		page_cache_release(old_page);
2720
		/* Caller expects lock to be held */
2721
		spin_lock(ptl);
2722
		return VM_FAULT_OOM;
2723
	}
2724

A
Andrea Arcangeli 已提交
2725 2726
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2727
	__SetPageUptodate(new_page);
2728

2729 2730 2731
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2732
	/*
2733
	 * Retake the page table lock to check for racing updates
2734 2735
	 * before the page tables are altered
	 */
2736
	spin_lock(ptl);
2737
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2738
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2739 2740
		ClearPagePrivate(new_page);

2741
		/* Break COW */
2742
		huge_ptep_clear_flush(vma, address, ptep);
2743 2744
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2745
		page_remove_rmap(old_page);
2746
		hugepage_add_new_anon_rmap(new_page, vma, address);
2747 2748 2749
		/* Make the old page be freed below */
		new_page = old_page;
	}
2750
	spin_unlock(ptl);
2751
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2752 2753
	page_cache_release(new_page);
	page_cache_release(old_page);
2754 2755

	/* Caller expects lock to be held */
2756
	spin_lock(ptl);
N
Nick Piggin 已提交
2757
	return 0;
2758 2759
}

2760
/* Return the pagecache page at a given address within a VMA */
2761 2762
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2763 2764
{
	struct address_space *mapping;
2765
	pgoff_t idx;
2766 2767

	mapping = vma->vm_file->f_mapping;
2768
	idx = vma_hugecache_offset(h, vma, address);
2769 2770 2771 2772

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2773 2774 2775 2776 2777
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2793
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2794 2795
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
2796
{
2797
	struct hstate *h = hstate_vma(vma);
2798
	int ret = VM_FAULT_SIGBUS;
2799
	int anon_rmap = 0;
A
Adam Litke 已提交
2800 2801
	unsigned long size;
	struct page *page;
2802
	pte_t new_pte;
2803
	spinlock_t *ptl;
A
Adam Litke 已提交
2804

2805 2806 2807
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2808
	 * COW. Warn that such a situation has occurred as it may not be obvious
2809 2810
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2811 2812
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2813 2814 2815
		return ret;
	}

A
Adam Litke 已提交
2816 2817 2818 2819
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2820 2821 2822
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2823
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2824 2825
		if (idx >= size)
			goto out;
2826
		page = alloc_huge_page(vma, address, 0);
2827
		if (IS_ERR(page)) {
2828 2829 2830 2831 2832
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2833 2834
			goto out;
		}
A
Andrea Arcangeli 已提交
2835
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2836
		__SetPageUptodate(page);
2837

2838
		if (vma->vm_flags & VM_MAYSHARE) {
2839
			int err;
K
Ken Chen 已提交
2840
			struct inode *inode = mapping->host;
2841 2842 2843 2844 2845 2846 2847 2848

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2849
			ClearPagePrivate(page);
K
Ken Chen 已提交
2850 2851

			spin_lock(&inode->i_lock);
2852
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2853
			spin_unlock(&inode->i_lock);
2854
		} else {
2855
			lock_page(page);
2856 2857 2858 2859
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2860
			anon_rmap = 1;
2861
		}
2862
	} else {
2863 2864 2865 2866 2867 2868
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2869
			ret = VM_FAULT_HWPOISON |
2870
				VM_FAULT_SET_HINDEX(hstate_index(h));
2871 2872
			goto backout_unlocked;
		}
2873
	}
2874

2875 2876 2877 2878 2879 2880
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2881
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2882 2883 2884 2885
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2886

2887 2888
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2889
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2890 2891 2892
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2893
	ret = 0;
2894
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2895 2896
		goto backout;

2897 2898
	if (anon_rmap) {
		ClearPagePrivate(page);
2899
		hugepage_add_new_anon_rmap(page, vma, address);
2900
	}
2901 2902
	else
		page_dup_rmap(page);
2903 2904 2905 2906
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2907
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2908
		/* Optimization, do the COW without a second fault */
2909
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2910 2911
	}

2912
	spin_unlock(ptl);
A
Adam Litke 已提交
2913 2914
	unlock_page(page);
out:
2915
	return ret;
A
Adam Litke 已提交
2916 2917

backout:
2918
	spin_unlock(ptl);
2919
backout_unlocked:
A
Adam Litke 已提交
2920 2921 2922
	unlock_page(page);
	put_page(page);
	goto out;
2923 2924
}

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
#ifdef CONFIG_SMP
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

2960
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2961
			unsigned long address, unsigned int flags)
2962
{
2963
	pte_t *ptep, entry;
2964
	spinlock_t *ptl;
2965
	int ret;
2966 2967
	u32 hash;
	pgoff_t idx;
2968
	struct page *page = NULL;
2969
	struct page *pagecache_page = NULL;
2970
	struct hstate *h = hstate_vma(vma);
2971
	struct address_space *mapping;
2972

2973 2974
	address &= huge_page_mask(h);

2975 2976 2977
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2978
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2979
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
2980 2981
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2982
			return VM_FAULT_HWPOISON_LARGE |
2983
				VM_FAULT_SET_HINDEX(hstate_index(h));
2984 2985
	}

2986
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2987 2988 2989
	if (!ptep)
		return VM_FAULT_OOM;

2990 2991 2992
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

2993 2994 2995 2996 2997
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
2998 2999 3000
	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&htlb_fault_mutex_table[hash]);

3001 3002
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3003
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3004
		goto out_mutex;
3005
	}
3006

N
Nick Piggin 已提交
3007
	ret = 0;
3008

3009 3010 3011 3012 3013 3014 3015 3016
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3017
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3018 3019
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3020
			goto out_mutex;
3021
		}
3022

3023
		if (!(vma->vm_flags & VM_MAYSHARE))
3024 3025 3026 3027
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3028 3029 3030 3031 3032 3033 3034 3035
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
3036
	get_page(page);
3037
	if (page != pagecache_page)
3038 3039
		lock_page(page);

3040 3041
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3042
	/* Check for a racing update before calling hugetlb_cow */
3043
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3044
		goto out_ptl;
3045 3046


3047
	if (flags & FAULT_FLAG_WRITE) {
3048
		if (!huge_pte_write(entry)) {
3049
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3050 3051
					pagecache_page, ptl);
			goto out_ptl;
3052
		}
3053
		entry = huge_pte_mkdirty(entry);
3054 3055
	}
	entry = pte_mkyoung(entry);
3056 3057
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3058
		update_mmu_cache(vma, address, ptep);
3059

3060 3061
out_ptl:
	spin_unlock(ptl);
3062 3063 3064 3065 3066

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3067 3068
	if (page != pagecache_page)
		unlock_page(page);
3069
	put_page(page);
3070

3071
out_mutex:
3072
	mutex_unlock(&htlb_fault_mutex_table[hash]);
3073
	return ret;
3074 3075
}

3076 3077 3078 3079
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3080
{
3081 3082
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3083
	unsigned long remainder = *nr_pages;
3084
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3085 3086

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3087
		pte_t *pte;
3088
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3089
		int absent;
A
Adam Litke 已提交
3090
		struct page *page;
D
David Gibson 已提交
3091

A
Adam Litke 已提交
3092 3093
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3094
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3095
		 * first, for the page indexing below to work.
3096 3097
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3098
		 */
3099
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3100 3101
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3102 3103 3104 3105
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3106 3107 3108 3109
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3110
		 */
H
Hugh Dickins 已提交
3111 3112
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3113 3114
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3115 3116 3117
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3118

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3130 3131
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3132
			int ret;
D
David Gibson 已提交
3133

3134 3135
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3136 3137
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3138
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3139
				continue;
D
David Gibson 已提交
3140

A
Adam Litke 已提交
3141 3142 3143 3144
			remainder = 0;
			break;
		}

3145
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3146
		page = pte_page(huge_ptep_get(pte));
3147
same_page:
3148
		if (pages) {
H
Hugh Dickins 已提交
3149
			pages[i] = mem_map_offset(page, pfn_offset);
3150
			get_page_foll(pages[i]);
3151
		}
D
David Gibson 已提交
3152 3153 3154 3155 3156

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3157
		++pfn_offset;
D
David Gibson 已提交
3158 3159
		--remainder;
		++i;
3160
		if (vaddr < vma->vm_end && remainder &&
3161
				pfn_offset < pages_per_huge_page(h)) {
3162 3163 3164 3165 3166 3167
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3168
		spin_unlock(ptl);
D
David Gibson 已提交
3169
	}
3170
	*nr_pages = remainder;
D
David Gibson 已提交
3171 3172
	*position = vaddr;

H
Hugh Dickins 已提交
3173
	return i ? i : -EFAULT;
D
David Gibson 已提交
3174
}
3175

3176
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3177 3178 3179 3180 3181 3182
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3183
	struct hstate *h = hstate_vma(vma);
3184
	unsigned long pages = 0;
3185 3186 3187 3188

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3189
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3190
	for (; address < end; address += huge_page_size(h)) {
3191
		spinlock_t *ptl;
3192 3193 3194
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3195
		ptl = huge_pte_lock(h, mm, ptep);
3196 3197
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3198
			spin_unlock(ptl);
3199
			continue;
3200
		}
3201
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3202
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3203
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3204
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3205
			set_huge_pte_at(mm, address, ptep, pte);
3206
			pages++;
3207
		}
3208
		spin_unlock(ptl);
3209
	}
3210 3211 3212 3213 3214 3215
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3216
	flush_tlb_range(vma, start, end);
3217
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3218 3219

	return pages << h->order;
3220 3221
}

3222 3223
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3224
					struct vm_area_struct *vma,
3225
					vm_flags_t vm_flags)
3226
{
3227
	long ret, chg;
3228
	struct hstate *h = hstate_inode(inode);
3229
	struct hugepage_subpool *spool = subpool_inode(inode);
3230
	struct resv_map *resv_map;
3231

3232 3233 3234
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3235
	 * without using reserves
3236
	 */
3237
	if (vm_flags & VM_NORESERVE)
3238 3239
		return 0;

3240 3241 3242 3243 3244 3245
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3246
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3247
		resv_map = inode_resv_map(inode);
3248

3249
		chg = region_chg(resv_map, from, to);
3250 3251 3252

	} else {
		resv_map = resv_map_alloc();
3253 3254 3255
		if (!resv_map)
			return -ENOMEM;

3256
		chg = to - from;
3257

3258 3259 3260 3261
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3262 3263 3264 3265
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3266

3267
	/* There must be enough pages in the subpool for the mapping */
3268 3269 3270 3271
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3272 3273

	/*
3274
	 * Check enough hugepages are available for the reservation.
3275
	 * Hand the pages back to the subpool if there are not
3276
	 */
3277
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3278
	if (ret < 0) {
3279
		hugepage_subpool_put_pages(spool, chg);
3280
		goto out_err;
K
Ken Chen 已提交
3281
	}
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3294
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3295
		region_add(resv_map, from, to);
3296
	return 0;
3297
out_err:
J
Joonsoo Kim 已提交
3298 3299
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3300
	return ret;
3301 3302 3303 3304
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3305
	struct hstate *h = hstate_inode(inode);
3306
	struct resv_map *resv_map = inode_resv_map(inode);
3307
	long chg = 0;
3308
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3309

3310
	if (resv_map)
3311
		chg = region_truncate(resv_map, offset);
K
Ken Chen 已提交
3312
	spin_lock(&inode->i_lock);
3313
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3314 3315
	spin_unlock(&inode->i_lock);

3316
	hugepage_subpool_put_pages(spool, (chg - freed));
3317
	hugetlb_acct_memory(h, -(chg - freed));
3318
}
3319

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3379
	spinlock_t *ptl;
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3402 3403
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3404 3405 3406 3407 3408
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
3409
	spin_unlock(ptl);
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3423
 * called with page table lock held.
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3442 3443 3444 3445 3446 3447 3448
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3449 3450
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3532 3533
#ifdef CONFIG_MEMORY_FAILURE

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3548 3549 3550 3551
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3552
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3553 3554 3555
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3556
	int ret = -EBUSY;
3557 3558

	spin_lock(&hugetlb_lock);
3559
	if (is_hugepage_on_freelist(hpage)) {
3560 3561 3562 3563 3564 3565 3566
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3567
		set_page_refcounted(hpage);
3568 3569 3570 3571
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3572
	spin_unlock(&hugetlb_lock);
3573
	return ret;
3574
}
3575
#endif
3576 3577 3578

bool isolate_huge_page(struct page *page, struct list_head *list)
{
3579
	VM_BUG_ON_PAGE(!PageHead(page), page);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
3590
	VM_BUG_ON_PAGE(!PageHead(page), page);
3591 3592 3593 3594 3595
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3596 3597 3598

bool is_hugepage_active(struct page *page)
{
3599
	VM_BUG_ON_PAGE(!PageHuge(page), page);
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}