intel_pm.c 226.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

B
Ben Widawsky 已提交
35
/**
36 37
 * DOC: RC6
 *
B
Ben Widawsky 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58
static void gen9_init_clock_gating(struct drm_device *dev)
59
{
60 61
	struct drm_i915_private *dev_priv = dev->dev_private;

62
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 64 65
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 69 70 71

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 73

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 75 76 77
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
78 79 80 81

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
82 83 84 85
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
86
	struct drm_i915_private *dev_priv = to_i915(dev);
87 88 89

	gen9_init_clock_gating(dev);

90 91 92 93
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

94 95
	/*
	 * FIXME:
96
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 98
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100 101 102 103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
108 109
}

110 111
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
112
	struct drm_i915_private *dev_priv = to_i915(dev);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

177
	dev_priv->ips.r_t = dev_priv->mem_freq;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
209
		dev_priv->ips.c_m = 0;
210
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211
		dev_priv->ips.c_m = 1;
212
	} else {
213
		dev_priv->ips.c_m = 2;
214 215 216
	}
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

255 256
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

317 318 319
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

320
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321
{
322
	struct drm_device *dev = &dev_priv->drm;
323
	u32 val;
324

325
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
326
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327
		POSTING_READ(FW_BLC_SELF_VLV);
328
		dev_priv->wm.vlv.cxsr = enable;
329
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
330
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331
		POSTING_READ(FW_BLC_SELF);
332 333 334 335
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
338 339 340
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
341
		POSTING_READ(FW_BLC_SELF);
342
	} else if (IS_I915GM(dev_priv)) {
343 344 345 346 347
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
348 349 350
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
351
		POSTING_READ(INSTPM);
352 353 354
	} else {
		return;
	}
355

356 357
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
358 359
}

360

361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
375
static const int pessimal_latency_ns = 5000;
376

377 378 379 380 381 382
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
383
	struct drm_i915_private *dev_priv = to_i915(dev);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

432
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
433
{
434
	struct drm_i915_private *dev_priv = to_i915(dev);
435 436 437 438 439 440 441 442 443 444 445 446 447
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

448
static int i830_get_fifo_size(struct drm_device *dev, int plane)
449
{
450
	struct drm_i915_private *dev_priv = to_i915(dev);
451 452 453 454 455 456 457 458 459 460 461 462 463 464
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

465
static int i845_get_fifo_size(struct drm_device *dev, int plane)
466
{
467
	struct drm_i915_private *dev_priv = to_i915(dev);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
483 484 485 486 487
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 489
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
490 491 492 493 494
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 496
};
static const struct intel_watermark_params pineview_cursor_wm = {
497 498 499 500 501
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 503
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
504 505 506 507 508
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
509 510
};
static const struct intel_watermark_params g4x_wm_info = {
511 512 513 514 515
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
516 517
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
518 519 520 521 522
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
523 524
};
static const struct intel_watermark_params i965_cursor_wm_info = {
525 526 527 528 529
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
530 531
};
static const struct intel_watermark_params i945_wm_info = {
532 533 534 535 536
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
537 538
};
static const struct intel_watermark_params i915_wm_info = {
539 540 541 542 543
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
544
};
545
static const struct intel_watermark_params i830_a_wm_info = {
546 547 548 549 550
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
551
};
552 553 554 555 556 557 558
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
559
static const struct intel_watermark_params i845_wm_info = {
560 561 562 563 564
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
565 566 567 568 569 570
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
571
 * @cpp: bytes per pixel
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
587
					int fifo_size, int cpp,
588 589 590 591 592 593 594 595 596 597
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
598
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
599 600 601 602 603 604 605 606 607 608 609 610 611 612
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
613 614 615 616 617 618 619 620 621 622 623

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

624 625 626 627 628 629 630
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

631
	for_each_crtc(dev, crtc) {
632
		if (intel_crtc_active(crtc)) {
633 634 635 636 637 638 639 640 641
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

642
static void pineview_update_wm(struct drm_crtc *unused_crtc)
643
{
644
	struct drm_device *dev = unused_crtc->dev;
645
	struct drm_i915_private *dev_priv = to_i915(dev);
646 647 648 649 650
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

651 652 653 654
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
655 656
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
657
		intel_set_memory_cxsr(dev_priv, false);
658 659 660 661 662
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
663
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
664
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
665
		int clock = adjusted_mode->crtc_clock;
666 667 668 669

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
670
					cpp, latency->display_sr);
671 672
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
673
		reg |= FW_WM(wm, SR);
674 675 676 677 678 679
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
680
					cpp, latency->cursor_sr);
681 682
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
683
		reg |= FW_WM(wm, CURSOR_SR);
684 685 686 687 688
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
689
					cpp, latency->display_hpll_disable);
690 691
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
692
		reg |= FW_WM(wm, HPLL_SR);
693 694 695 696 697
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
698
					cpp, latency->cursor_hpll_disable);
699 700
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
701
		reg |= FW_WM(wm, HPLL_CURSOR);
702 703 704
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

705
		intel_set_memory_cxsr(dev_priv, true);
706
	} else {
707
		intel_set_memory_cxsr(dev_priv, false);
708 709 710 711 712 713 714 715 716 717 718 719 720
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
721
	const struct drm_display_mode *adjusted_mode;
722
	int htotal, hdisplay, clock, cpp;
723 724 725 726
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
727
	if (!intel_crtc_active(crtc)) {
728 729 730 731 732
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

733
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
734
	clock = adjusted_mode->crtc_clock;
735
	htotal = adjusted_mode->crtc_htotal;
736
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
737
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
738 739

	/* Use the small buffer method to calculate plane watermark */
740
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
741 742 743 744 745 746 747 748 749
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
750
	line_time_us = max(htotal * 1000 / clock, 1);
751
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
752
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
780
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
781 782 783 784 785
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
786
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
807
	const struct drm_display_mode *adjusted_mode;
808
	int hdisplay, htotal, cpp, clock;
809 810 811 812 813 814 815 816 817 818 819
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
820
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
821
	clock = adjusted_mode->crtc_clock;
822
	htotal = adjusted_mode->crtc_htotal;
823
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
824
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
825

826
	line_time_us = max(htotal * 1000 / clock, 1);
827
	line_count = (latency_ns / line_time_us + 1000) / 1000;
828
	line_size = hdisplay * cpp;
829 830

	/* Use the minimum of the small and large buffer method for primary */
831
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
832 833 834 835 836 837
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
838
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
839 840 841 842 843 844 845 846
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

847 848 849
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

850 851 852 853 854 855 856 857 858 859 860 861
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

862
	I915_WRITE(DSPFW1,
863 864 865 866
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
867
	I915_WRITE(DSPFW2,
868 869 870
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
871
	I915_WRITE(DSPFW3,
872
		   FW_WM(wm->sr.cursor, CURSOR_SR));
873 874 875

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
876 877
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
878
		I915_WRITE(DSPFW8_CHV,
879 880
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
881
		I915_WRITE(DSPFW9_CHV,
882 883
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
884
		I915_WRITE(DSPHOWM,
885 886 887 888 889 890 891 892 893 894
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
895 896
	} else {
		I915_WRITE(DSPFW7,
897 898
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
899
		I915_WRITE(DSPHOWM,
900 901 902 903 904 905 906
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
907 908
	}

909 910 911 912 913 914
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

915
	POSTING_READ(DSPFW1);
916 917
}

918 919
#undef FW_WM_VLV

920 921 922 923 924 925
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

926 927 928 929
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
930
				   unsigned int cpp,
931 932 933 934 935
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
936
	ret = (ret + 1) * horiz_pixels * cpp;
937 938 939 940 941 942 943
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
944
	struct drm_i915_private *dev_priv = to_i915(dev);
945 946 947 948

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

949 950
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

951 952 953
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
954 955

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
956 957 958 959 960 961 962 963 964
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
965
	int clock, htotal, cpp, width, wm;
966 967 968 969

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

970
	if (!state->base.visible)
971 972
		return 0;

973
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
989
		wm = vlv_wm_method2(clock, htotal, width, cpp,
990 991 992 993 994 995
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1012
		if (state->base.visible) {
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1028
		if (!state->base.visible) {
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1097
static void vlv_compute_wm(struct intel_crtc *crtc)
1098 1099 1100 1101 1102 1103 1104 1105 1106
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1107
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1108
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1109 1110 1111

	wm_state->num_active_planes = 0;

1112
	vlv_compute_fifo(crtc);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1128
		if (!state->base.visible)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1169
					wm_state->wm[level].cursor;
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1188
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1189 1190 1191 1192 1193 1194 1195
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1286 1287 1288 1289 1290 1291
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1292
	wm->level = to_i915(dev)->wm.max_level;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1311 1312 1313
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
1335
	struct drm_i915_private *dev_priv = to_i915(dev);
1336 1337 1338 1339
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1340
	vlv_compute_wm(intel_crtc);
1341 1342
	vlv_merge_wm(dev, &wm);

1343 1344 1345
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1346
		return;
1347
	}
1348 1349 1350 1351 1352 1353 1354 1355 1356

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1357
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1358 1359
		intel_set_memory_cxsr(dev_priv, false);

1360 1361 1362
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1363 1364 1365 1366 1367 1368 1369 1370
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1371
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1383 1384
}

1385 1386
#define single_plane_enabled(mask) is_power_of_2(mask)

1387
static void g4x_update_wm(struct drm_crtc *crtc)
1388
{
1389
	struct drm_device *dev = crtc->dev;
1390
	static const int sr_latency_ns = 12000;
1391
	struct drm_i915_private *dev_priv = to_i915(dev);
1392 1393 1394
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1395
	bool cxsr_enabled;
1396

1397
	if (g4x_compute_wm0(dev, PIPE_A,
1398 1399
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1400
			    &planea_wm, &cursora_wm))
1401
		enabled |= 1 << PIPE_A;
1402

1403
	if (g4x_compute_wm0(dev, PIPE_B,
1404 1405
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1406
			    &planeb_wm, &cursorb_wm))
1407
		enabled |= 1 << PIPE_B;
1408 1409 1410 1411 1412 1413

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1414
			     &plane_sr, &cursor_sr)) {
1415
		cxsr_enabled = true;
1416
	} else {
1417
		cxsr_enabled = false;
1418
		intel_set_memory_cxsr(dev_priv, false);
1419 1420
		plane_sr = cursor_sr = 0;
	}
1421

1422 1423
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1424 1425 1426 1427 1428
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1429 1430 1431 1432
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1433
	I915_WRITE(DSPFW2,
1434
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1435
		   FW_WM(cursora_wm, CURSORA));
1436 1437
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1438
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1439
		   FW_WM(cursor_sr, CURSOR_SR));
1440 1441 1442

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1443 1444
}

1445
static void i965_update_wm(struct drm_crtc *unused_crtc)
1446
{
1447
	struct drm_device *dev = unused_crtc->dev;
1448
	struct drm_i915_private *dev_priv = to_i915(dev);
1449 1450 1451
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1452
	bool cxsr_enabled;
1453 1454 1455 1456 1457 1458

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1459
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1460
		int clock = adjusted_mode->crtc_clock;
1461
		int htotal = adjusted_mode->crtc_htotal;
1462
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1463
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1464 1465 1466
		unsigned long line_time_us;
		int entries;

1467
		line_time_us = max(htotal * 1000 / clock, 1);
1468 1469 1470

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1471
			cpp * hdisplay;
1472 1473 1474 1475 1476 1477 1478 1479 1480
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1481
			cpp * crtc->cursor->state->crtc_w;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1493
		cxsr_enabled = true;
1494
	} else {
1495
		cxsr_enabled = false;
1496
		/* Turn off self refresh if both pipes are enabled */
1497
		intel_set_memory_cxsr(dev_priv, false);
1498 1499 1500 1501 1502 1503
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1504 1505 1506 1507 1508 1509
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1510
	/* update cursor SR watermark */
1511
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1512 1513 1514

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1515 1516
}

1517 1518
#undef FW_WM

1519
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1520
{
1521
	struct drm_device *dev = unused_crtc->dev;
1522
	struct drm_i915_private *dev_priv = to_i915(dev);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
1533
	else if (!IS_GEN2(dev_priv))
1534 1535
		wm_info = &i915_wm_info;
	else
1536
		wm_info = &i830_a_wm_info;
1537 1538 1539

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1540
	if (intel_crtc_active(crtc)) {
1541
		const struct drm_display_mode *adjusted_mode;
1542
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1543
		if (IS_GEN2(dev_priv))
1544 1545
			cpp = 4;

1546
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1547
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548
					       wm_info, fifo_size, cpp,
1549
					       pessimal_latency_ns);
1550
		enabled = crtc;
1551
	} else {
1552
		planea_wm = fifo_size - wm_info->guard_size;
1553 1554 1555 1556
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1557
	if (IS_GEN2(dev_priv))
1558
		wm_info = &i830_bc_wm_info;
1559 1560 1561

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1562
	if (intel_crtc_active(crtc)) {
1563
		const struct drm_display_mode *adjusted_mode;
1564
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1565
		if (IS_GEN2(dev_priv))
1566 1567
			cpp = 4;

1568
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1569
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1570
					       wm_info, fifo_size, cpp,
1571
					       pessimal_latency_ns);
1572 1573 1574 1575
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1576
	} else {
1577
		planeb_wm = fifo_size - wm_info->guard_size;
1578 1579 1580
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1581 1582 1583

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1584
	if (IS_I915GM(dev_priv) && enabled) {
1585
		struct drm_i915_gem_object *obj;
1586

1587
		obj = intel_fb_obj(enabled->primary->state->fb);
1588 1589

		/* self-refresh seems busted with untiled */
1590
		if (!i915_gem_object_is_tiled(obj))
1591 1592 1593
			enabled = NULL;
	}

1594 1595 1596 1597 1598 1599
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1600
	intel_set_memory_cxsr(dev_priv, false);
1601 1602 1603 1604 1605

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1606
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1607
		int clock = adjusted_mode->crtc_clock;
1608
		int htotal = adjusted_mode->crtc_htotal;
1609
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1610
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1611 1612 1613
		unsigned long line_time_us;
		int entries;

1614
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1615 1616
			cpp = 4;

1617
		line_time_us = max(htotal * 1000 / clock, 1);
1618 1619 1620

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1621
			cpp * hdisplay;
1622 1623 1624 1625 1626 1627
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1628
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1629 1630
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1631
		else
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1648 1649
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1650 1651
}

1652
static void i845_update_wm(struct drm_crtc *unused_crtc)
1653
{
1654
	struct drm_device *dev = unused_crtc->dev;
1655
	struct drm_i915_private *dev_priv = to_i915(dev);
1656
	struct drm_crtc *crtc;
1657
	const struct drm_display_mode *adjusted_mode;
1658 1659 1660 1661 1662 1663 1664
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1665
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1666
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1667
				       &i845_wm_info,
1668
				       dev_priv->display.get_fifo_size(dev, 0),
1669
				       4, pessimal_latency_ns);
1670 1671 1672 1673 1674 1675 1676 1677
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1678
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1679
{
1680
	uint32_t pixel_rate;
1681

1682
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1683 1684 1685 1686

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1687
	if (pipe_config->pch_pfit.enabled) {
1688
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1689 1690 1691 1692
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1693 1694 1695 1696 1697 1698 1699 1700

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1701 1702 1703
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1704 1705 1706 1707 1708 1709 1710
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1711
/* latency must be in 0.1us units. */
1712
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1713 1714 1715
{
	uint64_t ret;

1716 1717 1718
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1719
	ret = (uint64_t) pixel_rate * cpp * latency;
1720 1721 1722 1723 1724
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1725
/* latency must be in 0.1us units. */
1726
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1727
			       uint32_t horiz_pixels, uint8_t cpp,
1728 1729 1730 1731
			       uint32_t latency)
{
	uint32_t ret;

1732 1733
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1734 1735
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1736

1737
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1738
	ret = (ret + 1) * horiz_pixels * cpp;
1739 1740 1741 1742
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1743
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1744
			   uint8_t cpp)
1745
{
1746 1747 1748 1749 1750 1751
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1752
	if (WARN_ON(!cpp))
1753 1754 1755 1756
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1757
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1758 1759
}

1760
struct ilk_wm_maximums {
1761 1762 1763 1764 1765 1766
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1767 1768 1769 1770
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1771
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1772
				   const struct intel_plane_state *pstate,
1773 1774
				   uint32_t mem_value,
				   bool is_lp)
1775
{
1776 1777
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1778 1779
	uint32_t method1, method2;

1780
	if (!cstate->base.active || !pstate->base.visible)
1781 1782
		return 0;

1783
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1784 1785 1786 1787

	if (!is_lp)
		return method1;

1788 1789
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1790
				 drm_rect_width(&pstate->base.dst),
1791
				 cpp, mem_value);
1792 1793

	return min(method1, method2);
1794 1795
}

1796 1797 1798 1799
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1800
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1801
				   const struct intel_plane_state *pstate,
1802 1803
				   uint32_t mem_value)
{
1804 1805
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1806 1807
	uint32_t method1, method2;

1808
	if (!cstate->base.active || !pstate->base.visible)
1809 1810
		return 0;

1811
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1812 1813
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1814
				 drm_rect_width(&pstate->base.dst),
1815
				 cpp, mem_value);
1816 1817 1818
	return min(method1, method2);
}

1819 1820 1821 1822
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1823
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1824
				   const struct intel_plane_state *pstate,
1825 1826
				   uint32_t mem_value)
{
1827 1828 1829 1830 1831 1832
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1833
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1834

1835
	if (!cstate->base.active)
1836 1837
		return 0;

1838 1839
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1840
			      width, cpp, mem_value);
1841 1842
}

1843
/* Only for WM_LP. */
1844
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1845
				   const struct intel_plane_state *pstate,
1846
				   uint32_t pri_val)
1847
{
1848 1849
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1850

1851
	if (!cstate->base.active || !pstate->base.visible)
1852 1853
		return 0;

1854
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1855 1856
}

1857 1858
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1859 1860 1861
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1862 1863 1864 1865 1866
		return 768;
	else
		return 512;
}

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1901 1902 1903
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1904
				     const struct intel_wm_config *config,
1905 1906 1907 1908 1909 1910
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1911
	if (is_sprite && !config->sprites_enabled)
1912 1913 1914
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1915
	if (level == 0 || config->num_pipes_active > 1) {
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1927
	if (config->sprites_enabled) {
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1939
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1940 1941 1942 1943
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1944 1945
				      int level,
				      const struct intel_wm_config *config)
1946 1947
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1948
	if (level > 0 && config->num_pipes_active > 1)
1949 1950 1951
		return 64;

	/* otherwise just report max that registers can hold */
1952
	return ilk_cursor_wm_reg_max(dev, level);
1953 1954
}

1955
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1956 1957 1958
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1959
				    struct ilk_wm_maximums *max)
1960
{
1961 1962 1963
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1964
	max->fbc = ilk_fbc_wm_reg_max(dev);
1965 1966
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1977
static bool ilk_validate_wm_level(int level,
1978
				  const struct ilk_wm_maximums *max,
1979
				  struct intel_wm_level *result)
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2018
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2019
				 const struct intel_crtc *intel_crtc,
2020
				 int level,
2021
				 struct intel_crtc_state *cstate,
2022 2023 2024
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2025
				 struct intel_wm_level *result)
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2050 2051 2052
	result->enable = true;
}

2053
static uint32_t
2054
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2055
{
2056 2057
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2058 2059
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2060
	u32 linetime, ips_linetime;
2061

2062 2063 2064 2065
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2066
	if (WARN_ON(intel_state->cdclk == 0))
2067
		return 0;
2068

2069 2070 2071
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2072 2073 2074
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2075
					 intel_state->cdclk);
2076

2077 2078
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2079 2080
}

2081
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2082
{
2083
	struct drm_i915_private *dev_priv = to_i915(dev);
2084

2085
	if (IS_GEN9(dev_priv)) {
2086
		uint32_t val;
2087
		int ret, i;
2088
		int level, max_level = ilk_wm_max_level(dev_priv);
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2144
		/*
2145 2146
		 * WaWmMemoryReadLatency:skl
		 *
2147
		 * punit doesn't take into account the read latency so we need
2148 2149
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2150
		 */
2151 2152 2153 2154 2155
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2156
				wm[level] += 2;
2157
			}
2158 2159
		}

2160
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2161 2162 2163 2164 2165
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2166 2167 2168 2169
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2170 2171 2172 2173 2174 2175 2176
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2177 2178 2179 2180 2181 2182 2183
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2184 2185 2186
	}
}

2187 2188
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2189 2190
{
	/* ILK sprite LP0 latency is 1300 ns */
2191
	if (IS_GEN5(dev_priv))
2192 2193 2194
		wm[0] = 13;
}

2195 2196
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2197 2198
{
	/* ILK cursor LP0 latency is 1300 ns */
2199
	if (IS_GEN5(dev_priv))
2200 2201 2202
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2203
	if (IS_IVYBRIDGE(dev_priv))
2204 2205 2206
		wm[3] *= 2;
}

2207
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2208 2209
{
	/* how many WM levels are we expecting */
2210
	if (INTEL_GEN(dev_priv) >= 9)
2211
		return 7;
2212
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2213
		return 4;
2214
	else if (INTEL_GEN(dev_priv) >= 6)
2215
		return 3;
2216
	else
2217 2218
		return 2;
}
2219

2220
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2221
				   const char *name,
2222
				   const uint16_t wm[8])
2223
{
2224
	int level, max_level = ilk_wm_max_level(dev_priv);
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2235 2236 2237 2238
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2239
		if (IS_GEN9(dev_priv))
2240 2241
			latency *= 10;
		else if (level > 0)
2242 2243 2244 2245 2246 2247 2248 2249
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2250 2251 2252
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2253
	int level, max_level = ilk_wm_max_level(dev_priv);
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2267
	struct drm_i915_private *dev_priv = to_i915(dev);
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2282 2283 2284
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2285 2286
}

2287
static void ilk_setup_wm_latency(struct drm_device *dev)
2288
{
2289
	struct drm_i915_private *dev_priv = to_i915(dev);
2290 2291 2292 2293 2294 2295 2296 2297

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2298
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2299
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2300

2301 2302 2303
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2304

2305
	if (IS_GEN6(dev_priv))
2306
		snb_wm_latency_quirk(dev);
2307 2308
}

2309 2310
static void skl_setup_wm_latency(struct drm_device *dev)
{
2311
	struct drm_i915_private *dev_priv = to_i915(dev);
2312 2313

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2314
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2315 2316
}

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2340
/* Compute new watermarks for the pipe */
2341
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2342
{
2343 2344
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2345
	struct intel_pipe_wm *pipe_wm;
2346
	struct drm_device *dev = state->dev;
2347
	const struct drm_i915_private *dev_priv = to_i915(dev);
2348
	struct intel_plane *intel_plane;
2349
	struct intel_plane_state *pristate = NULL;
2350
	struct intel_plane_state *sprstate = NULL;
2351
	struct intel_plane_state *curstate = NULL;
2352
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2353
	struct ilk_wm_maximums max;
2354

2355
	pipe_wm = &cstate->wm.ilk.optimal;
2356

2357
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2358 2359 2360 2361 2362 2363
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2364 2365

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2366
			pristate = ps;
2367
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2368
			sprstate = ps;
2369
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2370
			curstate = ps;
2371 2372
	}

2373
	pipe_wm->pipe_enabled = cstate->base.active;
2374
	if (sprstate) {
2375 2376 2377 2378
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2379 2380
	}

2381 2382
	usable_level = max_level;

2383
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2384
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2385
		usable_level = 1;
2386 2387

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2388
	if (pipe_wm->sprites_scaled)
2389
		usable_level = 0;
2390

2391
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2392 2393 2394 2395
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2396

2397
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2398
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2399

2400
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2401
		return -EINVAL;
2402 2403 2404 2405

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2406
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2407

2408
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2409
				     pristate, sprstate, curstate, wm);
2410 2411 2412 2413 2414 2415

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2416 2417 2418 2419 2420 2421
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2422
			usable_level = level;
2423 2424
	}

2425
	return 0;
2426 2427
}

2428 2429 2430 2431 2432 2433 2434 2435 2436
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2437
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2438
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2439
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2440 2441 2442 2443 2444 2445

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2446
	*a = newstate->wm.ilk.optimal;
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2475
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2476 2477 2478 2479 2480
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2481 2482 2483 2484 2485 2486 2487 2488 2489
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2490 2491
	ret_wm->enable = true;

2492
	for_each_intel_crtc(dev, intel_crtc) {
2493
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2494 2495 2496 2497
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2498

2499 2500 2501 2502 2503
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2504
		if (!wm->enable)
2505
			ret_wm->enable = false;
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2518
			 const struct intel_wm_config *config,
2519
			 const struct ilk_wm_maximums *max,
2520 2521
			 struct intel_pipe_wm *merged)
{
2522
	struct drm_i915_private *dev_priv = to_i915(dev);
2523
	int level, max_level = ilk_wm_max_level(dev_priv);
2524
	int last_enabled_level = max_level;
2525

2526
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2527
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2528
	    config->num_pipes_active > 1)
2529
		last_enabled_level = 0;
2530

2531 2532
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2533 2534 2535 2536 2537 2538 2539

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2540 2541 2542 2543 2544
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2545 2546 2547 2548 2549 2550

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2551 2552
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2553 2554 2555
			wm->fbc_val = 0;
		}
	}
2556 2557 2558 2559 2560 2561 2562

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2563
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2564
	    intel_fbc_is_active(dev_priv)) {
2565 2566 2567 2568 2569 2570
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2571 2572
}

2573 2574 2575 2576 2577 2578
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2579 2580 2581
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2582
	struct drm_i915_private *dev_priv = to_i915(dev);
2583

2584
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2585 2586 2587 2588 2589
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2590
static void ilk_compute_wm_results(struct drm_device *dev,
2591
				   const struct intel_pipe_wm *merged,
2592
				   enum intel_ddb_partitioning partitioning,
2593
				   struct ilk_wm_values *results)
2594
{
2595 2596
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2597

2598
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2599
	results->partitioning = partitioning;
2600

2601
	/* LP1+ register values */
2602
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2603
		const struct intel_wm_level *r;
2604

2605
		level = ilk_wm_lp_to_level(wm_lp, merged);
2606

2607
		r = &merged->wm[level];
2608

2609 2610 2611 2612 2613
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2614
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2615 2616 2617
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2618 2619 2620
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2621 2622 2623 2624 2625 2626 2627
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2628 2629 2630 2631
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2632 2633 2634 2635 2636
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2637
	}
2638

2639
	/* LP0 register values */
2640
	for_each_intel_crtc(dev, intel_crtc) {
2641
		enum pipe pipe = intel_crtc->pipe;
2642 2643
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2644 2645 2646 2647

		if (WARN_ON(!r->enable))
			continue;

2648
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2649

2650 2651 2652 2653
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2654 2655 2656
	}
}

2657 2658
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2659
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2660 2661
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2662
{
2663
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2664
	int level1 = 0, level2 = 0;
2665

2666 2667 2668 2669 2670
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2671 2672
	}

2673 2674
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2675 2676 2677
			return r2;
		else
			return r1;
2678
	} else if (level1 > level2) {
2679 2680 2681 2682 2683 2684
		return r1;
	} else {
		return r2;
	}
}

2685 2686 2687 2688 2689 2690 2691 2692
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2693
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2694 2695
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2696 2697 2698 2699 2700
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2701
	for_each_pipe(dev_priv, pipe) {
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2745 2746
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2747
{
2748
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2749
	bool changed = false;
2750

2751 2752 2753
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2754
		changed = true;
2755 2756 2757 2758
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2759
		changed = true;
2760 2761 2762 2763
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2764
		changed = true;
2765
	}
2766

2767 2768 2769 2770
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2771

2772 2773 2774 2775 2776 2777 2778
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2779 2780
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2781
{
2782
	struct drm_device *dev = &dev_priv->drm;
2783
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2784 2785 2786
	unsigned int dirty;
	uint32_t val;

2787
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2788 2789 2790 2791 2792
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2793
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2794
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2795
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2796
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2797
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2798 2799
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2800
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2801
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2802
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2803
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2804
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2805 2806
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2807
	if (dirty & WM_DIRTY_DDB) {
2808
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2823 2824
	}

2825
	if (dirty & WM_DIRTY_FBC) {
2826 2827 2828 2829 2830 2831 2832 2833
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2834 2835 2836 2837 2838
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2839 2840 2841 2842 2843
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2844

2845
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2846
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2847
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2848
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2849
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2850
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2851 2852

	dev_priv->wm.hw = *results;
2853 2854
}

2855
bool ilk_disable_lp_wm(struct drm_device *dev)
2856
{
2857
	struct drm_i915_private *dev_priv = to_i915(dev);
2858 2859 2860 2861

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2862
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2863

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2886 2887 2888
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2889 2890 2891 2892 2893 2894 2895 2896
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2897 2898
}

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2911
intel_enable_sagv(struct drm_i915_private *dev_priv)
2912 2913 2914
{
	int ret;

2915 2916 2917 2918
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2934
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2935
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2936
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2937 2938 2939 2940 2941 2942
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2943
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2944 2945 2946 2947
	return 0;
}

static int
2948
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2962
intel_disable_sagv(struct drm_i915_private *dev_priv)
2963 2964 2965
{
	int ret, result;

2966 2967 2968 2969
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2970 2971 2972 2973 2974 2975
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2976
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2988
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
2989
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2990
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2991 2992 2993 2994 2995 2996
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

2997
	dev_priv->sagv_status = I915_SAGV_DISABLED;
2998 2999 3000
	return 0;
}

3001
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3002 3003 3004 3005 3006 3007 3008 3009
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_crtc *crtc;
	enum pipe pipe;
	int level, plane;

3010 3011 3012
	if (!intel_has_sagv(dev_priv))
		return false;

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
	crtc = dev_priv->pipe_to_crtc_mapping[pipe];

	if (crtc->state->mode.flags & DRM_MODE_FLAG_INTERLACE)
		return false;

	for_each_plane(dev_priv, pipe, plane) {
		/* Skip this plane if it's not enabled */
		if (intel_state->wm_results.plane[pipe][plane][0] == 0)
			continue;

		/* Find the highest enabled wm level for this plane */
3037
		for (level = ilk_wm_max_level(dev_priv);
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
		     intel_state->wm_results.plane[pipe][plane][level] == 0; --level)
		     { }

		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
		if (dev_priv->wm.skl_latency[level] < SKL_SAGV_BLOCK_TIME)
			return false;
	}

	return true;
}

3053 3054
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3055
				   const struct intel_crtc_state *cstate,
3056 3057
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3058
{
3059 3060 3061
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3062
	struct drm_crtc *for_crtc = cstate->base.crtc;
3063 3064
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3065

3066
	if (WARN_ON(!state) || !cstate->base.active) {
3067 3068
		alloc->start = 0;
		alloc->end = 0;
3069
		*num_active = hweight32(dev_priv->active_crtcs);
3070 3071 3072
		return;
	}

3073 3074 3075 3076 3077
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3078 3079
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3080 3081 3082

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3083
	/*
3084 3085 3086 3087 3088 3089
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3090
	 */
3091
	if (!intel_state->active_pipe_changes) {
3092
		*alloc = to_intel_crtc(for_crtc)->hw_ddb;
3093
		return;
3094
	}
3095 3096 3097 3098 3099 3100

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3101 3102
}

3103
static unsigned int skl_cursor_allocation(int num_active)
3104
{
3105
	if (num_active == 1)
3106 3107 3108 3109 3110
		return 32;

	return 8;
}

3111 3112 3113 3114
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3115 3116
	if (entry->end)
		entry->end += 1;
3117 3118
}

3119 3120
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3121 3122 3123 3124 3125
{
	enum pipe pipe;
	int plane;
	u32 val;

3126 3127
	memset(ddb, 0, sizeof(*ddb));

3128
	for_each_pipe(dev_priv, pipe) {
3129 3130 3131 3132
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3133 3134
			continue;

3135
		for_each_plane(dev_priv, pipe, plane) {
3136 3137 3138 3139 3140 3141
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3142 3143
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3144 3145

		intel_display_power_put(dev_priv, power_domain);
3146 3147 3148
	}
}

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3171
	if (WARN_ON(!pstate->base.visible))
3172 3173 3174
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3175 3176 3177 3178
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3189
static unsigned int
3190 3191 3192
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3193
{
3194
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3195
	struct drm_framebuffer *fb = pstate->fb;
3196
	uint32_t down_scale_amount, data_rate;
3197
	uint32_t width = 0, height = 0;
3198 3199
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3200
	if (!intel_pstate->base.visible)
3201 3202 3203 3204 3205
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3206

3207 3208
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3209 3210 3211

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3212 3213

	/* for planar format */
3214
	if (format == DRM_FORMAT_NV12) {
3215
		if (y)  /* y-plane data rate */
3216
			data_rate = width * height *
3217
				drm_format_plane_cpp(format, 0);
3218
		else    /* uv-plane data rate */
3219
			data_rate = (width / 2) * (height / 2) *
3220
				drm_format_plane_cpp(format, 1);
3221 3222 3223
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3224 3225
	}

3226 3227 3228
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3229 3230 3231 3232 3233 3234 3235 3236
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3237
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3238
{
3239 3240 3241 3242 3243
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3244
	const struct drm_plane *plane;
3245
	const struct intel_plane *intel_plane;
3246
	struct drm_plane_state *pstate;
3247
	unsigned int rate, total_data_rate = 0;
3248
	int id;
3249 3250 3251 3252
	int i;

	if (WARN_ON(!state))
		return 0;
3253

3254
	/* Calculate and cache data rate for each plane */
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3271
	}
3272

3273 3274 3275
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3276

3277
		/* packed/uv */
3278 3279
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3280 3281 3282 3283 3284
	}

	return total_data_rate;
}

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3307 3308
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3348
static int
3349
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3350 3351
		      struct skl_ddb_allocation *ddb /* out */)
{
3352
	struct drm_atomic_state *state = cstate->base.state;
3353
	struct drm_crtc *crtc = cstate->base.crtc;
3354 3355
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3356
	struct intel_plane *intel_plane;
3357 3358
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3359
	enum pipe pipe = intel_crtc->pipe;
3360
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3361
	uint16_t alloc_size, start, cursor_blocks;
3362 3363
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3364
	unsigned int total_data_rate;
3365 3366
	int num_active;
	int id, i;
3367

3368 3369 3370 3371
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3372 3373 3374
	if (WARN_ON(!state))
		return 0;

3375
	if (!cstate->base.active) {
3376
		alloc->start = alloc->end = 0;
3377 3378 3379
		return 0;
	}

3380
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3381
	alloc_size = skl_ddb_entry_size(alloc);
3382 3383
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3384
		return 0;
3385 3386
	}

3387
	cursor_blocks = skl_cursor_allocation(num_active);
3388 3389
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3390 3391 3392

	alloc_size -= cursor_blocks;

3393
	/* 1. Allocate the mininum required blocks for each active plane */
3394 3395 3396
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3397

3398 3399
		if (intel_plane->pipe != pipe)
			continue;
3400

3401
		if (!to_intel_plane_state(pstate)->base.visible) {
3402 3403 3404 3405 3406 3407 3408 3409
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3410
		}
3411

3412 3413
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3414
	}
3415

3416 3417 3418
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3419 3420
	}

3421
	/*
3422 3423
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3424 3425 3426
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3427
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3428
	if (total_data_rate == 0)
3429
		return 0;
3430

3431
	start = alloc->start;
3432
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3433 3434
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3435
		int id = skl_wm_plane_id(intel_plane);
3436

3437
		data_rate = cstate->wm.skl.plane_data_rate[id];
3438 3439

		/*
3440
		 * allocation for (packed formats) or (uv-plane part of planar format):
3441 3442 3443
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3444
		plane_blocks = minimum[id];
3445 3446
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3447

3448 3449 3450 3451 3452
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3453 3454

		start += plane_blocks;
3455 3456 3457 3458

		/*
		 * allocation for y_plane part of planar format:
		 */
3459 3460 3461 3462 3463
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3464

3465 3466 3467 3468
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3469 3470

		start += y_plane_blocks;
3471 3472
	}

3473
	return 0;
3474 3475
}

3476
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3477 3478
{
	/* TODO: Take into account the scalers once we support them */
3479
	return config->base.adjusted_mode.crtc_clock;
3480 3481 3482 3483
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3484
 * for the read latency) and cpp should always be <= 8, so that
3485 3486 3487
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3488
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3489 3490 3491 3492 3493 3494
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3495
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3496 3497 3498 3499 3500 3501
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3502
			       uint32_t latency, uint32_t plane_blocks_per_line)
3503
{
3504 3505
	uint32_t ret;
	uint32_t wm_intermediate_val;
3506 3507 3508 3509 3510 3511

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3512
				plane_blocks_per_line;
3513 3514 3515 3516

	return ret;
}

3517 3518 3519 3520 3521 3522 3523 3524
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3525
	if (WARN_ON(!pstate->base.visible))
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3541 3542 3543 3544 3545 3546 3547 3548
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3549
{
3550 3551
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3552 3553 3554 3555 3556
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3557
	uint8_t cpp;
3558
	uint32_t width = 0, height = 0;
3559
	uint32_t plane_pixel_rate;
3560
	uint32_t y_tile_minimum, y_min_scanlines;
3561

3562
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3563 3564 3565
		*enabled = false;
		return 0;
	}
3566

3567 3568
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3569

3570
	if (intel_rotation_90_or_270(pstate->rotation))
3571 3572
		swap(width, height);

3573
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3574 3575
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	if (intel_rotation_90_or_270(pstate->rotation)) {
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3591 3592 3593
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3594 3595 3596 3597 3598
		}
	} else {
		y_min_scanlines = 4;
	}

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3612 3613
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3614
				 cstate->base.adjusted_mode.crtc_htotal,
3615
				 latency,
3616
				 plane_blocks_per_line);
3617

3618 3619
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

3620 3621
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3622 3623
		selected_result = max(method2, y_tile_minimum);
	} else {
3624 3625 3626 3627
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3628 3629 3630 3631
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3632

3633 3634
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3635

3636
	if (level >= 1 && level <= 7) {
3637
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3638 3639
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3640
			res_lines += y_min_scanlines;
3641
		} else {
3642
			res_blocks++;
3643
		}
3644
	}
3645

3646 3647
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3664
	}
3665 3666 3667

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3668
	*enabled = true;
3669

3670
	return 0;
3671 3672
}

3673 3674 3675 3676
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3677
		     struct intel_plane *intel_plane,
3678 3679
		     int level,
		     struct skl_wm_level *result)
3680
{
3681
	struct drm_atomic_state *state = cstate->base.state;
3682
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3683 3684
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3685
	uint16_t ddb_blocks;
3686
	enum pipe pipe = intel_crtc->pipe;
3687
	int ret;
L
Lyude 已提交
3688 3689 3690 3691 3692 3693
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3694

3695
	/*
L
Lyude 已提交
3696 3697 3698 3699 3700 3701 3702 3703 3704
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3705
	 */
L
Lyude 已提交
3706 3707
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3708

L
Lyude 已提交
3709
	WARN_ON(!intel_pstate->base.fb);
3710

L
Lyude 已提交
3711
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3712

L
Lyude 已提交
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3723 3724

	return 0;
3725 3726
}

3727
static uint32_t
3728
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3729
{
3730
	if (!cstate->base.active)
3731 3732
		return 0;

3733
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3734
		return 0;
3735

3736 3737
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3738 3739
}

3740
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3741
				      struct skl_wm_level *trans_wm /* out */)
3742
{
3743
	if (!cstate->base.active)
3744
		return;
3745 3746

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3747
	trans_wm->plane_en = false;
3748 3749
}

3750 3751 3752
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3753
{
3754
	struct drm_device *dev = cstate->base.crtc->dev;
3755
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3756 3757
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3758
	int level, max_level = ilk_wm_max_level(dev_priv);
3759
	int ret;
3760

L
Lyude 已提交
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3780
	}
3781
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3782

3783
	return 0;
3784 3785 3786 3787 3788 3789 3790
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
3791
	int level, max_level = ilk_wm_max_level(to_i915(dev));
L
Lyude 已提交
3792
	struct skl_plane_wm *plane_wm;
3793
	enum pipe pipe = intel_crtc->pipe;
3794 3795
	uint32_t temp;
	int i;
3796

L
Lyude 已提交
3797 3798 3799 3800
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		plane_wm = &p_wm->planes[i];

		for (level = 0; level <= max_level; level++) {
3801 3802
			temp = 0;

L
Lyude 已提交
3803
			temp |= plane_wm->wm[level].plane_res_l <<
3804
					PLANE_WM_LINES_SHIFT;
L
Lyude 已提交
3805 3806
			temp |= plane_wm->wm[level].plane_res_b;
			if (plane_wm->wm[level].plane_en)
3807 3808 3809 3810
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}
L
Lyude 已提交
3811
	}
3812

L
Lyude 已提交
3813 3814
	for (level = 0; level <= max_level; level++) {
		plane_wm = &p_wm->planes[PLANE_CURSOR];
3815
		temp = 0;
L
Lyude 已提交
3816 3817 3818
		temp |= plane_wm->wm[level].plane_res_l << PLANE_WM_LINES_SHIFT;
		temp |= plane_wm->wm[level].plane_res_b;
		if (plane_wm->wm[level].plane_en)
3819 3820
			temp |= PLANE_WM_EN;

3821
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3822 3823
	}

3824 3825
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
L
Lyude 已提交
3826
		plane_wm = &p_wm->planes[i];
3827
		temp = 0;
L
Lyude 已提交
3828 3829 3830
		temp |= plane_wm->trans_wm.plane_res_l << PLANE_WM_LINES_SHIFT;
		temp |= plane_wm->trans_wm.plane_res_b;
		if (plane_wm->trans_wm.plane_en)
3831 3832 3833 3834 3835
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

L
Lyude 已提交
3836
	plane_wm = &p_wm->planes[PLANE_CURSOR];
3837
	temp = 0;
L
Lyude 已提交
3838 3839 3840
	temp |= plane_wm->trans_wm.plane_res_l << PLANE_WM_LINES_SHIFT;
	temp |= plane_wm->trans_wm.plane_res_b;
	if (plane_wm->trans_wm.plane_en)
3841 3842
		temp |= PLANE_WM_EN;

3843
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3844 3845
}

3846 3847
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3848 3849 3850 3851 3852 3853 3854 3855
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3856 3857 3858 3859 3860 3861 3862
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			const struct skl_wm_values *wm,
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3863
	int level, max_level = ilk_wm_max_level(dev_priv);
3864 3865 3866 3867 3868 3869 3870
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
		I915_WRITE(PLANE_WM(pipe, plane, level),
			   wm->plane[pipe][plane][level]);
	}
	I915_WRITE(PLANE_WM_TRANS(pipe, plane), wm->plane_trans[pipe][plane]);
3871 3872 3873 3874 3875

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
			    &wm->ddb.plane[pipe][plane]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
			    &wm->ddb.y_plane[pipe][plane]);
3876 3877 3878 3879 3880 3881 3882 3883
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
			 const struct skl_wm_values *wm)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3884
	int level, max_level = ilk_wm_max_level(dev_priv);
3885 3886 3887 3888 3889 3890 3891
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
		I915_WRITE(CUR_WM(pipe, level),
			   wm->plane[pipe][PLANE_CURSOR][level]);
	}
	I915_WRITE(CUR_WM_TRANS(pipe), wm->plane_trans[pipe][PLANE_CURSOR]);
3892

3893 3894
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
			    &wm->ddb.plane[pipe][PLANE_CURSOR]);
3895 3896
}

3897 3898
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3899
{
3900
	return a->start < b->end && b->start < a->end;
3901 3902
}

3903
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3904
				 struct intel_crtc *intel_crtc)
3905
{
3906 3907 3908 3909 3910 3911
	struct drm_crtc *other_crtc;
	struct drm_crtc_state *other_cstate;
	struct intel_crtc *other_intel_crtc;
	const struct skl_ddb_entry *ddb =
		&to_intel_crtc_state(intel_crtc->base.state)->wm.skl.ddb;
	int i;
3912

3913 3914
	for_each_crtc_in_state(state, other_crtc, other_cstate, i) {
		other_intel_crtc = to_intel_crtc(other_crtc);
3915

3916
		if (other_intel_crtc == intel_crtc)
3917 3918
			continue;

3919
		if (skl_ddb_entries_overlap(ddb, &other_intel_crtc->hw_ddb))
3920
			return true;
3921 3922
	}

3923
	return false;
3924 3925
}

3926 3927 3928 3929
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3930
{
3931 3932
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3933
	int ret;
3934

3935 3936 3937
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3938

3939
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3940 3941 3942
		*changed = false;
	else
		*changed = true;
3943

3944
	return 0;
3945 3946
}

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3960
static int
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

	drm_for_each_plane_mask(plane, dev, crtc->state->plane_mask) {
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

3995 3996 3997 3998 3999 4000 4001
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4002
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4003
	uint32_t realloc_pipes = pipes_modified(state);
4004 4005 4006 4007 4008 4009 4010 4011
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4012 4013 4014 4015 4016 4017
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4018 4019
		intel_state->active_pipe_changes = ~0;

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4043
	if (intel_state->active_pipe_changes) {
4044
		realloc_pipes = ~0;
4045 4046
		intel_state->wm_results.dirty_pipes = ~0;
	}
4047

4048 4049 4050 4051 4052 4053
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4054 4055 4056 4057 4058 4059 4060
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4061
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4062 4063
		if (ret)
			return ret;
4064

4065
		ret = skl_ddb_add_affected_planes(cstate);
4066 4067
		if (ret)
			return ret;
4068 4069 4070 4071 4072
	}

	return 0;
}

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->plane[pipe], src->plane[pipe],
	       sizeof(dst->plane[pipe]));
	memcpy(dst->plane_trans[pipe], src->plane_trans[pipe],
	       sizeof(dst->plane_trans[pipe]));

	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4089 4090 4091 4092 4093
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4094 4095 4096
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4097
	bool changed = false;
4098
	int ret, i;
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4113 4114 4115
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4116 4117 4118 4119
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

4152 4153 4154
	return 0;
}

4155 4156 4157 4158
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
4159
	struct drm_i915_private *dev_priv = to_i915(dev);
4160
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4161
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4162
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4163
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4164
	enum pipe pipe = intel_crtc->pipe;
4165

4166
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4167 4168
		return;

4169 4170 4171
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4172

4173
	/*
4174 4175 4176 4177
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4178
	 */
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
	if (crtc->state->active_changed) {
		int plane;

		for (plane = 0; plane < intel_num_planes(intel_crtc); plane++)
			skl_write_plane_wm(intel_crtc, results, plane);

		skl_write_cursor_wm(intel_crtc, results);
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4189

4190 4191
	intel_crtc->hw_ddb = cstate->wm.skl.ddb;

4192
	mutex_unlock(&dev_priv->wm.wm_mutex);
4193 4194
}

4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4213
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4214
{
4215
	struct drm_device *dev = &dev_priv->drm;
4216
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4217
	struct ilk_wm_maximums max;
4218
	struct intel_wm_config config = {};
4219
	struct ilk_wm_values results = {};
4220
	enum intel_ddb_partitioning partitioning;
4221

4222 4223 4224 4225
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4226 4227

	/* 5/6 split only in single pipe config on IVB+ */
4228
	if (INTEL_INFO(dev)->gen >= 7 &&
4229 4230 4231
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4232

4233
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4234
	} else {
4235
		best_lp_wm = &lp_wm_1_2;
4236 4237
	}

4238
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4239
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4240

4241
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4242

4243
	ilk_write_wm_values(dev_priv, &results);
4244 4245
}

4246
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4247
{
4248 4249
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4250

4251
	mutex_lock(&dev_priv->wm.wm_mutex);
4252
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4253 4254 4255
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4256

4257 4258 4259 4260
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4261

4262 4263
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4264
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4265 4266 4267
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4268 4269
}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
L
Lyude 已提交
4281 4282 4283 4284 4285 4286
			active->planes[i].wm[level].plane_en = is_enabled;
			active->planes[i].wm[level].plane_res_b =
				val & PLANE_WM_BLOCKS_MASK;
			active->planes[i].wm[level].plane_res_l =
				(val >> PLANE_WM_LINES_SHIFT) &
				PLANE_WM_LINES_MASK;
4287
		} else {
L
Lyude 已提交
4288 4289 4290 4291 4292 4293 4294
			active->planes[PLANE_CURSOR].wm[level].plane_en =
				is_enabled;
			active->planes[PLANE_CURSOR].wm[level].plane_res_b =
				val & PLANE_WM_BLOCKS_MASK;
			active->planes[PLANE_CURSOR].wm[level].plane_res_l =
				(val >> PLANE_WM_LINES_SHIFT) &
				PLANE_WM_LINES_MASK;
4295 4296 4297
		}
	} else {
		if (!is_cursor) {
L
Lyude 已提交
4298 4299 4300 4301 4302 4303
			active->planes[i].trans_wm.plane_en = is_enabled;
			active->planes[i].trans_wm.plane_res_b =
				val & PLANE_WM_BLOCKS_MASK;
			active->planes[i].trans_wm.plane_res_l =
				(val >> PLANE_WM_LINES_SHIFT) &
				PLANE_WM_LINES_MASK;
4304
		} else {
L
Lyude 已提交
4305 4306 4307 4308 4309 4310 4311
			active->planes[PLANE_CURSOR].trans_wm.plane_en =
				is_enabled;
			active->planes[PLANE_CURSOR].trans_wm.plane_res_b =
				val & PLANE_WM_BLOCKS_MASK;
			active->planes[PLANE_CURSOR].trans_wm.plane_res_l =
				(val >> PLANE_WM_LINES_SHIFT) &
				PLANE_WM_LINES_MASK;
4312 4313 4314 4315 4316 4317 4318
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4319
	struct drm_i915_private *dev_priv = to_i915(dev);
4320 4321
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4322
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4323
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4324 4325 4326 4327
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

4328
	max_level = ilk_wm_max_level(dev_priv);
4329 4330 4331 4332 4333

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4334
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4335 4336 4337 4338
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4339
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4340

4341
	if (!intel_crtc->active)
4342 4343
		return;

4344
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4345

4346
	active->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4347 4348 4349 4350 4351 4352 4353

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4354
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4355 4356 4357 4358 4359 4360 4361 4362
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4363
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4364
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4365 4366

	intel_crtc->wm.active.skl = *active;
4367 4368 4369 4370
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4371
	struct drm_i915_private *dev_priv = to_i915(dev);
4372
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4373 4374
	struct drm_crtc *crtc;

4375
	skl_ddb_get_hw_state(dev_priv, ddb);
4376 4377
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4378

4379 4380 4381 4382 4383 4384 4385
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4386 4387
}

4388 4389 4390
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4391
	struct drm_i915_private *dev_priv = to_i915(dev);
4392
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4393
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4394
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4395
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4396
	enum pipe pipe = intel_crtc->pipe;
4397
	static const i915_reg_t wm0_pipe_reg[] = {
4398 4399 4400 4401 4402 4403
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4404
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4405
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4406

4407 4408
	memset(active, 0, sizeof(*active));

4409
	active->pipe_enabled = intel_crtc->active;
4410 4411

	if (active->pipe_enabled) {
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4426
		int level, max_level = ilk_wm_max_level(dev_priv);
4427 4428 4429 4430 4431 4432 4433 4434 4435

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4436 4437

	intel_crtc->wm.active.ilk = *active;
4438 4439
}

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4557 4558 4559 4560 4561 4562 4563 4564 4565
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4566
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4593 4594
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4595
	struct drm_i915_private *dev_priv = to_i915(dev);
4596
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4597 4598
	struct drm_crtc *crtc;

4599
	for_each_crtc(dev, crtc)
4600 4601 4602 4603 4604 4605 4606
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4607 4608 4609 4610
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4611

4612
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4613 4614
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4615
	else if (IS_IVYBRIDGE(dev_priv))
4616 4617
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4618 4619 4620 4621 4622

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4655
void intel_update_watermarks(struct drm_crtc *crtc)
4656
{
4657
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4658 4659

	if (dev_priv->display.update_wm)
4660
		dev_priv->display.update_wm(crtc);
4661 4662
}

4663
/*
4664 4665 4666 4667 4668 4669 4670 4671
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4672
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4673 4674 4675
{
	u16 rgvswctl;

4676 4677
	assert_spin_locked(&mchdev_lock);

4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4695
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4696
{
4697
	u32 rgvmodectl;
4698 4699
	u8 fmax, fmin, fstart, vstart;

4700 4701
	spin_lock_irq(&mchdev_lock);

4702 4703
	rgvmodectl = I915_READ(MEMMODECTL);

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4724
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4725 4726
		PXVFREQ_PX_SHIFT;

4727 4728
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4729

4730 4731 4732
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4749
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4750
		DRM_ERROR("stuck trying to change perf mode\n");
4751
	mdelay(1);
4752

4753
	ironlake_set_drps(dev_priv, fstart);
4754

4755 4756
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4757
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4758
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4759
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4760 4761

	spin_unlock_irq(&mchdev_lock);
4762 4763
}

4764
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4765
{
4766 4767 4768 4769 4770
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4771 4772 4773 4774 4775 4776 4777 4778 4779

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4780
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4781
	mdelay(1);
4782 4783
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4784
	mdelay(1);
4785

4786
	spin_unlock_irq(&mchdev_lock);
4787 4788
}

4789 4790 4791 4792 4793
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4794
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4795
{
4796
	u32 limits;
4797

4798 4799 4800 4801 4802 4803
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4804
	if (IS_GEN9(dev_priv)) {
4805 4806 4807 4808 4809 4810 4811 4812
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4813 4814 4815 4816

	return limits;
}

4817 4818 4819
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4820 4821
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4822 4823 4824 4825

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4826 4827
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4828 4829 4830 4831
			new_power = BETWEEN;
		break;

	case BETWEEN:
4832 4833
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4834
			new_power = LOW_POWER;
4835 4836
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4837 4838 4839 4840
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4841 4842
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4843 4844 4845 4846
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4847
	if (val <= dev_priv->rps.min_freq_softlimit)
4848
		new_power = LOW_POWER;
4849
	if (val >= dev_priv->rps.max_freq_softlimit)
4850 4851 4852 4853 4854 4855 4856 4857
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4858 4859
		ei_up = 16000;
		threshold_up = 95;
4860 4861

		/* Downclock if less than 85% busy over 32ms */
4862 4863
		ei_down = 32000;
		threshold_down = 85;
4864 4865 4866 4867
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4868 4869
		ei_up = 13000;
		threshold_up = 90;
4870 4871

		/* Downclock if less than 75% busy over 32ms */
4872 4873
		ei_down = 32000;
		threshold_down = 75;
4874 4875 4876 4877
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4878 4879
		ei_up = 10000;
		threshold_up = 85;
4880 4881

		/* Downclock if less than 60% busy over 32ms */
4882 4883
		ei_down = 32000;
		threshold_down = 60;
4884 4885 4886
		break;
	}

4887
	I915_WRITE(GEN6_RP_UP_EI,
4888
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4889
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4890 4891
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4892 4893

	I915_WRITE(GEN6_RP_DOWN_EI,
4894
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4895
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4906

4907
	dev_priv->rps.power = new_power;
4908 4909
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4910 4911 4912
	dev_priv->rps.last_adj = 0;
}

4913 4914 4915 4916 4917
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4918
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4919
	if (val < dev_priv->rps.max_freq_softlimit)
4920
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4921

4922 4923
	mask &= dev_priv->pm_rps_events;

4924
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4925 4926
}

4927 4928 4929
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4930
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4931
{
4932
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4933
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4934 4935
		return;

4936
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4937 4938
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4939

C
Chris Wilson 已提交
4940 4941 4942 4943 4944
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4945

4946
		if (IS_GEN9(dev_priv))
4947 4948
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4949
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4950 4951 4952 4953 4954 4955 4956
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4957
	}
4958 4959 4960 4961

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4962
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4963
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4964

4965 4966
	POSTING_READ(GEN6_RPNSWREQ);

4967
	dev_priv->rps.cur_freq = val;
4968
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4969 4970
}

4971
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4972 4973
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4974 4975
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4976

4977
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4978 4979 4980
		      "Odd GPU freq value\n"))
		val &= ~1;

4981 4982
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4983
	if (val != dev_priv->rps.cur_freq) {
4984
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4985 4986 4987
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4988 4989 4990 4991 4992

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4993
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4994 4995
 *
 * * If Gfx is Idle, then
4996 4997 4998
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4999 5000 5001
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5002
	u32 val = dev_priv->rps.idle_freq;
5003

5004
	if (dev_priv->rps.cur_freq <= val)
5005 5006
		return;

5007 5008 5009
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5010
	valleyview_set_rps(dev_priv, val);
5011
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5012 5013
}

5014 5015 5016 5017 5018 5019 5020 5021
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5022

5023 5024
		gen6_enable_rps_interrupts(dev_priv);

5025 5026 5027 5028 5029
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5030 5031 5032 5033
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5034 5035
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5036 5037 5038 5039 5040 5041 5042
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5043
	mutex_lock(&dev_priv->rps.hw_lock);
5044
	if (dev_priv->rps.enabled) {
5045
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5046
			vlv_set_rps_idle(dev_priv);
5047
		else
5048
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5049
		dev_priv->rps.last_adj = 0;
5050 5051
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5052
	}
5053
	mutex_unlock(&dev_priv->rps.hw_lock);
5054

5055
	spin_lock(&dev_priv->rps.client_lock);
5056 5057
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5058
	spin_unlock(&dev_priv->rps.client_lock);
5059 5060
}

5061
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5062 5063
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5064
{
5065 5066 5067
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5068
	if (!(dev_priv->gt.awake &&
5069
	      dev_priv->rps.enabled &&
5070
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5071
		return;
5072

5073 5074 5075
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5076
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5077 5078
		rps = NULL;

5079 5080 5081 5082 5083
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5084
			schedule_work(&dev_priv->rps.work);
5085 5086
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5087

5088 5089 5090
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5091 5092
		} else
			dev_priv->rps.boosts++;
5093
	}
5094
	spin_unlock(&dev_priv->rps.client_lock);
5095 5096
}

5097
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5098
{
5099 5100
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5101
	else
5102
		gen6_set_rps(dev_priv, val);
5103 5104
}

5105
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5106 5107
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5108
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5109 5110
}

5111
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5112 5113 5114 5115
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5116
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5117 5118
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5119
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5120
	I915_WRITE(GEN6_RP_CONTROL, 0);
5121 5122
}

5123
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5124 5125 5126 5127
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5128
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5129
{
5130 5131
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5132
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5133

5134
	I915_WRITE(GEN6_RC_CONTROL, 0);
5135

5136
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5137 5138
}

5139
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5140
{
5141
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5142 5143 5144 5145 5146
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5147
	if (HAS_RC6p(dev_priv))
5148 5149 5150 5151 5152
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5153 5154

	else
5155 5156
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5157 5158
}

5159
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5160
{
5161
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5162 5163
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5175 5176

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5177
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5178 5179 5180 5181 5182 5183 5184 5185
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5186 5187 5188
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5189
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5190 5191 5192 5193 5194 5195 5196
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5197
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5198 5199 5200
		enable_rc6 = false;
	}

5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5215 5216 5217 5218 5219 5220
		enable_rc6 = false;
	}

	return enable_rc6;
}

5221
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5222
{
5223
	/* No RC6 before Ironlake and code is gone for ilk. */
5224
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5225 5226
		return 0;

5227 5228 5229
	if (!enable_rc6)
		return 0;

5230
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5231 5232 5233 5234
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5235
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5236 5237 5238
	if (enable_rc6 >= 0) {
		int mask;

5239
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5240 5241 5242 5243 5244 5245
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5246 5247 5248
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5249 5250 5251

		return enable_rc6 & mask;
	}
5252

5253
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5254
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5255 5256

	return INTEL_RC6_ENABLE;
5257 5258
}

5259
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5260 5261
{
	/* All of these values are in units of 50MHz */
5262

5263
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5264
	if (IS_BROXTON(dev_priv)) {
5265
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5266 5267 5268 5269
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5270
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5271 5272 5273 5274
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5275
	/* hw_max = RP0 until we check for overclocking */
5276
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5277

5278
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5279 5280
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5281 5282 5283 5284 5285
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5286
			dev_priv->rps.efficient_freq =
5287 5288 5289 5290
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5291 5292
	}

5293
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5294
		/* Store the frequency values in 16.66 MHZ units, which is
5295 5296
		 * the natural hardware unit for SKL
		 */
5297 5298 5299 5300 5301 5302
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5303 5304
}

5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5317
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5318
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5319 5320 5321
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5322
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5323
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5324 5325 5326 5327 5328 5329 5330 5331 5332
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5333
		gen9_disable_rps(dev_priv);
5334 5335 5336 5337
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5338 5339 5340 5341 5342 5343 5344 5345
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5346 5347
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5348 5349 5350
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5351
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5352 5353 5354 5355

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5356
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5357
{
5358
	struct intel_engine_cs *engine;
5359
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5360 5361 5362 5363 5364 5365 5366
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5367
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5368 5369 5370 5371 5372

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5373 5374

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5375
	if (IS_SKYLAKE(dev_priv))
5376 5377 5378
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5379 5380
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5381
	for_each_engine(engine, dev_priv, id)
5382
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5383

5384
	if (HAS_GUC(dev_priv))
5385 5386
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5387 5388
	I915_WRITE(GEN6_RC_SLEEP, 0);

5389 5390 5391 5392
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5393
	/* 3a: Enable RC6 */
5394
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5395
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5396
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5397
	/* WaRsUseTimeoutMode:bxt */
5398
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5399
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5400 5401 5402
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5403 5404
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5405 5406 5407
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5408
	}
Z
Zhe Wang 已提交
5409

5410 5411
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5412
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5413
	 */
5414
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5415 5416 5417 5418
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5419

5420
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5421 5422
}

5423
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5424
{
5425
	struct intel_engine_cs *engine;
5426
	enum intel_engine_id id;
5427
	uint32_t rc6_mask = 0;
5428 5429 5430 5431 5432 5433

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5434
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5435 5436 5437 5438 5439 5440 5441 5442

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5443
	for_each_engine(engine, dev_priv, id)
5444
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5445
	I915_WRITE(GEN6_RC_SLEEP, 0);
5446
	if (IS_BROADWELL(dev_priv))
5447 5448 5449
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5450 5451

	/* 3: Enable RC6 */
5452
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5453
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5454 5455
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5456 5457 5458 5459 5460 5461 5462
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5463 5464

	/* 4 Program defaults and thresholds for RPS*/
5465 5466 5467 5468
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5483 5484

	/* 5: Enable RPS */
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5495
	reset_rps(dev_priv, gen6_set_rps);
5496

5497
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5498 5499
}

5500
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5501
{
5502
	struct intel_engine_cs *engine;
5503
	enum intel_engine_id id;
5504
	u32 rc6vids, rc6_mask = 0;
5505 5506
	u32 gtfifodbg;
	int rc6_mode;
5507
	int ret;
5508

5509
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5510

5511 5512 5513 5514 5515 5516 5517 5518 5519
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5520 5521
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5522 5523 5524 5525
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5526
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5537
	for_each_engine(engine, dev_priv, id)
5538
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5539 5540 5541

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5542
	if (IS_IVYBRIDGE(dev_priv))
5543 5544 5545
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5546
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5547 5548
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5549
	/* Check if we are enabling RC6 */
5550
	rc6_mode = intel_enable_rc6();
5551 5552 5553
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5554
	/* We don't use those on Haswell */
5555
	if (!IS_HASWELL(dev_priv)) {
5556 5557
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5558

5559 5560 5561
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5562

5563
	intel_print_rc6_info(dev_priv, rc6_mask);
5564 5565 5566 5567 5568 5569

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5570 5571
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5572 5573
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5574
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5575
	if (ret)
B
Ben Widawsky 已提交
5576
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5577

5578
	reset_rps(dev_priv, gen6_set_rps);
5579

5580 5581
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5582
	if (IS_GEN6(dev_priv) && ret) {
5583
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5584
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5585 5586 5587 5588 5589 5590 5591 5592 5593
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5594
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5595 5596
}

5597
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5598 5599
{
	int min_freq = 15;
5600 5601
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5602
	unsigned int max_gpu_freq, min_gpu_freq;
5603
	int scaling_factor = 180;
5604
	struct cpufreq_policy *policy;
5605

5606
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5607

5608 5609 5610 5611 5612 5613 5614 5615 5616
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5617
		max_ia_freq = tsc_khz;
5618
	}
5619 5620 5621 5622

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5623
	min_ring_freq = I915_READ(DCLK) & 0xf;
5624 5625
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5626

5627
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5628 5629 5630 5631 5632 5633 5634 5635
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5636 5637 5638 5639 5640
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5641 5642
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5643 5644
		unsigned int ia_freq = 0, ring_freq = 0;

5645
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5646 5647 5648 5649 5650
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5651
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5652 5653
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5654
		} else if (IS_HASWELL(dev_priv)) {
5655
			ring_freq = mult_frac(gpu_freq, 5, 4);
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5672

B
Ben Widawsky 已提交
5673 5674
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5675 5676 5677
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5678 5679 5680
	}
}

5681
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5682 5683 5684
{
	u32 val, rp0;

5685
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5686

5687
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5702
	}
5703 5704 5705

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5719 5720 5721 5722
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5723 5724 5725
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5726 5727 5728
	return rp1;
}

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5740
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5741 5742 5743
{
	u32 val, rp0;

5744
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5757
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5758
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5759
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5760 5761 5762 5763 5764
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5765
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5766
{
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5778 5779
}

5780 5781 5782 5783 5784 5785 5786 5787 5788
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5789 5790 5791 5792 5793 5794 5795 5796 5797

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5798
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5799
{
5800
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5801
	unsigned long pctx_paddr, paddr;
5802 5803 5804 5805 5806
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5807
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5808
		paddr = (dev_priv->mm.stolen_base +
5809
			 (ggtt->stolen_size - pctx_size));
5810 5811 5812 5813

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5814 5815

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5816 5817
}

5818
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5831
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5832
								      pcbr_offset,
5833
								      I915_GTT_OFFSET_NONE,
5834 5835 5836 5837
								      pctx_size);
		goto out;
	}

5838 5839
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5840 5841 5842 5843 5844 5845 5846 5847
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5848
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5849 5850
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5851
		goto out;
5852 5853 5854 5855 5856 5857
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5858
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5859 5860 5861
	dev_priv->vlv_pctx = pctx;
}

5862
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5863 5864 5865 5866
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5867
	i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
5868 5869 5870
	dev_priv->vlv_pctx = NULL;
}

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5882
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5883
{
5884
	u32 val;
5885

5886
	valleyview_setup_pctx(dev_priv);
5887

5888 5889
	vlv_init_gpll_ref_freq(dev_priv);

5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5903
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5904

5905 5906 5907
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5908
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5909 5910 5911 5912
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5913
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5914 5915
			 dev_priv->rps.efficient_freq);

5916 5917
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5918
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5919 5920
			 dev_priv->rps.rp1_freq);

5921 5922
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5923
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5924 5925 5926
			 dev_priv->rps.min_freq);
}

5927
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5928
{
5929
	u32 val;
5930

5931
	cherryview_setup_pctx(dev_priv);
5932

5933 5934
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5935
	mutex_lock(&dev_priv->sb_lock);
5936
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5937
	mutex_unlock(&dev_priv->sb_lock);
5938

5939 5940 5941 5942
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5943
	default:
5944 5945 5946
		dev_priv->mem_freq = 1600;
		break;
	}
5947
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5948

5949 5950 5951
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5952
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5953 5954 5955 5956
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5957
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5958 5959
			 dev_priv->rps.efficient_freq);

5960 5961
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5962
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5963 5964
			 dev_priv->rps.rp1_freq);

5965 5966
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5967
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5968
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5969 5970
			 dev_priv->rps.min_freq);

5971 5972 5973 5974 5975
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5976 5977
}

5978
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5979
{
5980
	valleyview_cleanup_pctx(dev_priv);
5981 5982
}

5983
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5984
{
5985
	struct intel_engine_cs *engine;
5986
	enum intel_engine_id id;
5987
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5988 5989 5990

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5991 5992
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6003
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6004

6005 6006 6007
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6008 6009 6010 6011 6012
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6013
	for_each_engine(engine, dev_priv, id)
6014
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6015 6016
	I915_WRITE(GEN6_RC_SLEEP, 0);

6017 6018
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6030 6031
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6032
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6033 6034 6035

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6036
	/* 4 Program defaults and thresholds for RPS*/
6037
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6048
		   GEN6_RP_MEDIA_IS_GFX |
6049 6050 6051 6052
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6053 6054 6055 6056 6057 6058
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6059 6060
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6061 6062 6063
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6064
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6065 6066
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6067
	reset_rps(dev_priv, valleyview_set_rps);
6068

6069
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6070 6071
}

6072
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6073
{
6074
	struct intel_engine_cs *engine;
6075
	enum intel_engine_id id;
6076
	u32 gtfifodbg, val, rc6_mode = 0;
6077 6078 6079

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6080 6081
	valleyview_check_pctx(dev_priv);

6082 6083
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6084 6085
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6086 6087 6088
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6089
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6090
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6091

6092 6093 6094
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6095
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6115
	for_each_engine(engine, dev_priv, id)
6116
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6117

6118
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6119 6120

	/* allows RC6 residency counter to work */
6121
	I915_WRITE(VLV_COUNTER_CONTROL,
6122 6123
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6124 6125
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6126

6127
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6128
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6129

6130
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6131

6132
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6133

D
Deepak S 已提交
6134 6135 6136 6137 6138 6139
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6140
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6141

6142 6143 6144
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6145
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6146 6147
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6148
	reset_rps(dev_priv, valleyview_set_rps);
6149

6150
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6151 6152
}

6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6182
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6183 6184 6185 6186 6187 6188
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6189 6190
	assert_spin_locked(&mchdev_lock);

6191
	diff1 = now - dev_priv->ips.last_time1;
6192 6193 6194 6195 6196 6197 6198

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6199
		return dev_priv->ips.chipset_power;
6200 6201 6202 6203 6204 6205 6206 6207

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6208 6209
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6210 6211
		diff += total_count;
	} else {
6212
		diff = total_count - dev_priv->ips.last_count1;
6213 6214 6215
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6216 6217
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6228 6229
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6230

6231
	dev_priv->ips.chipset_power = ret;
6232 6233 6234 6235

	return ret;
}

6236 6237 6238 6239
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6240
	if (INTEL_INFO(dev_priv)->gen != 5)
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6279
{
6280 6281 6282
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6283
	if (INTEL_INFO(dev_priv)->is_mobile)
6284 6285 6286
		return vm > 0 ? vm : 0;

	return vd;
6287 6288
}

6289
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6290
{
6291
	u64 now, diff, diffms;
6292 6293
	u32 count;

6294
	assert_spin_locked(&mchdev_lock);
6295

6296 6297 6298
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6299 6300 6301 6302 6303 6304 6305

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6306 6307
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6308 6309
		diff += count;
	} else {
6310
		diff = count - dev_priv->ips.last_count2;
6311 6312
	}

6313 6314
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6315 6316 6317 6318

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6319
	dev_priv->ips.gfx_power = diff;
6320 6321
}

6322 6323
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6324
	if (INTEL_INFO(dev_priv)->gen != 5)
6325 6326
		return;

6327
	spin_lock_irq(&mchdev_lock);
6328 6329 6330

	__i915_update_gfx_val(dev_priv);

6331
	spin_unlock_irq(&mchdev_lock);
6332 6333
}

6334
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6335 6336 6337 6338
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6339 6340
	assert_spin_locked(&mchdev_lock);

6341
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6361
	corr2 = (corr * dev_priv->ips.corr);
6362 6363 6364 6365

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6366
	__i915_update_gfx_val(dev_priv);
6367

6368
	return dev_priv->ips.gfx_power + state2;
6369 6370
}

6371 6372 6373 6374
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6375
	if (INTEL_INFO(dev_priv)->gen != 5)
6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6398
	spin_lock_irq(&mchdev_lock);
6399 6400 6401 6402
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6403 6404
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6405 6406 6407 6408

	ret = chipset_val + graphics_val;

out_unlock:
6409
	spin_unlock_irq(&mchdev_lock);
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6425
	spin_lock_irq(&mchdev_lock);
6426 6427 6428 6429 6430 6431
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6432 6433
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6434 6435

out_unlock:
6436
	spin_unlock_irq(&mchdev_lock);
6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6453
	spin_lock_irq(&mchdev_lock);
6454 6455 6456 6457 6458 6459
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6460 6461
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6462 6463

out_unlock:
6464
	spin_unlock_irq(&mchdev_lock);
6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6479
	spin_lock_irq(&mchdev_lock);
6480 6481
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6482
	spin_unlock_irq(&mchdev_lock);
6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6499
	spin_lock_irq(&mchdev_lock);
6500 6501 6502 6503 6504 6505
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6506
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6507

6508
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6509 6510 6511
		ret = false;

out_unlock:
6512
	spin_unlock_irq(&mchdev_lock);
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6540 6541
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6542
	spin_lock_irq(&mchdev_lock);
6543
	i915_mch_dev = dev_priv;
6544
	spin_unlock_irq(&mchdev_lock);
6545 6546 6547 6548 6549 6550

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6551
	spin_lock_irq(&mchdev_lock);
6552
	i915_mch_dev = NULL;
6553
	spin_unlock_irq(&mchdev_lock);
6554
}
6555

6556
static void intel_init_emon(struct drm_i915_private *dev_priv)
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6573
		I915_WRITE(PEW(i), 0);
6574
	for (i = 0; i < 3; i++)
6575
		I915_WRITE(DEW(i), 0);
6576 6577 6578

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6579
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6600
		I915_WRITE(PXW(i), val);
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6616
		I915_WRITE(PXWL(i), 0);
6617 6618 6619 6620 6621 6622

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6623
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6624 6625
}

6626
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6627
{
6628 6629 6630 6631 6632 6633 6634 6635
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6636

6637
	mutex_lock(&dev_priv->drm.struct_mutex);
6638 6639 6640
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6641 6642 6643 6644
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6645
	else if (INTEL_GEN(dev_priv) >= 6)
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6675 6676 6677
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6678
	mutex_unlock(&dev_priv->rps.hw_lock);
6679
	mutex_unlock(&dev_priv->drm.struct_mutex);
6680 6681

	intel_autoenable_gt_powersave(dev_priv);
6682 6683
}

6684
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6685
{
6686
	if (IS_VALLEYVIEW(dev_priv))
6687
		valleyview_cleanup_gt_powersave(dev_priv);
6688 6689 6690

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6691 6692
}

6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6712 6713 6714 6715
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6716 6717

	gen6_reset_rps_interrupts(dev_priv);
6718 6719
}

6720
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6721
{
6722 6723
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6724

6725
	mutex_lock(&dev_priv->rps.hw_lock);
6726

6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6738
	}
6739 6740 6741

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6742 6743
}

6744
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6745
{
6746 6747 6748
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6749 6750
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6751

6752 6753 6754
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6755

6756
	mutex_lock(&dev_priv->rps.hw_lock);
6757 6758 6759 6760 6761

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6762
	} else if (INTEL_GEN(dev_priv) >= 9) {
6763 6764 6765
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6766
			gen6_update_ring_freq(dev_priv);
6767 6768
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6769
		gen6_update_ring_freq(dev_priv);
6770
	} else if (INTEL_GEN(dev_priv) >= 6) {
6771
		gen6_enable_rps(dev_priv);
6772
		gen6_update_ring_freq(dev_priv);
6773 6774 6775
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6776
	}
6777 6778 6779 6780 6781 6782 6783

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6784
	dev_priv->rps.enabled = true;
6785 6786
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6787

6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6798
	rcs = dev_priv->engine[RCS];
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6851 6852
static void ibx_init_clock_gating(struct drm_device *dev)
{
6853
	struct drm_i915_private *dev_priv = to_i915(dev);
6854 6855 6856 6857 6858 6859 6860 6861 6862

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6863 6864
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6865
	struct drm_i915_private *dev_priv = to_i915(dev);
6866
	enum pipe pipe;
6867

6868
	for_each_pipe(dev_priv, pipe) {
6869 6870 6871
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6872 6873 6874

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6875 6876 6877
	}
}

6878 6879
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6880
	struct drm_i915_private *dev_priv = to_i915(dev);
6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6892
static void ironlake_init_clock_gating(struct drm_device *dev)
6893
{
6894
	struct drm_i915_private *dev_priv = to_i915(dev);
6895
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6896

6897 6898 6899 6900
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6901 6902 6903
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6921
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6922 6923 6924
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6925 6926

	ilk_init_lp_watermarks(dev);
6927 6928 6929 6930 6931 6932 6933 6934

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6935
	if (IS_IRONLAKE_M(dev_priv)) {
6936
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6937 6938 6939 6940 6941 6942 6943 6944
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6945 6946
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6947 6948 6949 6950 6951 6952
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6953

6954
	/* WaDisableRenderCachePipelinedFlush:ilk */
6955 6956
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6957

6958 6959 6960
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6961
	g4x_disable_trickle_feed(dev);
6962

6963 6964 6965 6966 6967
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6968
	struct drm_i915_private *dev_priv = to_i915(dev);
6969
	int pipe;
6970
	uint32_t val;
6971 6972 6973 6974 6975 6976

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6977 6978 6979
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6980 6981
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6982 6983 6984
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6985
	for_each_pipe(dev_priv, pipe) {
6986 6987 6988
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6989
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6990
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6991 6992 6993
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6994 6995
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6996
	/* WADP0ClockGatingDisable */
6997
	for_each_pipe(dev_priv, pipe) {
6998 6999 7000
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7001 7002
}

7003 7004
static void gen6_check_mch_setup(struct drm_device *dev)
{
7005
	struct drm_i915_private *dev_priv = to_i915(dev);
7006 7007 7008
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7009 7010 7011
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7012 7013
}

7014
static void gen6_init_clock_gating(struct drm_device *dev)
7015
{
7016
	struct drm_i915_private *dev_priv = to_i915(dev);
7017
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7018

7019
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7020 7021 7022 7023 7024

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7025
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7026 7027 7028
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7029 7030 7031
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7032 7033 7034
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7035 7036 7037 7038
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7039 7040
	 */
	I915_WRITE(GEN6_GT_MODE,
7041
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7042

7043
	ilk_init_lp_watermarks(dev);
7044 7045

	I915_WRITE(CACHE_MODE_0,
7046
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7062
	 *
7063 7064
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7065 7066 7067 7068 7069
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7070
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7071 7072
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7073

7074 7075 7076 7077 7078 7079 7080 7081
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7082 7083 7084 7085 7086 7087 7088 7089
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7090 7091
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7092 7093 7094 7095 7096 7097 7098
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7099 7100 7101 7102
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7103

7104
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
7105

7106
	cpt_init_clock_gating(dev);
7107 7108

	gen6_check_mch_setup(dev);
7109 7110 7111 7112 7113 7114
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7115
	/*
7116
	 * WaVSThreadDispatchOverride:ivb,vlv
7117 7118 7119 7120
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7121 7122 7123 7124 7125 7126 7127 7128
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7129 7130
static void lpt_init_clock_gating(struct drm_device *dev)
{
7131
	struct drm_i915_private *dev_priv = to_i915(dev);
7132 7133 7134 7135 7136

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7137
	if (HAS_PCH_LPT_LP(dev_priv))
7138 7139 7140
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7141 7142

	/* WADPOClockGatingDisable:hsw */
7143 7144
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7145
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7146 7147
}

7148 7149
static void lpt_suspend_hw(struct drm_device *dev)
{
7150
	struct drm_i915_private *dev_priv = to_i915(dev);
7151

7152
	if (HAS_PCH_LPT_LP(dev_priv)) {
7153 7154 7155 7156 7157 7158 7159
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7183 7184
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7185
	struct drm_i915_private *dev_priv = dev->dev_private;
7186

7187
	gen9_init_clock_gating(dev);
7188 7189 7190 7191 7192

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7193 7194 7195 7196 7197

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7198 7199 7200 7201

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7202 7203
}

7204 7205
static void skylake_init_clock_gating(struct drm_device *dev)
{
7206
	struct drm_i915_private *dev_priv = dev->dev_private;
7207

7208
	gen9_init_clock_gating(dev);
7209 7210 7211 7212

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7213 7214 7215 7216

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7217 7218
}

7219
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7220
{
7221
	struct drm_i915_private *dev_priv = to_i915(dev);
7222
	enum pipe pipe;
B
Ben Widawsky 已提交
7223

7224
	ilk_init_lp_watermarks(dev);
7225

7226
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7227
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7228

7229
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7230 7231 7232
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7233
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7234
	for_each_pipe(dev_priv, pipe) {
7235
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7236
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7237
			   BDW_DPRS_MASK_VBLANK_SRD);
7238
	}
7239

7240 7241 7242 7243 7244
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7245

7246 7247
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7248 7249 7250 7251

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7252

7253 7254
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7255

7256 7257 7258 7259 7260 7261 7262
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7263 7264 7265 7266
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7267
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7268 7269
}

7270 7271
static void haswell_init_clock_gating(struct drm_device *dev)
{
7272
	struct drm_i915_private *dev_priv = to_i915(dev);
7273

7274
	ilk_init_lp_watermarks(dev);
7275

7276 7277 7278 7279 7280
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7281
	/* This is required by WaCatErrorRejectionIssue:hsw */
7282 7283 7284 7285
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7286 7287 7288
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7289

7290 7291 7292
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7293 7294 7295 7296
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7297
	/* WaDisable4x2SubspanOptimization:hsw */
7298 7299
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7300

7301 7302 7303
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7304 7305 7306 7307
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7308 7309
	 */
	I915_WRITE(GEN7_GT_MODE,
7310
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7311

7312 7313 7314 7315
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7316
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7317 7318
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7319 7320 7321
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7322

7323
	lpt_init_clock_gating(dev);
7324 7325
}

7326
static void ivybridge_init_clock_gating(struct drm_device *dev)
7327
{
7328
	struct drm_i915_private *dev_priv = to_i915(dev);
7329
	uint32_t snpcr;
7330

7331
	ilk_init_lp_watermarks(dev);
7332

7333
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7334

7335
	/* WaDisableEarlyCull:ivb */
7336 7337 7338
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7339
	/* WaDisableBackToBackFlipFix:ivb */
7340 7341 7342 7343
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7344
	/* WaDisablePSDDualDispatchEnable:ivb */
7345
	if (IS_IVB_GT1(dev_priv))
7346 7347 7348
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7349 7350 7351
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7352
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7353 7354 7355
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7356
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7357 7358 7359
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7360
		   GEN7_WA_L3_CHICKEN_MODE);
7361
	if (IS_IVB_GT1(dev_priv))
7362 7363
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7364 7365 7366 7367
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7368 7369
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7370
	}
7371

7372
	/* WaForceL3Serialization:ivb */
7373 7374 7375
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7376
	/*
7377
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7378
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7379 7380
	 */
	I915_WRITE(GEN6_UCGCTL2,
7381
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7382

7383
	/* This is required by WaCatErrorRejectionIssue:ivb */
7384 7385 7386 7387
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7388
	g4x_disable_trickle_feed(dev);
7389 7390

	gen7_setup_fixed_func_scheduler(dev_priv);
7391

7392 7393 7394 7395 7396
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7397

7398
	/* WaDisable4x2SubspanOptimization:ivb */
7399 7400
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7401

7402 7403 7404
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7405 7406 7407 7408
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7409 7410
	 */
	I915_WRITE(GEN7_GT_MODE,
7411
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7412

7413 7414 7415 7416
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7417

7418
	if (!HAS_PCH_NOP(dev_priv))
7419
		cpt_init_clock_gating(dev);
7420 7421

	gen6_check_mch_setup(dev);
7422 7423
}

7424
static void valleyview_init_clock_gating(struct drm_device *dev)
7425
{
7426
	struct drm_i915_private *dev_priv = to_i915(dev);
7427

7428
	/* WaDisableEarlyCull:vlv */
7429 7430 7431
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7432
	/* WaDisableBackToBackFlipFix:vlv */
7433 7434 7435 7436
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7437
	/* WaPsdDispatchEnable:vlv */
7438
	/* WaDisablePSDDualDispatchEnable:vlv */
7439
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7440 7441
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7442

7443 7444 7445
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7446
	/* WaForceL3Serialization:vlv */
7447 7448 7449
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7450
	/* WaDisableDopClockGating:vlv */
7451 7452 7453
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7454
	/* This is required by WaCatErrorRejectionIssue:vlv */
7455 7456 7457 7458
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7459 7460
	gen7_setup_fixed_func_scheduler(dev_priv);

7461
	/*
7462
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7463
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7464 7465
	 */
	I915_WRITE(GEN6_UCGCTL2,
7466
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7467

7468 7469 7470 7471 7472
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7473

7474 7475 7476 7477
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7478 7479
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7480

7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7492 7493 7494 7495 7496 7497
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7498
	/*
7499
	 * WaDisableVLVClockGating_VBIIssue:vlv
7500 7501 7502
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7503
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7504 7505
}

7506 7507
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7508
	struct drm_i915_private *dev_priv = to_i915(dev);
7509

7510 7511 7512 7513 7514
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7515 7516 7517 7518

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7519 7520 7521 7522

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7523 7524 7525 7526

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7527

7528 7529 7530 7531 7532 7533 7534
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7535 7536 7537 7538 7539
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7540 7541
}

7542
static void g4x_init_clock_gating(struct drm_device *dev)
7543
{
7544
	struct drm_i915_private *dev_priv = to_i915(dev);
7545 7546 7547 7548 7549 7550 7551 7552 7553 7554
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7555
	if (IS_GM45(dev_priv))
7556 7557
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7558 7559 7560 7561

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7562

7563 7564 7565
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7566
	g4x_disable_trickle_feed(dev);
7567 7568
}

7569
static void crestline_init_clock_gating(struct drm_device *dev)
7570
{
7571
	struct drm_i915_private *dev_priv = to_i915(dev);
7572 7573 7574 7575 7576 7577

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7578 7579
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7580 7581 7582

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7583 7584
}

7585
static void broadwater_init_clock_gating(struct drm_device *dev)
7586
{
7587
	struct drm_i915_private *dev_priv = to_i915(dev);
7588 7589 7590 7591 7592 7593 7594

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7595 7596
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7597 7598 7599

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7600 7601
}

7602
static void gen3_init_clock_gating(struct drm_device *dev)
7603
{
7604
	struct drm_i915_private *dev_priv = to_i915(dev);
7605 7606 7607 7608 7609
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7610 7611 7612

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7613 7614 7615

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7616 7617

	/* interrupts should cause a wake up from C3 */
7618
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7619 7620 7621

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7622 7623 7624

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7625 7626
}

7627
static void i85x_init_clock_gating(struct drm_device *dev)
7628
{
7629
	struct drm_i915_private *dev_priv = to_i915(dev);
7630 7631

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7632 7633 7634 7635

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7636 7637 7638

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7639 7640
}

7641
static void i830_init_clock_gating(struct drm_device *dev)
7642
{
7643
	struct drm_i915_private *dev_priv = to_i915(dev);
7644 7645

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7646 7647 7648 7649

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7650 7651 7652 7653
}

void intel_init_clock_gating(struct drm_device *dev)
{
7654
	struct drm_i915_private *dev_priv = to_i915(dev);
7655

7656
	dev_priv->display.init_clock_gating(dev);
7657 7658
}

7659 7660
void intel_suspend_hw(struct drm_device *dev)
{
7661
	if (HAS_PCH_LPT(to_i915(dev)))
7662 7663 7664
		lpt_suspend_hw(dev);
}

7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7682
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7683
	else if (IS_KABYLAKE(dev_priv))
7684
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7719 7720 7721
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7722
	struct drm_i915_private *dev_priv = to_i915(dev);
7723

7724
	intel_fbc_init(dev_priv);
7725

7726 7727 7728
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
7729
	else if (IS_GEN5(dev_priv))
7730 7731
		i915_ironlake_get_mem_freq(dev);

7732
	/* For FIFO watermark updates */
7733
	if (INTEL_INFO(dev)->gen >= 9) {
7734
		skl_setup_wm_latency(dev);
7735
		dev_priv->display.update_wm = skl_update_wm;
7736
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7737
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7738
		ilk_setup_wm_latency(dev);
7739

7740
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7741
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7742
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7743
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7744
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7745 7746 7747 7748 7749 7750
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7751 7752 7753 7754
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7755
	} else if (IS_CHERRYVIEW(dev_priv)) {
7756 7757
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7758
	} else if (IS_VALLEYVIEW(dev_priv)) {
7759 7760
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7761
	} else if (IS_PINEVIEW(dev)) {
7762
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7763 7764 7765 7766 7767 7768 7769 7770 7771
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7772
			intel_set_memory_cxsr(dev_priv, false);
7773 7774 7775
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7776
	} else if (IS_G4X(dev_priv)) {
7777
		dev_priv->display.update_wm = g4x_update_wm;
7778
	} else if (IS_GEN4(dev_priv)) {
7779
		dev_priv->display.update_wm = i965_update_wm;
7780
	} else if (IS_GEN3(dev_priv)) {
7781 7782
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7783
	} else if (IS_GEN2(dev_priv)) {
7784 7785
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7786
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7787 7788
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7789
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7790 7791 7792
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7793 7794 7795
	}
}

7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7808
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7840
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7841
{
7842 7843
	int status;

7844
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7845

7846 7847 7848 7849 7850 7851
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7852 7853 7854 7855
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7856 7857 7858
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7859

7860 7861 7862
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7863 7864 7865 7866
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7867 7868
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7869

7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7881 7882 7883
	return 0;
}

7884
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7885
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7886
{
7887 7888
	int status;

7889
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7890

7891 7892 7893 7894 7895 7896
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7897 7898 7899 7900
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7901 7902
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7903

7904 7905 7906
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7907 7908 7909 7910
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7911
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7912

7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7924 7925
	return 0;
}
7926

7927 7928
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7929 7930 7931 7932 7933
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7934 7935
}

7936
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7937
{
7938
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7939 7940
}

7941
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7942
{
7943 7944 7945 7946 7947
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7948 7949
}

7950
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7951
{
7952
	/* CHV needs even values */
7953
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7954 7955
}

7956
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7957
{
7958
	if (IS_GEN9(dev_priv))
7959 7960
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7961
	else if (IS_CHERRYVIEW(dev_priv))
7962
		return chv_gpu_freq(dev_priv, val);
7963
	else if (IS_VALLEYVIEW(dev_priv))
7964 7965 7966
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7967 7968
}

7969 7970
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7971
	if (IS_GEN9(dev_priv))
7972 7973
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7974
	else if (IS_CHERRYVIEW(dev_priv))
7975
		return chv_freq_opcode(dev_priv, val);
7976
	else if (IS_VALLEYVIEW(dev_priv))
7977 7978
		return byt_freq_opcode(dev_priv, val);
	else
7979
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7980
}
7981

7982 7983
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7984
	struct drm_i915_gem_request *req;
7985 7986 7987 7988 7989
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7990
	struct drm_i915_gem_request *req = boost->req;
7991

7992
	if (!i915_gem_request_completed(req))
7993
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7994

7995
	i915_gem_request_put(req);
7996 7997 7998
	kfree(boost);
}

7999
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8000 8001 8002
{
	struct request_boost *boost;

8003
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8004 8005
		return;

8006
	if (i915_gem_request_completed(req))
8007 8008
		return;

8009 8010 8011 8012
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8013
	boost->req = i915_gem_request_get(req);
8014 8015

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8016
	queue_work(req->i915->wq, &boost->work);
8017 8018
}

D
Daniel Vetter 已提交
8019
void intel_pm_setup(struct drm_device *dev)
8020
{
8021
	struct drm_i915_private *dev_priv = to_i915(dev);
8022

D
Daniel Vetter 已提交
8023
	mutex_init(&dev_priv->rps.hw_lock);
8024
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8025

8026 8027
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8028
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8029

8030
	dev_priv->pm.suspended = false;
8031
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8032
	atomic_set(&dev_priv->pm.atomic_seq, 0);
8033
}