workqueue.c 106.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/hashtable.h>
45

46
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
47

T
Tejun Heo 已提交
48
enum {
49 50
	/*
	 * worker_pool flags
51
	 *
52
	 * A bound pool is either associated or disassociated with its CPU.
53 54 55 56 57 58
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59
	 * be executing on any CPU.  The pool behaves as an unbound one.
60 61
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
62 63
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
64
	 */
65
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66
	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69

T
Tejun Heo 已提交
70 71 72 73
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
74
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77

78
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79
				  WORKER_CPU_INTENSIVE,
80

81
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82

T
Tejun Heo 已提交
83
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84

85 86 87
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

88 89 90
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
91 92 93 94 95 96 97 98
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
99
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
100
};
L
Linus Torvalds 已提交
101 102

/*
T
Tejun Heo 已提交
103 104
 * Structure fields follow one of the following exclusion rules.
 *
105 106
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
107
 *
108 109 110
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
111
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
112
 *
113 114 115 116
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
117
 *
118 119
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
120
 * W: workqueue_lock protected.
L
Linus Torvalds 已提交
121 122
 */

123
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
124

125 126
struct worker_pool {
	struct global_cwq	*gcwq;		/* I: the owning gcwq */
127
	spinlock_t		lock;		/* the pool lock */
128
	unsigned int		cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
129
	int			id;		/* I: pool ID */
130
	unsigned int		flags;		/* X: flags */
131 132 133

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
134 135

	/* nr_idle includes the ones off idle_list for rebinding */
136 137 138 139 140 141
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

142 143 144 145
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

146
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
147 148 149
	struct ida		worker_ida;	/* L: for worker IDs */
};

150
/*
151 152 153
 * Global per-cpu workqueue.  There's one and only one for each cpu
 * and all works are queued and processed here regardless of their
 * target workqueues.
154 155
 */
struct global_cwq {
156
	struct worker_pool	pools[NR_STD_WORKER_POOLS];
157
						/* normal and highpri pools */
158 159
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
160
/*
161
 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
T
Tejun Heo 已提交
162 163
 * work_struct->data are used for flags and thus cwqs need to be
 * aligned at two's power of the number of flag bits.
L
Linus Torvalds 已提交
164 165
 */
struct cpu_workqueue_struct {
166
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
167
	struct workqueue_struct *wq;		/* I: the owning workqueue */
168 169 170 171
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
172
	int			nr_active;	/* L: nr of active works */
173
	int			max_active;	/* L: max active works */
174
	struct list_head	delayed_works;	/* L: delayed works */
T
Tejun Heo 已提交
175
};
L
Linus Torvalds 已提交
176

177 178 179 180 181 182 183 184 185
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

186 187 188 189 190 191 192 193 194 195
/*
 * All cpumasks are assumed to be always set on UP and thus can't be
 * used to determine whether there's something to be done.
 */
#ifdef CONFIG_SMP
typedef cpumask_var_t mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	\
	cpumask_test_and_set_cpu((cpu), (mask))
#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
196
#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
197 198 199 200 201 202 203 204 205
#define free_mayday_mask(mask)			free_cpumask_var((mask))
#else
typedef unsigned long mayday_mask_t;
#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
#define alloc_mayday_mask(maskp, gfp)		true
#define free_mayday_mask(mask)			do { } while (0)
#endif
L
Linus Torvalds 已提交
206 207 208 209 210 211

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
212
	unsigned int		flags;		/* W: WQ_* flags */
213 214 215 216 217
	union {
		struct cpu_workqueue_struct __percpu	*pcpu;
		struct cpu_workqueue_struct		*single;
		unsigned long				v;
	} cpu_wq;				/* I: cwq's */
T
Tejun Heo 已提交
218
	struct list_head	list;		/* W: list of all workqueues */
219 220 221 222 223 224 225 226 227

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
	atomic_t		nr_cwqs_to_flush; /* flush in progress */
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

228
	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
229 230
	struct worker		*rescuer;	/* I: rescue worker */

231
	int			nr_drainers;	/* W: drain in progress */
232
	int			saved_max_active; /* W: saved cwq max_active */
233
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
234
	struct lockdep_map	lockdep_map;
235
#endif
236
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
237 238
};

239 240
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
241
struct workqueue_struct *system_highpri_wq __read_mostly;
242
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
243
struct workqueue_struct *system_long_wq __read_mostly;
244
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
245
struct workqueue_struct *system_unbound_wq __read_mostly;
246
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
247
struct workqueue_struct *system_freezable_wq __read_mostly;
248
EXPORT_SYMBOL_GPL(system_freezable_wq);
249

250 251 252
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

253
#define for_each_worker_pool(pool, gcwq)				\
254
	for ((pool) = &(gcwq)->pools[0];				\
255
	     (pool) < &(gcwq)->pools[NR_STD_WORKER_POOLS]; (pool)++)
256

257 258
#define for_each_busy_worker(worker, i, pos, pool)			\
	hash_for_each(pool->busy_hash, i, pos, worker, hentry)
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
				  unsigned int sw)
{
	if (cpu < nr_cpu_ids) {
		if (sw & 1) {
			cpu = cpumask_next(cpu, mask);
			if (cpu < nr_cpu_ids)
				return cpu;
		}
		if (sw & 2)
			return WORK_CPU_UNBOUND;
	}
	return WORK_CPU_NONE;
}

static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
				struct workqueue_struct *wq)
{
	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
}

281 282 283 284 285 286 287 288 289 290 291 292 293
/*
 * CPU iterators
 *
 * An extra gcwq is defined for an invalid cpu number
 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 * specific CPU.  The following iterators are similar to
 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 *
 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 *				  WORK_CPU_UNBOUND for unbound workqueues
 */
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
#define for_each_gcwq_cpu(cpu)						\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))

#define for_each_online_gcwq_cpu(cpu)					\
	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))

#define for_each_cwq_cpu(cpu, wq)					\
	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
	     (cpu) < WORK_CPU_NONE;					\
	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))

309 310 311 312
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

313 314 315 316 317
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
353
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
389
	.debug_hint	= work_debug_hint,
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

425 426
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
427
static LIST_HEAD(workqueues);
428
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
429

430 431 432 433 434
/*
 * The almighty global cpu workqueues.  nr_running is the only field
 * which is expected to be used frequently by other cpus via
 * try_to_wake_up().  Put it in a separate cacheline.
 */
435
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
436
static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_STD_WORKER_POOLS]);
437

438
/*
439 440 441
 * Global cpu workqueue and nr_running counter for unbound gcwq.  The pools
 * for online CPUs have POOL_DISASSOCIATED set, and all their workers have
 * WORKER_UNBOUND set.
442 443
 */
static struct global_cwq unbound_global_cwq;
444 445
static atomic_t unbound_pool_nr_running[NR_STD_WORKER_POOLS] = {
	[0 ... NR_STD_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
446
};
447

T
Tejun Heo 已提交
448 449 450 451
/* idr of all pools */
static DEFINE_MUTEX(worker_pool_idr_mutex);
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
452
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
453

454
static int std_worker_pool_pri(struct worker_pool *pool)
455 456 457 458
{
	return pool - pool->gcwq->pools;
}

459 460
static struct global_cwq *get_gcwq(unsigned int cpu)
{
461 462 463 464
	if (cpu != WORK_CPU_UNBOUND)
		return &per_cpu(global_cwq, cpu);
	else
		return &unbound_global_cwq;
465 466
}

T
Tejun Heo 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

	mutex_lock(&worker_pool_idr_mutex);
	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
	mutex_unlock(&worker_pool_idr_mutex);

	return ret;
}

480 481 482 483 484 485 486 487 488
/*
 * Lookup worker_pool by id.  The idr currently is built during boot and
 * never modified.  Don't worry about locking for now.
 */
static struct worker_pool *worker_pool_by_id(int pool_id)
{
	return idr_find(&worker_pool_idr, pool_id);
}

489 490 491 492 493 494 495
static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
{
	struct global_cwq *gcwq = get_gcwq(cpu);

	return &gcwq->pools[highpri];
}

496
static atomic_t *get_pool_nr_running(struct worker_pool *pool)
497
{
498
	int cpu = pool->cpu;
499
	int idx = std_worker_pool_pri(pool);
500

501
	if (cpu != WORK_CPU_UNBOUND)
502
		return &per_cpu(pool_nr_running, cpu)[idx];
503
	else
504
		return &unbound_pool_nr_running[idx];
505 506
}

T
Tejun Heo 已提交
507 508
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
					    struct workqueue_struct *wq)
509
{
510
	if (!(wq->flags & WQ_UNBOUND)) {
511
		if (likely(cpu < nr_cpu_ids))
512 513 514 515
			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
	} else if (likely(cpu == WORK_CPU_UNBOUND))
		return wq->cpu_wq.single;
	return NULL;
516 517
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
533

534
/*
535 536
 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
 * contain the pointer to the queued cwq.  Once execution starts, the flag
537
 * is cleared and the high bits contain OFFQ flags and pool ID.
538
 *
539 540
 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the cwq, pool or clear
541 542
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
543
 *
544 545 546 547
 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
 * corresponding to a work.  Pool is available once the work has been
 * queued anywhere after initialization until it is sync canceled.  cwq is
 * available only while the work item is queued.
548
 *
549 550 551 552
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
553
 */
554 555
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
556
{
557
	BUG_ON(!work_pending(work));
558 559
	atomic_long_set(&work->data, data | flags | work_static(work));
}
560

561 562 563 564 565
static void set_work_cwq(struct work_struct *work,
			 struct cpu_workqueue_struct *cwq,
			 unsigned long extra_flags)
{
	set_work_data(work, (unsigned long)cwq,
566
		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
567 568
}

569 570
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
571
{
572 573 574 575 576 577 578
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
579
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
580
}
581

582
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
583
{
584 585
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
586 587
}

588
static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
589
{
590
	unsigned long data = atomic_long_read(&work->data);
591

592 593 594 595
	if (data & WORK_STRUCT_CWQ)
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
596 597
}

598 599 600 601 602 603 604
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
605
{
606
	unsigned long data = atomic_long_read(&work->data);
607 608
	struct worker_pool *pool;
	int pool_id;
609

610 611
	if (data & WORK_STRUCT_CWQ)
		return ((struct cpu_workqueue_struct *)
612
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
613

614 615
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
616 617
		return NULL;

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	pool = worker_pool_by_id(pool_id);
	WARN_ON_ONCE(!pool);
	return pool;
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
	struct worker_pool *pool = get_work_pool(work);

	return pool ? pool->id : WORK_OFFQ_POOL_NONE;
}

637 638
static void mark_work_canceling(struct work_struct *work)
{
639
	unsigned long pool_id = get_work_pool_id(work);
640

641 642
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
643 644 645 646 647 648 649 650 651
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
}

652
/*
653 654
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
655
 * they're being called with pool->lock held.
656 657
 */

658
static bool __need_more_worker(struct worker_pool *pool)
659
{
660
	return !atomic_read(get_pool_nr_running(pool));
661 662
}

663
/*
664 665
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
666 667 668 669
 *
 * Note that, because unbound workers never contribute to nr_running, this
 * function will always return %true for unbound gcwq as long as the
 * worklist isn't empty.
670
 */
671
static bool need_more_worker(struct worker_pool *pool)
672
{
673
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
674
}
675

676
/* Can I start working?  Called from busy but !running workers. */
677
static bool may_start_working(struct worker_pool *pool)
678
{
679
	return pool->nr_idle;
680 681 682
}

/* Do I need to keep working?  Called from currently running workers. */
683
static bool keep_working(struct worker_pool *pool)
684
{
685
	atomic_t *nr_running = get_pool_nr_running(pool);
686

687
	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
688 689 690
}

/* Do we need a new worker?  Called from manager. */
691
static bool need_to_create_worker(struct worker_pool *pool)
692
{
693
	return need_more_worker(pool) && !may_start_working(pool);
694
}
695

696
/* Do I need to be the manager? */
697
static bool need_to_manage_workers(struct worker_pool *pool)
698
{
699
	return need_to_create_worker(pool) ||
700
		(pool->flags & POOL_MANAGE_WORKERS);
701 702 703
}

/* Do we have too many workers and should some go away? */
704
static bool too_many_workers(struct worker_pool *pool)
705
{
706
	bool managing = pool->flags & POOL_MANAGING_WORKERS;
707 708
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
709

710 711 712 713 714 715 716
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

717
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
718 719
}

720
/*
721 722 723
 * Wake up functions.
 */

724
/* Return the first worker.  Safe with preemption disabled */
725
static struct worker *first_worker(struct worker_pool *pool)
726
{
727
	if (unlikely(list_empty(&pool->idle_list)))
728 729
		return NULL;

730
	return list_first_entry(&pool->idle_list, struct worker, entry);
731 732 733 734
}

/**
 * wake_up_worker - wake up an idle worker
735
 * @pool: worker pool to wake worker from
736
 *
737
 * Wake up the first idle worker of @pool.
738 739
 *
 * CONTEXT:
740
 * spin_lock_irq(pool->lock).
741
 */
742
static void wake_up_worker(struct worker_pool *pool)
743
{
744
	struct worker *worker = first_worker(pool);
745 746 747 748 749

	if (likely(worker))
		wake_up_process(worker->task);
}

750
/**
751 752 753 754 755 756 757 758 759 760 761 762 763 764
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
{
	struct worker *worker = kthread_data(task);

765
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
766
		WARN_ON_ONCE(worker->pool->cpu != cpu);
767
		atomic_inc(get_pool_nr_running(worker->pool));
768
	}
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
struct task_struct *wq_worker_sleeping(struct task_struct *task,
				       unsigned int cpu)
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
790 791
	struct worker_pool *pool;
	atomic_t *nr_running;
792

793 794 795 796 797
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
798
	if (worker->flags & WORKER_NOT_RUNNING)
799 800
		return NULL;

801 802 803
	pool = worker->pool;
	nr_running = get_pool_nr_running(pool);

804 805 806 807 808 809 810 811
	/* this can only happen on the local cpu */
	BUG_ON(cpu != raw_smp_processor_id());

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
812 813 814
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
815
	 * manipulating idle_list, so dereferencing idle_list without pool
816
	 * lock is safe.
817
	 */
818
	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
819
		to_wakeup = first_worker(pool);
820 821 822 823 824
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
825
 * @worker: self
826 827 828
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
829 830 831
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
832
 *
833
 * CONTEXT:
834
 * spin_lock_irq(pool->lock)
835 836 837 838
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
839
	struct worker_pool *pool = worker->pool;
840

841 842
	WARN_ON_ONCE(worker->task != current);

843 844 845 846 847 848 849
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
850
		atomic_t *nr_running = get_pool_nr_running(pool);
851 852 853

		if (wakeup) {
			if (atomic_dec_and_test(nr_running) &&
854
			    !list_empty(&pool->worklist))
855
				wake_up_worker(pool);
856 857 858 859
		} else
			atomic_dec(nr_running);
	}

860 861 862 863
	worker->flags |= flags;
}

/**
864
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
865
 * @worker: self
866 867
 * @flags: flags to clear
 *
868
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
869
 *
870
 * CONTEXT:
871
 * spin_lock_irq(pool->lock)
872 873 874
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
875
	struct worker_pool *pool = worker->pool;
876 877
	unsigned int oflags = worker->flags;

878 879
	WARN_ON_ONCE(worker->task != current);

880
	worker->flags &= ~flags;
881

882 883 884 885 886
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
887 888
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
889
			atomic_inc(get_pool_nr_running(pool));
890 891
}

892 893
/**
 * find_worker_executing_work - find worker which is executing a work
894
 * @pool: pool of interest
895 896
 * @work: work to find worker for
 *
897 898
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
918 919
 *
 * CONTEXT:
920
 * spin_lock_irq(pool->lock).
921 922 923 924
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
925
 */
926
static struct worker *find_worker_executing_work(struct worker_pool *pool,
927
						 struct work_struct *work)
928
{
929 930 931
	struct worker *worker;
	struct hlist_node *tmp;

932
	hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
933 934 935
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
936 937 938
			return worker;

	return NULL;
939 940
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
956
 * spin_lock_irq(pool->lock).
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

982
static void cwq_activate_delayed_work(struct work_struct *work)
983
{
984
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
985 986 987 988 989 990 991

	trace_workqueue_activate_work(work);
	move_linked_works(work, &cwq->pool->worklist, NULL);
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
	cwq->nr_active++;
}

992 993 994 995 996 997 998 999
static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
	struct work_struct *work = list_first_entry(&cwq->delayed_works,
						    struct work_struct, entry);

	cwq_activate_delayed_work(work);
}

1000 1001 1002 1003 1004 1005 1006 1007 1008
/**
 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
 * @cwq: cwq of interest
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
 * decrement nr_in_flight of its cwq and handle workqueue flushing.
 *
 * CONTEXT:
1009
 * spin_lock_irq(pool->lock).
1010
 */
1011
static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1012 1013 1014 1015 1016 1017 1018
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

	cwq->nr_in_flight[color]--;

1019 1020 1021 1022 1023
	cwq->nr_active--;
	if (!list_empty(&cwq->delayed_works)) {
		/* one down, submit a delayed one */
		if (cwq->nr_active < cwq->max_active)
			cwq_activate_first_delayed(cwq);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	}

	/* is flush in progress and are we at the flushing tip? */
	if (likely(cwq->flush_color != color))
		return;

	/* are there still in-flight works? */
	if (cwq->nr_in_flight[color])
		return;

	/* this cwq is done, clear flush_color */
	cwq->flush_color = -1;

	/*
	 * If this was the last cwq, wake up the first flusher.  It
	 * will handle the rest.
	 */
	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
		complete(&cwq->wq->first_flusher->done);
}

1045
/**
1046
 * try_to_grab_pending - steal work item from worklist and disable irq
1047 1048
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1049
 * @flags: place to store irq state
1050 1051 1052 1053 1054 1055 1056
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1057 1058
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1059
 *
1060
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1061 1062 1063
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1064 1065 1066 1067
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1068
 * This function is safe to call from any context including IRQ handler.
1069
 */
1070 1071
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1072
{
1073
	struct worker_pool *pool;
1074

1075 1076
	local_irq_save(*flags);

1077 1078 1079 1080
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1081 1082 1083 1084 1085
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1086 1087 1088 1089 1090
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1091 1092 1093 1094 1095 1096 1097
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1098 1099
	pool = get_work_pool(work);
	if (!pool)
1100
		goto fail;
1101

1102
	spin_lock(&pool->lock);
1103 1104
	if (!list_empty(&work->entry)) {
		/*
1105 1106 1107
		 * This work is queued, but perhaps we locked the wrong
		 * pool.  In that case we must see the new value after
		 * rmb(), see insert_work()->wmb().
1108 1109
		 */
		smp_rmb();
1110
		if (pool == get_work_pool(work)) {
1111
			debug_work_deactivate(work);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

			/*
			 * A delayed work item cannot be grabbed directly
			 * because it might have linked NO_COLOR work items
			 * which, if left on the delayed_list, will confuse
			 * cwq->nr_active management later on and cause
			 * stall.  Make sure the work item is activated
			 * before grabbing.
			 */
			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
				cwq_activate_delayed_work(work);

1124 1125
			list_del_init(&work->entry);
			cwq_dec_nr_in_flight(get_work_cwq(work),
1126
				get_work_color(work));
1127

1128
			spin_unlock(&pool->lock);
1129
			return 1;
1130 1131
		}
	}
1132
	spin_unlock(&pool->lock);
1133 1134 1135 1136 1137
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1138
	return -EAGAIN;
1139 1140
}

T
Tejun Heo 已提交
1141
/**
1142
 * insert_work - insert a work into gcwq
T
Tejun Heo 已提交
1143 1144 1145 1146 1147
 * @cwq: cwq @work belongs to
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1148 1149
 * Insert @work which belongs to @cwq into @gcwq after @head.
 * @extra_flags is or'd to work_struct flags.
T
Tejun Heo 已提交
1150 1151
 *
 * CONTEXT:
1152
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1153
 */
O
Oleg Nesterov 已提交
1154
static void insert_work(struct cpu_workqueue_struct *cwq,
T
Tejun Heo 已提交
1155 1156
			struct work_struct *work, struct list_head *head,
			unsigned int extra_flags)
O
Oleg Nesterov 已提交
1157
{
1158
	struct worker_pool *pool = cwq->pool;
1159

T
Tejun Heo 已提交
1160
	/* we own @work, set data and link */
1161
	set_work_cwq(work, cwq, extra_flags);
1162

1163 1164 1165 1166 1167
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
T
Tejun Heo 已提交
1168

1169
	list_add_tail(&work->entry, head);
1170 1171 1172 1173 1174 1175 1176 1177

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1178 1179
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1180 1181
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/*
 * Test whether @work is being queued from another work executing on the
 * same workqueue.  This is rather expensive and should only be used from
 * cold paths.
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
	unsigned long flags;
	unsigned int cpu;

	for_each_gcwq_cpu(cpu) {
1193 1194
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
1195 1196 1197 1198
		struct worker *worker;
		struct hlist_node *pos;
		int i;

1199
		spin_lock_irqsave(&pool->lock, flags);
1200
		for_each_busy_worker(worker, i, pos, pool) {
1201 1202
			if (worker->task != current)
				continue;
1203
			spin_unlock_irqrestore(&pool->lock, flags);
1204 1205 1206 1207 1208 1209
			/*
			 * I'm @worker, no locking necessary.  See if @work
			 * is headed to the same workqueue.
			 */
			return worker->current_cwq->wq == wq;
		}
1210
		spin_unlock_irqrestore(&pool->lock, flags);
1211 1212 1213 1214
	}
	return false;
}

T
Tejun Heo 已提交
1215
static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1216 1217
			 struct work_struct *work)
{
1218 1219
	bool highpri = wq->flags & WQ_HIGHPRI;
	struct worker_pool *pool;
1220
	struct cpu_workqueue_struct *cwq;
1221
	struct list_head *worklist;
1222
	unsigned int work_flags;
1223
	unsigned int req_cpu = cpu;
1224 1225 1226 1227 1228 1229 1230 1231

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1232

1233
	debug_work_activate(work);
1234

1235
	/* if dying, only works from the same workqueue are allowed */
1236
	if (unlikely(wq->flags & WQ_DRAINING) &&
1237
	    WARN_ON_ONCE(!is_chained_work(wq)))
1238 1239
		return;

1240
	/* determine pool to use */
1241
	if (!(wq->flags & WQ_UNBOUND)) {
1242
		struct worker_pool *last_pool;
1243

1244
		if (cpu == WORK_CPU_UNBOUND)
1245 1246
			cpu = raw_smp_processor_id();

1247
		/*
1248 1249 1250 1251
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1252
		 */
1253
		pool = get_std_worker_pool(cpu, highpri);
1254
		last_pool = get_work_pool(work);
1255

1256
		if (last_pool && last_pool != pool) {
1257 1258
			struct worker *worker;

1259
			spin_lock(&last_pool->lock);
1260

1261
			worker = find_worker_executing_work(last_pool, work);
1262 1263

			if (worker && worker->current_cwq->wq == wq)
1264
				pool = last_pool;
1265 1266
			else {
				/* meh... not running there, queue here */
1267 1268
				spin_unlock(&last_pool->lock);
				spin_lock(&pool->lock);
1269
			}
1270
		} else {
1271
			spin_lock(&pool->lock);
1272
		}
1273
	} else {
1274 1275
		pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
		spin_lock(&pool->lock);
1276 1277
	}

1278 1279
	/* pool determined, get cwq and queue */
	cwq = get_cwq(pool->cpu, wq);
1280
	trace_workqueue_queue_work(req_cpu, cwq, work);
1281

1282
	if (WARN_ON(!list_empty(&work->entry))) {
1283
		spin_unlock(&pool->lock);
1284 1285
		return;
	}
1286

1287
	cwq->nr_in_flight[cwq->work_color]++;
1288
	work_flags = work_color_to_flags(cwq->work_color);
1289 1290

	if (likely(cwq->nr_active < cwq->max_active)) {
1291
		trace_workqueue_activate_work(work);
1292
		cwq->nr_active++;
1293
		worklist = &cwq->pool->worklist;
1294 1295
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1296
		worklist = &cwq->delayed_works;
1297
	}
1298

1299
	insert_work(cwq, work, worklist, work_flags);
1300

1301
	spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
1302 1303
}

1304
/**
1305 1306
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1307 1308 1309
 * @wq: workqueue to use
 * @work: work to queue
 *
1310
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1311
 *
1312 1313
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1314
 */
1315 1316
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1317
{
1318
	bool ret = false;
1319
	unsigned long flags;
1320

1321
	local_irq_save(flags);
1322

1323
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1324
		__queue_work(cpu, wq, work);
1325
		ret = true;
1326
	}
1327

1328
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1329 1330
	return ret;
}
1331
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1332

1333
/**
1334
 * queue_work - queue work on a workqueue
1335 1336 1337
 * @wq: workqueue to use
 * @work: work to queue
 *
1338
 * Returns %false if @work was already on a queue, %true otherwise.
1339
 *
1340 1341
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1342
 */
1343
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1344
{
1345
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1346
}
1347
EXPORT_SYMBOL_GPL(queue_work);
1348

1349
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1350
{
1351
	struct delayed_work *dwork = (struct delayed_work *)__data;
1352
	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
L
Linus Torvalds 已提交
1353

1354
	/* should have been called from irqsafe timer with irq already off */
1355
	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
L
Linus Torvalds 已提交
1356
}
1357
EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1358

1359 1360
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1361
{
1362 1363 1364 1365 1366 1367
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;
	unsigned int lcpu;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1368 1369
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1382
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1383

1384 1385
	/*
	 * This stores cwq for the moment, for the timer_fn.  Note that the
1386
	 * work's pool is preserved to allow reentrance detection for
1387 1388 1389
	 * delayed works.
	 */
	if (!(wq->flags & WQ_UNBOUND)) {
1390
		struct worker_pool *pool = get_work_pool(work);
1391

1392
		/*
1393
		 * If we cannot get the last pool from @work directly,
1394 1395 1396 1397
		 * select the last CPU such that it avoids unnecessarily
		 * triggering non-reentrancy check in __queue_work().
		 */
		lcpu = cpu;
1398 1399
		if (pool)
			lcpu = pool->cpu;
1400
		if (lcpu == WORK_CPU_UNBOUND)
1401 1402 1403 1404 1405 1406 1407
			lcpu = raw_smp_processor_id();
	} else {
		lcpu = WORK_CPU_UNBOUND;
	}

	set_work_cwq(work, get_cwq(lcpu, wq), 0);

1408
	dwork->cpu = cpu;
1409 1410 1411 1412 1413 1414
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1415 1416
}

1417 1418 1419 1420
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1421
 * @dwork: work to queue
1422 1423
 * @delay: number of jiffies to wait before queueing
 *
1424 1425 1426
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1427
 */
1428 1429
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1430
{
1431
	struct work_struct *work = &dwork->work;
1432
	bool ret = false;
1433
	unsigned long flags;
1434

1435 1436
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1437

1438
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1439
		__queue_delayed_work(cpu, wq, dwork, delay);
1440
		ret = true;
1441
	}
1442

1443
	local_irq_restore(flags);
1444 1445
	return ret;
}
1446
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1447

1448 1449 1450 1451 1452 1453
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1454
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1455
 */
1456
bool queue_delayed_work(struct workqueue_struct *wq,
1457 1458
			struct delayed_work *dwork, unsigned long delay)
{
1459
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1460 1461
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1462

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1478
 * This function is safe to call from any context including IRQ handler.
1479 1480 1481 1482 1483 1484 1485
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1486

1487 1488 1489
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1490

1491 1492 1493
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1494
	}
1495 1496

	/* -ENOENT from try_to_grab_pending() becomes %true */
1497 1498
	return ret;
}
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1515

T
Tejun Heo 已提交
1516 1517 1518 1519 1520 1521 1522 1523
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1524
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1525 1526
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1527
{
1528
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1529 1530 1531 1532 1533

	BUG_ON(worker->flags & WORKER_IDLE);
	BUG_ON(!list_empty(&worker->entry) &&
	       (worker->hentry.next || worker->hentry.pprev));

1534 1535
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1536
	pool->nr_idle++;
1537
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1538 1539

	/* idle_list is LIFO */
1540
	list_add(&worker->entry, &pool->idle_list);
1541

1542 1543
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1544

1545
	/*
1546
	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
1547
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1548 1549
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1550
	 */
1551
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1552
		     pool->nr_workers == pool->nr_idle &&
1553
		     atomic_read(get_pool_nr_running(pool)));
T
Tejun Heo 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1563
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1564 1565 1566
 */
static void worker_leave_idle(struct worker *worker)
{
1567
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1568 1569

	BUG_ON(!(worker->flags & WORKER_IDLE));
1570
	worker_clr_flags(worker, WORKER_IDLE);
1571
	pool->nr_idle--;
T
Tejun Heo 已提交
1572 1573 1574
	list_del_init(&worker->entry);
}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/**
 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
 * @worker: self
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
 * This function is to be used by rogue workers and rescuers to bind
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
 * verbatim as it's best effort and blocking and gcwq may be
 * [dis]associated in the meantime.
 *
1591
 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1592
 * binding against %POOL_DISASSOCIATED which is set during
1593 1594 1595
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1596 1597
 *
 * CONTEXT:
1598
 * Might sleep.  Called without any lock but returns with pool->lock
1599 1600 1601 1602 1603 1604 1605
 * held.
 *
 * RETURNS:
 * %true if the associated gcwq is online (@worker is successfully
 * bound), %false if offline.
 */
static bool worker_maybe_bind_and_lock(struct worker *worker)
1606
__acquires(&pool->lock)
1607
{
1608
	struct worker_pool *pool = worker->pool;
1609 1610 1611
	struct task_struct *task = worker->task;

	while (true) {
1612
		/*
1613 1614 1615
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1616
		 * against POOL_DISASSOCIATED.
1617
		 */
1618
		if (!(pool->flags & POOL_DISASSOCIATED))
1619
			set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1620

1621
		spin_lock_irq(&pool->lock);
1622
		if (pool->flags & POOL_DISASSOCIATED)
1623
			return false;
1624
		if (task_cpu(task) == pool->cpu &&
1625
		    cpumask_equal(&current->cpus_allowed,
1626
				  get_cpu_mask(pool->cpu)))
1627
			return true;
1628
		spin_unlock_irq(&pool->lock);
1629

1630 1631 1632 1633 1634 1635
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1636
		cpu_relax();
1637
		cond_resched();
1638 1639 1640
	}
}

1641
/*
1642
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1643
 * list_empty(@worker->entry) before leaving idle and call this function.
1644 1645 1646
 */
static void idle_worker_rebind(struct worker *worker)
{
1647 1648 1649
	/* CPU may go down again inbetween, clear UNBOUND only on success */
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1650

1651 1652
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1653
	spin_unlock_irq(&worker->pool->lock);
1654 1655
}

1656
/*
1657
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1658 1659 1660
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1661
 */
1662
static void busy_worker_rebind_fn(struct work_struct *work)
1663 1664 1665
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1666 1667
	if (worker_maybe_bind_and_lock(worker))
		worker_clr_flags(worker, WORKER_UNBOUND);
1668

1669
	spin_unlock_irq(&worker->pool->lock);
1670 1671
}

1672
/**
1673 1674
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1675
 *
1676
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1677 1678
 * is different for idle and busy ones.
 *
1679 1680 1681 1682
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1683
 *
1684 1685 1686 1687
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1688
 *
1689 1690 1691 1692
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1693
 */
1694
static void rebind_workers(struct worker_pool *pool)
1695
{
1696
	struct worker *worker, *n;
1697 1698 1699
	struct hlist_node *pos;
	int i;

1700 1701
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1702

1703
	/* dequeue and kick idle ones */
1704 1705 1706 1707 1708 1709
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1710

1711 1712 1713 1714 1715 1716
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1717

1718 1719 1720 1721
	/* rebind busy workers */
	for_each_busy_worker(worker, i, pos, pool) {
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1722

1723 1724 1725
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1726

1727
		debug_work_activate(rebind_work);
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
		/*
		 * wq doesn't really matter but let's keep @worker->pool
		 * and @cwq->pool consistent for sanity.
		 */
		if (std_worker_pool_pri(worker->pool))
			wq = system_highpri_wq;
		else
			wq = system_wq;

		insert_work(get_cwq(pool->cpu, wq), rebind_work,
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1741
	}
1742 1743
}

T
Tejun Heo 已提交
1744 1745 1746 1747 1748
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1749 1750
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1751
		INIT_LIST_HEAD(&worker->scheduled);
1752
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1753 1754
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1755
	}
T
Tejun Heo 已提交
1756 1757 1758 1759 1760
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1761
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1762
 *
1763
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1773
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1774
{
1775
	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
T
Tejun Heo 已提交
1776
	struct worker *worker = NULL;
1777
	int id = -1;
T
Tejun Heo 已提交
1778

1779
	spin_lock_irq(&pool->lock);
1780
	while (ida_get_new(&pool->worker_ida, &id)) {
1781
		spin_unlock_irq(&pool->lock);
1782
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1783
			goto fail;
1784
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1785
	}
1786
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1787 1788 1789 1790 1791

	worker = alloc_worker();
	if (!worker)
		goto fail;

1792
	worker->pool = pool;
T
Tejun Heo 已提交
1793 1794
	worker->id = id;

1795
	if (pool->cpu != WORK_CPU_UNBOUND)
1796
		worker->task = kthread_create_on_node(worker_thread,
1797 1798
					worker, cpu_to_node(pool->cpu),
					"kworker/%u:%d%s", pool->cpu, id, pri);
1799 1800
	else
		worker->task = kthread_create(worker_thread, worker,
1801
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1802 1803 1804
	if (IS_ERR(worker->task))
		goto fail;

1805
	if (std_worker_pool_pri(pool))
1806 1807
		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);

1808
	/*
1809
	 * Determine CPU binding of the new worker depending on
1810
	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1811 1812 1813 1814 1815
	 * flag remains stable across this function.  See the comments
	 * above the flag definition for details.
	 *
	 * As an unbound worker may later become a regular one if CPU comes
	 * online, make sure every worker has %PF_THREAD_BOUND set.
1816
	 */
1817
	if (!(pool->flags & POOL_DISASSOCIATED)) {
1818
		kthread_bind(worker->task, pool->cpu);
1819
	} else {
1820
		worker->task->flags |= PF_THREAD_BOUND;
1821
		worker->flags |= WORKER_UNBOUND;
1822
	}
T
Tejun Heo 已提交
1823 1824 1825 1826

	return worker;
fail:
	if (id >= 0) {
1827
		spin_lock_irq(&pool->lock);
1828
		ida_remove(&pool->worker_ida, id);
1829
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
T
Tejun Heo 已提交
1839
 * Make the gcwq aware of @worker and start it.
T
Tejun Heo 已提交
1840 1841
 *
 * CONTEXT:
1842
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1843 1844 1845
 */
static void start_worker(struct worker *worker)
{
1846
	worker->flags |= WORKER_STARTED;
1847
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1848
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1849 1850 1851 1852 1853 1854 1855
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
T
Tejun Heo 已提交
1856 1857 1858
 * Destroy @worker and adjust @gcwq stats accordingly.
 *
 * CONTEXT:
1859
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1860 1861 1862
 */
static void destroy_worker(struct worker *worker)
{
1863
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1864 1865 1866 1867
	int id = worker->id;

	/* sanity check frenzy */
	BUG_ON(worker->current_work);
1868
	BUG_ON(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
1869

T
Tejun Heo 已提交
1870
	if (worker->flags & WORKER_STARTED)
1871
		pool->nr_workers--;
T
Tejun Heo 已提交
1872
	if (worker->flags & WORKER_IDLE)
1873
		pool->nr_idle--;
T
Tejun Heo 已提交
1874 1875

	list_del_init(&worker->entry);
1876
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1877

1878
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1879

T
Tejun Heo 已提交
1880 1881 1882
	kthread_stop(worker->task);
	kfree(worker);

1883
	spin_lock_irq(&pool->lock);
1884
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1885 1886
}

1887
static void idle_worker_timeout(unsigned long __pool)
1888
{
1889
	struct worker_pool *pool = (void *)__pool;
1890

1891
	spin_lock_irq(&pool->lock);
1892

1893
	if (too_many_workers(pool)) {
1894 1895 1896 1897
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1898
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1899 1900 1901
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1902
			mod_timer(&pool->idle_timer, expires);
1903 1904
		else {
			/* it's been idle for too long, wake up manager */
1905
			pool->flags |= POOL_MANAGE_WORKERS;
1906
			wake_up_worker(pool);
1907
		}
1908 1909
	}

1910
	spin_unlock_irq(&pool->lock);
1911
}
1912

1913 1914 1915 1916
static bool send_mayday(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
	struct workqueue_struct *wq = cwq->wq;
1917
	unsigned int cpu;
1918 1919 1920 1921 1922

	if (!(wq->flags & WQ_RESCUER))
		return false;

	/* mayday mayday mayday */
1923
	cpu = cwq->pool->cpu;
1924 1925 1926
	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
	if (cpu == WORK_CPU_UNBOUND)
		cpu = 0;
1927
	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1928 1929 1930 1931
		wake_up_process(wq->rescuer->task);
	return true;
}

1932
static void gcwq_mayday_timeout(unsigned long __pool)
1933
{
1934
	struct worker_pool *pool = (void *)__pool;
1935 1936
	struct work_struct *work;

1937
	spin_lock_irq(&pool->lock);
1938

1939
	if (need_to_create_worker(pool)) {
1940 1941 1942 1943 1944 1945
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1946
		list_for_each_entry(work, &pool->worklist, entry)
1947
			send_mayday(work);
L
Linus Torvalds 已提交
1948
	}
1949

1950
	spin_unlock_irq(&pool->lock);
1951

1952
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1953 1954
}

1955 1956
/**
 * maybe_create_worker - create a new worker if necessary
1957
 * @pool: pool to create a new worker for
1958
 *
1959
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1960 1961
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1962
 * sent to all rescuers with works scheduled on @pool to resolve
1963 1964 1965 1966 1967 1968
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1969
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1970 1971 1972 1973
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1974
 * false if no action was taken and pool->lock stayed locked, true
1975 1976
 * otherwise.
 */
1977
static bool maybe_create_worker(struct worker_pool *pool)
1978 1979
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1980
{
1981
	if (!need_to_create_worker(pool))
1982 1983
		return false;
restart:
1984
	spin_unlock_irq(&pool->lock);
1985

1986
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1987
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1988 1989 1990 1991

	while (true) {
		struct worker *worker;

1992
		worker = create_worker(pool);
1993
		if (worker) {
1994
			del_timer_sync(&pool->mayday_timer);
1995
			spin_lock_irq(&pool->lock);
1996
			start_worker(worker);
1997
			BUG_ON(need_to_create_worker(pool));
1998 1999 2000
			return true;
		}

2001
		if (!need_to_create_worker(pool))
2002
			break;
L
Linus Torvalds 已提交
2003

2004 2005
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
2006

2007
		if (!need_to_create_worker(pool))
2008 2009 2010
			break;
	}

2011
	del_timer_sync(&pool->mayday_timer);
2012
	spin_lock_irq(&pool->lock);
2013
	if (need_to_create_worker(pool))
2014 2015 2016 2017 2018 2019
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
2020
 * @pool: pool to destroy workers for
2021
 *
2022
 * Destroy @pool workers which have been idle for longer than
2023 2024 2025
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
2026
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2027 2028 2029
 * multiple times.  Called only from manager.
 *
 * RETURNS:
2030
 * false if no action was taken and pool->lock stayed locked, true
2031 2032
 * otherwise.
 */
2033
static bool maybe_destroy_workers(struct worker_pool *pool)
2034 2035
{
	bool ret = false;
L
Linus Torvalds 已提交
2036

2037
	while (too_many_workers(pool)) {
2038 2039
		struct worker *worker;
		unsigned long expires;
2040

2041
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2042
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2043

2044
		if (time_before(jiffies, expires)) {
2045
			mod_timer(&pool->idle_timer, expires);
2046
			break;
2047
		}
L
Linus Torvalds 已提交
2048

2049 2050
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2051
	}
2052

2053
	return ret;
2054 2055
}

2056
/**
2057 2058
 * manage_workers - manage worker pool
 * @worker: self
2059
 *
2060 2061 2062 2063 2064 2065 2066
 * Assume the manager role and manage gcwq worker pool @worker belongs
 * to.  At any given time, there can be only zero or one manager per
 * gcwq.  The exclusion is handled automatically by this function.
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2067 2068
 *
 * CONTEXT:
2069
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2070 2071 2072
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2073 2074
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2075
 */
2076
static bool manage_workers(struct worker *worker)
2077
{
2078
	struct worker_pool *pool = worker->pool;
2079
	bool ret = false;
2080

2081
	if (pool->flags & POOL_MANAGING_WORKERS)
2082
		return ret;
2083

2084
	pool->flags |= POOL_MANAGING_WORKERS;
2085

2086 2087 2088 2089 2090 2091
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
	 * lead to idle worker depletion (all become busy thinking someone
	 * else is managing) which in turn can result in deadlock under
2092
	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2093 2094
	 * manager against CPU hotplug.
	 *
2095
	 * assoc_mutex would always be free unless CPU hotplug is in
2096
	 * progress.  trylock first without dropping @pool->lock.
2097
	 */
2098
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2099
		spin_unlock_irq(&pool->lock);
2100
		mutex_lock(&pool->assoc_mutex);
2101 2102
		/*
		 * CPU hotplug could have happened while we were waiting
2103
		 * for assoc_mutex.  Hotplug itself can't handle us
2104 2105 2106
		 * because manager isn't either on idle or busy list, and
		 * @gcwq's state and ours could have deviated.
		 *
2107
		 * As hotplug is now excluded via assoc_mutex, we can
2108 2109 2110 2111 2112 2113 2114 2115
		 * simply try to bind.  It will succeed or fail depending
		 * on @gcwq's current state.  Try it and adjust
		 * %WORKER_UNBOUND accordingly.
		 */
		if (worker_maybe_bind_and_lock(worker))
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2116

2117 2118
		ret = true;
	}
2119

2120
	pool->flags &= ~POOL_MANAGE_WORKERS;
2121 2122

	/*
2123 2124
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2125
	 */
2126 2127
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2128

2129
	pool->flags &= ~POOL_MANAGING_WORKERS;
2130
	mutex_unlock(&pool->assoc_mutex);
2131
	return ret;
2132 2133
}

2134 2135
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2136
 * @worker: self
2137 2138 2139 2140 2141 2142 2143 2144 2145
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2146
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2147
 */
T
Tejun Heo 已提交
2148
static void process_one_work(struct worker *worker, struct work_struct *work)
2149 2150
__releases(&pool->lock)
__acquires(&pool->lock)
2151
{
2152
	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2153
	struct worker_pool *pool = worker->pool;
2154
	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2155
	int work_color;
2156
	struct worker *collision;
2157 2158 2159 2160 2161 2162 2163 2164
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2165 2166 2167
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2168
#endif
2169 2170 2171
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2172
	 * unbound or a disassociated pool.
2173
	 */
2174
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2175
		     !(pool->flags & POOL_DISASSOCIATED) &&
2176
		     raw_smp_processor_id() != pool->cpu);
2177

2178 2179 2180 2181 2182 2183
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2184
	collision = find_worker_executing_work(pool, work);
2185 2186 2187 2188 2189
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2190
	/* claim and dequeue */
2191
	debug_work_deactivate(work);
2192
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2193
	worker->current_work = work;
2194
	worker->current_func = work->func;
2195
	worker->current_cwq = cwq;
2196
	work_color = get_work_color(work);
2197

2198 2199
	list_del_init(&work->entry);

2200 2201 2202 2203 2204 2205 2206
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2207
	/*
2208
	 * Unbound pool isn't concurrency managed and work items should be
2209 2210
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2211 2212
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2213

2214
	/*
2215
	 * Record the last pool and clear PENDING which should be the last
2216
	 * update to @work.  Also, do this inside @pool->lock so that
2217 2218
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2219
	 */
2220
	set_work_pool_and_clear_pending(work, pool->id);
2221

2222
	spin_unlock_irq(&pool->lock);
2223

2224
	lock_map_acquire_read(&cwq->wq->lockdep_map);
2225
	lock_map_acquire(&lockdep_map);
2226
	trace_workqueue_execute_start(work);
2227
	worker->current_func(work);
2228 2229 2230 2231 2232
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2233 2234 2235 2236
	lock_map_release(&lockdep_map);
	lock_map_release(&cwq->wq->lockdep_map);

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2237 2238
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2239 2240
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2241 2242 2243 2244
		debug_show_held_locks(current);
		dump_stack();
	}

2245
	spin_lock_irq(&pool->lock);
2246

2247 2248 2249 2250
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2251
	/* we're done with it, release */
2252
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2253
	worker->current_work = NULL;
2254
	worker->current_func = NULL;
2255
	worker->current_cwq = NULL;
2256
	cwq_dec_nr_in_flight(cwq, work_color);
2257 2258
}

2259 2260 2261 2262 2263 2264 2265 2266 2267
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2268
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2269 2270 2271
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2272
{
2273 2274
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2275
						struct work_struct, entry);
T
Tejun Heo 已提交
2276
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2277 2278 2279
	}
}

T
Tejun Heo 已提交
2280 2281
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2282
 * @__worker: self
T
Tejun Heo 已提交
2283
 *
2284 2285 2286 2287 2288
 * The gcwq worker thread function.  There's a single dynamic pool of
 * these per each cpu.  These workers process all works regardless of
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2289
 */
T
Tejun Heo 已提交
2290
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2291
{
T
Tejun Heo 已提交
2292
	struct worker *worker = __worker;
2293
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2294

2295 2296
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2297
woke_up:
2298
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2299

2300 2301
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2302
		spin_unlock_irq(&pool->lock);
2303

2304
		/* if DIE is set, destruction is requested */
2305 2306 2307 2308 2309
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2310
		/* otherwise, rebind */
2311 2312
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2313
	}
2314

T
Tejun Heo 已提交
2315
	worker_leave_idle(worker);
2316
recheck:
2317
	/* no more worker necessary? */
2318
	if (!need_more_worker(pool))
2319 2320 2321
		goto sleep;

	/* do we need to manage? */
2322
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2323 2324
		goto recheck;

T
Tejun Heo 已提交
2325 2326 2327 2328 2329 2330 2331
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
	BUG_ON(!list_empty(&worker->scheduled));

2332 2333 2334 2335 2336 2337 2338 2339
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2340
		struct work_struct *work =
2341
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2342 2343 2344 2345 2346 2347
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2348
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2349 2350 2351
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2352
		}
2353
	} while (keep_working(pool));
2354 2355

	worker_set_flags(worker, WORKER_PREP, false);
2356
sleep:
2357
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2358
		goto recheck;
2359

T
Tejun Heo 已提交
2360
	/*
2361 2362 2363 2364 2365
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2366 2367 2368
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2369
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2370 2371
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2372 2373
}

2374 2375
/**
 * rescuer_thread - the rescuer thread function
2376
 * @__rescuer: self
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
 * Regular work processing on a gcwq may block trying to create a new
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
 * When such condition is possible, the gcwq summons rescuers of all
 * workqueues which have works queued on the gcwq and let them process
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2393
static int rescuer_thread(void *__rescuer)
2394
{
2395 2396
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2397
	struct list_head *scheduled = &rescuer->scheduled;
2398
	bool is_unbound = wq->flags & WQ_UNBOUND;
2399 2400 2401
	unsigned int cpu;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2402 2403 2404 2405 2406 2407

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2408 2409 2410
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2411 2412
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2413
		rescuer->task->flags &= ~PF_WQ_WORKER;
2414
		return 0;
2415
	}
2416

2417 2418 2419 2420
	/*
	 * See whether any cpu is asking for help.  Unbounded
	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
	 */
2421
	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2422 2423
		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2424
		struct worker_pool *pool = cwq->pool;
2425 2426 2427
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2428
		mayday_clear_cpu(cpu, wq->mayday_mask);
2429 2430

		/* migrate to the target cpu if possible */
2431
		rescuer->pool = pool;
2432 2433 2434 2435 2436 2437 2438
		worker_maybe_bind_and_lock(rescuer);

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
		BUG_ON(!list_empty(&rescuer->scheduled));
2439
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2440 2441 2442 2443
			if (get_work_cwq(work) == cwq)
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2444 2445

		/*
2446
		 * Leave this pool.  If keep_working() is %true, notify a
2447 2448 2449
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2450 2451
		if (keep_working(pool))
			wake_up_worker(pool);
2452

2453
		spin_unlock_irq(&pool->lock);
2454 2455
	}

2456 2457
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2458 2459
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2460 2461
}

O
Oleg Nesterov 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2473 2474 2475 2476
/**
 * insert_wq_barrier - insert a barrier work
 * @cwq: cwq to insert barrier into
 * @barr: wq_barrier to insert
2477 2478
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2479
 *
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
 * underneath us, so we can't reliably determine cwq from @target.
T
Tejun Heo 已提交
2493 2494
 *
 * CONTEXT:
2495
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2496
 */
2497
static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2498 2499
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2500
{
2501 2502 2503
	struct list_head *head;
	unsigned int linked = 0;

2504
	/*
2505
	 * debugobject calls are safe here even with pool->lock locked
2506 2507 2508 2509
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2510
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2511
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2512
	init_completion(&barr->done);
2513

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2529
	debug_work_activate(&barr->work);
2530 2531
	insert_work(cwq, &barr->work, head,
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2532 2533
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
/**
 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
 * Prepare cwqs for workqueue flushing.
 *
 * If @flush_color is non-negative, flush_color on all cwqs should be
 * -1.  If no cwq has in-flight commands at the specified color, all
 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
 * has in flight commands, its cwq->flush_color is set to
 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
 * If @work_color is non-negative, all cwqs should have the same
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2567
{
2568 2569
	bool wait = false;
	unsigned int cpu;
L
Linus Torvalds 已提交
2570

2571 2572 2573
	if (flush_color >= 0) {
		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
		atomic_set(&wq->nr_cwqs_to_flush, 1);
L
Linus Torvalds 已提交
2574
	}
2575

2576
	for_each_cwq_cpu(cpu, wq) {
2577
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2578
		struct worker_pool *pool = cwq->pool;
O
Oleg Nesterov 已提交
2579

2580
		spin_lock_irq(&pool->lock);
2581

2582 2583
		if (flush_color >= 0) {
			BUG_ON(cwq->flush_color != -1);
O
Oleg Nesterov 已提交
2584

2585 2586 2587 2588 2589 2590
			if (cwq->nr_in_flight[flush_color]) {
				cwq->flush_color = flush_color;
				atomic_inc(&wq->nr_cwqs_to_flush);
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2591

2592 2593 2594 2595
		if (work_color >= 0) {
			BUG_ON(work_color != work_next_color(cwq->work_color));
			cwq->work_color = work_color;
		}
L
Linus Torvalds 已提交
2596

2597
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2598
	}
2599

2600 2601
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
		complete(&wq->first_flusher->done);
2602

2603
	return wait;
L
Linus Torvalds 已提交
2604 2605
}

2606
/**
L
Linus Torvalds 已提交
2607
 * flush_workqueue - ensure that any scheduled work has run to completion.
2608
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2609 2610 2611 2612
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2613 2614
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2615
 */
2616
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2617
{
2618 2619 2620 2621 2622 2623
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2624

2625 2626
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
		BUG_ON(!list_empty(&wq->flusher_overflow));
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
			BUG_ON(wq->flush_color != this_flusher.flush_color);

			wq->first_flusher = &this_flusher;

			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
			BUG_ON(wq->flush_color == this_flusher.flush_color);
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2688 2689 2690 2691
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
	wq->first_flusher = NULL;

	BUG_ON(!list_empty(&this_flusher.list));
	BUG_ON(wq->flush_color != this_flusher.flush_color);

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

		BUG_ON(!list_empty(&wq->flusher_overflow) &&
		       wq->flush_color != work_next_color(wq->work_color));

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
		}

		if (list_empty(&wq->flusher_queue)) {
			BUG_ON(wq->flush_color != wq->work_color);
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
		 * the new first flusher and arm cwqs.
		 */
		BUG_ON(wq->flush_color == wq->work_color);
		BUG_ON(wq->flush_color != next->flush_color);

		list_del_init(&next->list);
		wq->first_flusher = next;

		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2759
}
2760
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2761

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
	unsigned int cpu;

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
	spin_lock(&workqueue_lock);
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
	spin_unlock(&workqueue_lock);
reflush:
	flush_workqueue(wq);

	for_each_cwq_cpu(cpu, wq) {
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2792
		bool drained;
2793

2794
		spin_lock_irq(&cwq->pool->lock);
2795
		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2796
		spin_unlock_irq(&cwq->pool->lock);
2797 2798

		if (drained)
2799 2800 2801 2802
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2803 2804
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		goto reflush;
	}

	spin_lock(&workqueue_lock);
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
	spin_unlock(&workqueue_lock);
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2815
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2816
{
2817
	struct worker *worker = NULL;
2818
	struct worker_pool *pool;
2819 2820 2821
	struct cpu_workqueue_struct *cwq;

	might_sleep();
2822 2823
	pool = get_work_pool(work);
	if (!pool)
2824
		return false;
2825

2826
	spin_lock_irq(&pool->lock);
2827 2828 2829
	if (!list_empty(&work->entry)) {
		/*
		 * See the comment near try_to_grab_pending()->smp_rmb().
2830
		 * If it was re-queued to a different pool under us, we
2831
		 * are not going to wait.
2832 2833
		 */
		smp_rmb();
2834
		cwq = get_work_cwq(work);
2835
		if (unlikely(!cwq || pool != cwq->pool))
T
Tejun Heo 已提交
2836
			goto already_gone;
2837
	} else {
2838
		worker = find_worker_executing_work(pool, work);
2839
		if (!worker)
T
Tejun Heo 已提交
2840
			goto already_gone;
2841
		cwq = worker->current_cwq;
2842
	}
2843

2844
	insert_wq_barrier(cwq, barr, work, worker);
2845
	spin_unlock_irq(&pool->lock);
2846

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&cwq->wq->lockdep_map);
	else
		lock_map_acquire_read(&cwq->wq->lockdep_map);
2857
	lock_map_release(&cwq->wq->lockdep_map);
2858

2859
	return true;
T
Tejun Heo 已提交
2860
already_gone:
2861
	spin_unlock_irq(&pool->lock);
2862
	return false;
2863
}
2864 2865 2866 2867 2868

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2869 2870
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2871 2872 2873 2874 2875 2876 2877 2878 2879
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2880 2881 2882
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2883
	if (start_flush_work(work, &barr)) {
2884 2885 2886
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2887
	} else {
2888
		return false;
2889 2890
	}
}
2891
EXPORT_SYMBOL_GPL(flush_work);
2892

2893
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2894
{
2895
	unsigned long flags;
2896 2897 2898
	int ret;

	do {
2899 2900 2901 2902 2903 2904
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2905
			flush_work(work);
2906 2907
	} while (unlikely(ret < 0));

2908 2909 2910 2911
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2912
	flush_work(work);
2913
	clear_work_data(work);
2914 2915 2916
	return ret;
}

2917
/**
2918 2919
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2920
 *
2921 2922 2923 2924
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2925
 *
2926 2927
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2928
 *
2929
 * The caller must ensure that the workqueue on which @work was last
2930
 * queued can't be destroyed before this function returns.
2931 2932 2933
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2934
 */
2935
bool cancel_work_sync(struct work_struct *work)
2936
{
2937
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2938
}
2939
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2940

2941
/**
2942 2943
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2944
 *
2945 2946 2947
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2948
 *
2949 2950 2951
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2952
 */
2953 2954
bool flush_delayed_work(struct delayed_work *dwork)
{
2955
	local_irq_disable();
2956
	if (del_timer_sync(&dwork->timer))
2957
		__queue_work(dwork->cpu,
2958
			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2959
	local_irq_enable();
2960 2961 2962 2963
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2964
/**
2965 2966
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2967
 *
2968 2969 2970 2971 2972
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2973
 *
2974
 * This function is safe to call from any context including IRQ handler.
2975
 */
2976
bool cancel_delayed_work(struct delayed_work *dwork)
2977
{
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2988 2989
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2990
	local_irq_restore(flags);
2991
	return ret;
2992
}
2993
EXPORT_SYMBOL(cancel_delayed_work);
2994

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
3005
{
3006
	return __cancel_work_timer(&dwork->work, true);
3007
}
3008
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
3009

3010
/**
3011 3012 3013 3014 3015 3016
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
3017
bool schedule_work_on(int cpu, struct work_struct *work)
3018
{
3019
	return queue_work_on(cpu, system_wq, work);
3020 3021 3022
}
EXPORT_SYMBOL(schedule_work_on);

3023 3024 3025 3026
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
3027 3028
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
3029 3030 3031 3032
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
3033
 */
3034
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
3035
{
3036
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
3037
}
3038
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
3039

3040 3041 3042
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
3043
 * @dwork: job to be done
3044 3045 3046 3047 3048
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
3049 3050
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
3051
{
3052
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
3053
}
3054
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
3055

3056 3057
/**
 * schedule_delayed_work - put work task in global workqueue after delay
3058 3059
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
3060 3061 3062 3063
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
3064
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
3065
{
3066
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
3067
}
3068
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
3069

3070
/**
3071
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3072 3073
 * @func: the function to call
 *
3074 3075
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
3076
 * schedule_on_each_cpu() is very slow.
3077 3078 3079
 *
 * RETURNS:
 * 0 on success, -errno on failure.
3080
 */
3081
int schedule_on_each_cpu(work_func_t func)
3082 3083
{
	int cpu;
3084
	struct work_struct __percpu *works;
3085

3086 3087
	works = alloc_percpu(struct work_struct);
	if (!works)
3088
		return -ENOMEM;
3089

3090 3091
	get_online_cpus();

3092
	for_each_online_cpu(cpu) {
3093 3094 3095
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3096
		schedule_work_on(cpu, work);
3097
	}
3098 3099 3100 3101

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3102
	put_online_cpus();
3103
	free_percpu(works);
3104 3105 3106
	return 0;
}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3131 3132
void flush_scheduled_work(void)
{
3133
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3134
}
3135
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3136

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3149
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3150 3151
{
	if (!in_interrupt()) {
3152
		fn(&ew->work);
3153 3154 3155
		return 0;
	}

3156
	INIT_WORK(&ew->work, fn);
3157 3158 3159 3160 3161 3162
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3163 3164
int keventd_up(void)
{
3165
	return system_wq != NULL;
L
Linus Torvalds 已提交
3166 3167
}

3168
static int alloc_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3169
{
3170
	/*
T
Tejun Heo 已提交
3171 3172 3173
	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
	 * Make sure that the alignment isn't lower than that of
	 * unsigned long long.
3174
	 */
T
Tejun Heo 已提交
3175 3176 3177
	const size_t size = sizeof(struct cpu_workqueue_struct);
	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
				   __alignof__(unsigned long long));
3178

3179
	if (!(wq->flags & WQ_UNBOUND))
3180
		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3181
	else {
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
		void *ptr;

		/*
		 * Allocate enough room to align cwq and put an extra
		 * pointer at the end pointing back to the originally
		 * allocated pointer which will be used for free.
		 */
		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
		if (ptr) {
			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
			*(void **)(wq->cpu_wq.single + 1) = ptr;
		}
3194
	}
3195

3196
	/* just in case, make sure it's actually aligned */
3197 3198
	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
	return wq->cpu_wq.v ? 0 : -ENOMEM;
T
Tejun Heo 已提交
3199 3200
}

3201
static void free_cwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3202
{
3203
	if (!(wq->flags & WQ_UNBOUND))
3204 3205 3206
		free_percpu(wq->cpu_wq.pcpu);
	else if (wq->cpu_wq.single) {
		/* the pointer to free is stored right after the cwq */
3207
		kfree(*(void **)(wq->cpu_wq.single + 1));
3208
	}
T
Tejun Heo 已提交
3209 3210
}

3211 3212
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3213
{
3214 3215 3216
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3217 3218
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3219

3220
	return clamp_val(max_active, 1, lim);
3221 3222
}

3223
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3224 3225 3226
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3227
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3228
{
3229
	va_list args, args1;
L
Linus Torvalds 已提交
3230
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
3231
	unsigned int cpu;
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3246

3247 3248 3249 3250 3251 3252 3253
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3254
	max_active = max_active ?: WQ_DFL_ACTIVE;
3255
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3256

3257
	/* init wq */
3258
	wq->flags = flags;
3259
	wq->saved_max_active = max_active;
3260 3261 3262 3263
	mutex_init(&wq->flush_mutex);
	atomic_set(&wq->nr_cwqs_to_flush, 0);
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3264

3265
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3266
	INIT_LIST_HEAD(&wq->list);
3267

3268 3269 3270
	if (alloc_cwqs(wq) < 0)
		goto err;

3271
	for_each_cwq_cpu(cpu, wq) {
T
Tejun Heo 已提交
3272
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3273
		struct global_cwq *gcwq = get_gcwq(cpu);
3274
		int pool_idx = (bool)(flags & WQ_HIGHPRI);
T
Tejun Heo 已提交
3275

T
Tejun Heo 已提交
3276
		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3277
		cwq->pool = &gcwq->pools[pool_idx];
T
Tejun Heo 已提交
3278
		cwq->wq = wq;
3279
		cwq->flush_color = -1;
3280 3281
		cwq->max_active = max_active;
		INIT_LIST_HEAD(&cwq->delayed_works);
3282
	}
T
Tejun Heo 已提交
3283

3284 3285 3286
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

3287
		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3288 3289 3290 3291 3292 3293
			goto err;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3294 3295
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3296
					       wq->name);
3297 3298 3299 3300 3301
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3302 3303
	}

3304 3305 3306 3307 3308
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
T
Tejun Heo 已提交
3309
	spin_lock(&workqueue_lock);
3310

3311
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3312
		for_each_cwq_cpu(cpu, wq)
3313 3314
			get_cwq(cpu, wq)->max_active = 0;

T
Tejun Heo 已提交
3315
	list_add(&wq->list, &workqueues);
3316

T
Tejun Heo 已提交
3317 3318
	spin_unlock(&workqueue_lock);

3319
	return wq;
T
Tejun Heo 已提交
3320 3321
err:
	if (wq) {
3322
		free_cwqs(wq);
3323
		free_mayday_mask(wq->mayday_mask);
3324
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3325 3326 3327
		kfree(wq);
	}
	return NULL;
3328
}
3329
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3330

3331 3332 3333 3334 3335 3336 3337 3338
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
T
Tejun Heo 已提交
3339
	unsigned int cpu;
3340

3341 3342
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3343

3344 3345 3346 3347
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3348
	spin_lock(&workqueue_lock);
3349
	list_del(&wq->list);
3350
	spin_unlock(&workqueue_lock);
3351

3352
	/* sanity check */
3353
	for_each_cwq_cpu(cpu, wq) {
3354 3355 3356 3357 3358
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		int i;

		for (i = 0; i < WORK_NR_COLORS; i++)
			BUG_ON(cwq->nr_in_flight[i]);
3359 3360
		BUG_ON(cwq->nr_active);
		BUG_ON(!list_empty(&cwq->delayed_works));
3361
	}
3362

3363 3364
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3365
		free_mayday_mask(wq->mayday_mask);
3366
		kfree(wq->rescuer);
3367 3368
	}

3369
	free_cwqs(wq);
3370 3371 3372 3373
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3374 3375 3376 3377 3378 3379 3380 3381 3382
/**
 * cwq_set_max_active - adjust max_active of a cwq
 * @cwq: target cpu_workqueue_struct
 * @max_active: new max_active value.
 *
 * Set @cwq->max_active to @max_active and activate delayed works if
 * increased.
 *
 * CONTEXT:
3383
 * spin_lock_irq(pool->lock).
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
 */
static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
{
	cwq->max_active = max_active;

	while (!list_empty(&cwq->delayed_works) &&
	       cwq->nr_active < cwq->max_active)
		cwq_activate_first_delayed(cwq);
}

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
	unsigned int cpu;

3408
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3409 3410 3411 3412 3413

	spin_lock(&workqueue_lock);

	wq->saved_max_active = max_active;

3414
	for_each_cwq_cpu(cpu, wq) {
3415 3416
		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
		struct worker_pool *pool = cwq->pool;
3417

3418
		spin_lock_irq(&pool->lock);
3419

3420
		if (!(wq->flags & WQ_FREEZABLE) ||
3421 3422
		    !(pool->flags & POOL_FREEZING))
			cwq_set_max_active(cwq, max_active);
3423

3424
		spin_unlock_irq(&pool->lock);
3425
	}
3426

3427
	spin_unlock(&workqueue_lock);
3428
}
3429
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3430

3431
/**
3432 3433 3434
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3435
 *
3436 3437 3438
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3439
 *
3440 3441
 * RETURNS:
 * %true if congested, %false otherwise.
3442
 */
3443
bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3444
{
3445 3446 3447
	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

	return !list_empty(&cwq->delayed_works);
L
Linus Torvalds 已提交
3448
}
3449
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3450

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 * Especially for reentrant wqs, the pending state might hide the
 * running state.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3465
{
3466
	struct worker_pool *pool = get_work_pool(work);
3467 3468
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3469

3470
	if (!pool)
3471
		return 0;
L
Linus Torvalds 已提交
3472

3473
	spin_lock_irqsave(&pool->lock, flags);
L
Linus Torvalds 已提交
3474

3475 3476
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
3477
	if (find_worker_executing_work(pool, work))
3478
		ret |= WORK_BUSY_RUNNING;
L
Linus Torvalds 已提交
3479

3480
	spin_unlock_irqrestore(&pool->lock, flags);
L
Linus Torvalds 已提交
3481

3482
	return ret;
L
Linus Torvalds 已提交
3483
}
3484
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3485

3486 3487 3488
/*
 * CPU hotplug.
 *
3489 3490 3491 3492
 * There are two challenges in supporting CPU hotplug.  Firstly, there
 * are a lot of assumptions on strong associations among work, cwq and
 * gcwq which make migrating pending and scheduled works very
 * difficult to implement without impacting hot paths.  Secondly,
3493
 * worker pools serve mix of short, long and very long running works making
3494 3495
 * blocked draining impractical.
 *
3496
 * This is solved by allowing the pools to be disassociated from the CPU
3497 3498
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3499
 */
L
Linus Torvalds 已提交
3500

3501
static void gcwq_unbind_fn(struct work_struct *work)
3502
{
3503
	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3504
	struct worker_pool *pool;
3505 3506 3507
	struct worker *worker;
	struct hlist_node *pos;
	int i;
3508

3509 3510
	for_each_worker_pool(pool, gcwq) {
		BUG_ON(pool->cpu != smp_processor_id());
3511

3512 3513
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3514

3515 3516 3517 3518 3519 3520 3521
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3522
		list_for_each_entry(worker, &pool->idle_list, entry)
3523
			worker->flags |= WORKER_UNBOUND;
3524

3525 3526
		for_each_busy_worker(worker, i, pos, pool)
			worker->flags |= WORKER_UNBOUND;
3527

3528
		pool->flags |= POOL_DISASSOCIATED;
3529

3530 3531 3532
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3533

3534
	/*
3535
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3536 3537
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3538 3539
	 */
	schedule();
3540

3541
	/*
3542 3543 3544 3545 3546 3547 3548 3549 3550
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
	 * are always true as long as the worklist is not empty.  @gcwq now
	 * behaves as unbound (in terms of concurrency management) gcwq
	 * which is served by workers tied to the CPU.
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3551
	 */
3552 3553
	for_each_worker_pool(pool, gcwq)
		atomic_set(get_pool_nr_running(pool), 0);
3554 3555
}

T
Tejun Heo 已提交
3556 3557 3558 3559
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3560
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3561 3562
					       unsigned long action,
					       void *hcpu)
3563 3564
{
	unsigned int cpu = (unsigned long)hcpu;
3565
	struct global_cwq *gcwq = get_gcwq(cpu);
3566
	struct worker_pool *pool;
3567

T
Tejun Heo 已提交
3568
	switch (action & ~CPU_TASKS_FROZEN) {
3569
	case CPU_UP_PREPARE:
3570
		for_each_worker_pool(pool, gcwq) {
3571 3572 3573 3574 3575 3576 3577 3578 3579
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3580
			spin_lock_irq(&pool->lock);
3581
			start_worker(worker);
3582
			spin_unlock_irq(&pool->lock);
3583
		}
T
Tejun Heo 已提交
3584
		break;
3585

3586 3587
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3588 3589 3590 3591
		for_each_worker_pool(pool, gcwq) {
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3592
			pool->flags &= ~POOL_DISASSOCIATED;
3593 3594 3595 3596 3597
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3598
		break;
3599
	}
3600 3601 3602 3603 3604 3605 3606
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3607
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3608 3609 3610
						 unsigned long action,
						 void *hcpu)
{
T
Tejun Heo 已提交
3611 3612 3613
	unsigned int cpu = (unsigned long)hcpu;
	struct work_struct unbind_work;

3614 3615
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3616 3617
		/* unbinding should happen on the local CPU */
		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3618
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3619 3620
		flush_work(&unbind_work);
		break;
3621 3622 3623 3624
	}
	return NOTIFY_OK;
}

3625
#ifdef CONFIG_SMP
3626

3627
struct work_for_cpu {
3628
	struct work_struct work;
3629 3630 3631 3632 3633
	long (*fn)(void *);
	void *arg;
	long ret;
};

3634
static void work_for_cpu_fn(struct work_struct *work)
3635
{
3636 3637
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3638 3639 3640 3641 3642 3643 3644 3645 3646
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3647 3648
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3649
 * The caller must not hold any locks which would prevent @fn from completing.
3650 3651 3652
 */
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
3653
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3654

3655 3656 3657
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3658 3659 3660 3661 3662
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3663 3664 3665 3666 3667
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3668 3669 3670
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
 * gcwq->worklist.
3671 3672
 *
 * CONTEXT:
3673
 * Grabs and releases workqueue_lock and pool->lock's.
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
 */
void freeze_workqueues_begin(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	BUG_ON(workqueue_freezing);
	workqueue_freezing = true;

3684
	for_each_gcwq_cpu(cpu) {
3685
		struct global_cwq *gcwq = get_gcwq(cpu);
3686
		struct worker_pool *pool;
3687
		struct workqueue_struct *wq;
3688

3689
		local_irq_disable();
3690

3691
		for_each_worker_pool(pool, gcwq) {
3692 3693
			spin_lock_nested(&pool->lock, pool - gcwq->pools);

3694 3695 3696
			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
			pool->flags |= POOL_FREEZING;
		}
3697

3698 3699 3700
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3701
			if (cwq && wq->flags & WQ_FREEZABLE)
3702 3703
				cwq->max_active = 0;
		}
3704

3705 3706 3707
		for_each_worker_pool(pool, gcwq)
			spin_unlock(&pool->lock);
		local_irq_enable();
3708 3709 3710 3711 3712 3713
	}

	spin_unlock(&workqueue_lock);
}

/**
3714
 * freeze_workqueues_busy - are freezable workqueues still busy?
3715 3716 3717 3718 3719 3720 3721 3722
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3723 3724
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
 */
bool freeze_workqueues_busy(void)
{
	unsigned int cpu;
	bool busy = false;

	spin_lock(&workqueue_lock);

	BUG_ON(!workqueue_freezing);

3735
	for_each_gcwq_cpu(cpu) {
3736
		struct workqueue_struct *wq;
3737 3738 3739 3740 3741 3742 3743
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3744
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
				continue;

			BUG_ON(cwq->nr_active < 0);
			if (cwq->nr_active) {
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
	spin_unlock(&workqueue_lock);
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3763
 * frozen works are transferred to their respective gcwq worklists.
3764 3765
 *
 * CONTEXT:
3766
 * Grabs and releases workqueue_lock and pool->lock's.
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
 */
void thaw_workqueues(void)
{
	unsigned int cpu;

	spin_lock(&workqueue_lock);

	if (!workqueue_freezing)
		goto out_unlock;

3777
	for_each_gcwq_cpu(cpu) {
3778
		struct global_cwq *gcwq = get_gcwq(cpu);
3779
		struct worker_pool *pool;
3780
		struct workqueue_struct *wq;
3781

3782
		local_irq_disable();
3783

3784
		for_each_worker_pool(pool, gcwq) {
3785 3786
			spin_lock_nested(&pool->lock, pool - gcwq->pools);

3787 3788 3789
			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
			pool->flags &= ~POOL_FREEZING;
		}
3790

3791 3792 3793
		list_for_each_entry(wq, &workqueues, list) {
			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);

3794
			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3795 3796 3797
				continue;

			/* restore max_active and repopulate worklist */
3798
			cwq_set_max_active(cwq, wq->saved_max_active);
3799
		}
3800

3801
		for_each_worker_pool(pool, gcwq) {
3802
			wake_up_worker(pool);
3803 3804 3805
			spin_unlock(&pool->lock);
		}
		local_irq_enable();
3806 3807 3808 3809 3810 3811 3812 3813
	}

	workqueue_freezing = false;
out_unlock:
	spin_unlock(&workqueue_lock);
}
#endif /* CONFIG_FREEZER */

3814
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3815
{
T
Tejun Heo 已提交
3816 3817
	unsigned int cpu;

3818 3819 3820
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
		     WORK_CPU_LAST * NR_STD_WORKER_POOLS);
3821

3822
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3823
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3824 3825

	/* initialize gcwqs */
3826
	for_each_gcwq_cpu(cpu) {
3827
		struct global_cwq *gcwq = get_gcwq(cpu);
3828
		struct worker_pool *pool;
3829

3830 3831
		for_each_worker_pool(pool, gcwq) {
			pool->gcwq = gcwq;
3832
			spin_lock_init(&pool->lock);
3833
			pool->cpu = cpu;
3834
			pool->flags |= POOL_DISASSOCIATED;
3835 3836
			INIT_LIST_HEAD(&pool->worklist);
			INIT_LIST_HEAD(&pool->idle_list);
3837
			hash_init(pool->busy_hash);
3838

3839 3840 3841
			init_timer_deferrable(&pool->idle_timer);
			pool->idle_timer.function = idle_worker_timeout;
			pool->idle_timer.data = (unsigned long)pool;
3842

3843 3844 3845
			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
				    (unsigned long)pool);

3846
			mutex_init(&pool->assoc_mutex);
3847
			ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3848 3849 3850

			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
3851
		}
3852 3853
	}

3854
	/* create the initial worker */
3855
	for_each_online_gcwq_cpu(cpu) {
3856
		struct global_cwq *gcwq = get_gcwq(cpu);
3857
		struct worker_pool *pool;
3858

3859 3860 3861
		for_each_worker_pool(pool, gcwq) {
			struct worker *worker;

3862 3863 3864
			if (cpu != WORK_CPU_UNBOUND)
				pool->flags &= ~POOL_DISASSOCIATED;

3865
			worker = create_worker(pool);
3866
			BUG_ON(!worker);
3867
			spin_lock_irq(&pool->lock);
3868
			start_worker(worker);
3869
			spin_unlock_irq(&pool->lock);
3870
		}
3871 3872
	}

3873
	system_wq = alloc_workqueue("events", 0, 0);
3874
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3875
	system_long_wq = alloc_workqueue("events_long", 0, 0);
3876 3877
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
3878 3879
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
3880
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3881
	       !system_unbound_wq || !system_freezable_wq);
3882
	return 0;
L
Linus Torvalds 已提交
3883
}
3884
early_initcall(init_workqueues);