fair.c 187.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

181
#define WMULT_CONST	(~0U)
182 183
#define WMULT_SHIFT	32

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
200 201

/*
202 203 204 205 206 207 208 209 210 211
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212
 */
213
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214
{
215 216
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
217

218
	__update_inv_weight(lw);
219

220 221 222 223 224
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
225 226
	}

227 228
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
229

230 231 232 233
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
234

235
	return mul_u64_u32_shr(delta_exec, fact, shift);
236 237 238 239
}


const struct sched_class fair_sched_class;
240

241 242 243 244
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

245
#ifdef CONFIG_FAIR_GROUP_SCHED
246

247
/* cpu runqueue to which this cfs_rq is attached */
248 249
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
250
	return cfs_rq->rq;
251 252
}

253 254
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
255

256 257 258 259 260 261 262 263
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
287

288 289 290
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
291 292 293 294 295 296 297 298 299 300 301 302
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304
		}
305 306

		cfs_rq->on_list = 1;
307
		/* We should have no load, but we need to update last_decay. */
308
		update_cfs_rq_blocked_load(cfs_rq, 0);
309 310 311 312 313 314 315 316 317 318 319
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

382 383 384 385 386 387
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
388

389 390 391
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
392 393 394 395
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
396 397
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
398

P
Peter Zijlstra 已提交
399
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
400
{
P
Peter Zijlstra 已提交
401
	return &task_rq(p)->cfs;
402 403
}

P
Peter Zijlstra 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

418 419 420 421 422 423 424 425
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

440 441 442 443 444
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
445 446
#endif	/* CONFIG_FAIR_GROUP_SCHED */

447
static __always_inline
448
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
449 450 451 452 453

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

454
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
455
{
456
	s64 delta = (s64)(vruntime - max_vruntime);
457
	if (delta > 0)
458
		max_vruntime = vruntime;
459

460
	return max_vruntime;
461 462
}

463
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
464 465 466 467 468 469 470 471
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

472 473 474 475 476 477
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

478 479 480 481 482 483 484 485 486 487 488 489
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
490
		if (!cfs_rq->curr)
491 492 493 494 495
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

496
	/* ensure we never gain time by being placed backwards. */
497
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 499 500 501
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
502 503
}

504 505 506
/*
 * Enqueue an entity into the rb-tree:
 */
507
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
524
		if (entity_before(se, entry)) {
525 526 527 528 529 530 531 532 533 534 535
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
536
	if (leftmost)
I
Ingo Molnar 已提交
537
		cfs_rq->rb_leftmost = &se->run_node;
538 539 540 541 542

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

543
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
544
{
P
Peter Zijlstra 已提交
545 546 547 548 549 550
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
551

552 553 554
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

555
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
556
{
557 558 559 560 561 562
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
563 564
}

565 566 567 568 569 570 571 572 573 574 575
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
576
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
577
{
578
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
579

580 581
	if (!last)
		return NULL;
582 583

	return rb_entry(last, struct sched_entity, run_node);
584 585
}

586 587 588 589
/**************************************************************
 * Scheduling class statistics methods:
 */

590
int sched_proc_update_handler(struct ctl_table *table, int write,
591
		void __user *buffer, size_t *lenp,
592 593
		loff_t *ppos)
{
594
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595
	int factor = get_update_sysctl_factor();
596 597 598 599 600 601 602

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

603 604 605 606 607 608 609
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

610 611 612
	return 0;
}
#endif
613

614
/*
615
 * delta /= w
616
 */
617
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
618
{
619
	if (unlikely(se->load.weight != NICE_0_LOAD))
620
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
621 622 623 624

	return delta;
}

625 626 627
/*
 * The idea is to set a period in which each task runs once.
 *
628
 * When there are too many tasks (sched_nr_latency) we have to stretch
629 630 631 632
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
633 634 635
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
636
	unsigned long nr_latency = sched_nr_latency;
637 638

	if (unlikely(nr_running > nr_latency)) {
639
		period = sysctl_sched_min_granularity;
640 641 642 643 644 645
		period *= nr_running;
	}

	return period;
}

646 647 648 649
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
650
 * s = p*P[w/rw]
651
 */
P
Peter Zijlstra 已提交
652
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653
{
M
Mike Galbraith 已提交
654
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655

M
Mike Galbraith 已提交
656
	for_each_sched_entity(se) {
L
Lin Ming 已提交
657
		struct load_weight *load;
658
		struct load_weight lw;
L
Lin Ming 已提交
659 660 661

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
662

M
Mike Galbraith 已提交
663
		if (unlikely(!se->on_rq)) {
664
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
665 666 667 668

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
669
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
670 671
	}
	return slice;
672 673
}

674
/*
A
Andrei Epure 已提交
675
 * We calculate the vruntime slice of a to-be-inserted task.
676
 *
677
 * vs = s/w
678
 */
679
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
680
{
681
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
682 683
}

684
#ifdef CONFIG_SMP
685 686
static unsigned long task_h_load(struct task_struct *p);

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

706
/*
707
 * Update the current task's runtime statistics.
708
 */
709
static void update_curr(struct cfs_rq *cfs_rq)
710
{
711
	struct sched_entity *curr = cfs_rq->curr;
712
	u64 now = rq_clock_task(rq_of(cfs_rq));
713
	u64 delta_exec;
714 715 716 717

	if (unlikely(!curr))
		return;

718 719
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
720
		return;
721

I
Ingo Molnar 已提交
722
	curr->exec_start = now;
723

724 725 726 727 728 729 730 731 732
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

733 734 735
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

736
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737
		cpuacct_charge(curtask, delta_exec);
738
		account_group_exec_runtime(curtask, delta_exec);
739
	}
740 741

	account_cfs_rq_runtime(cfs_rq, delta_exec);
742 743 744
}

static inline void
745
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
746
{
747
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
748 749 750 751 752
}

/*
 * Task is being enqueued - update stats:
 */
753
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 755 756 757 758
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
759
	if (se != cfs_rq->curr)
760
		update_stats_wait_start(cfs_rq, se);
761 762 763
}

static void
764
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
765
{
766
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 769
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 772 773
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
774
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
775 776
	}
#endif
777
	schedstat_set(se->statistics.wait_start, 0);
778 779 780
}

static inline void
781
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 783 784 785 786
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
787
	if (se != cfs_rq->curr)
788
		update_stats_wait_end(cfs_rq, se);
789 790 791 792 793 794
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
795
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 797 798 799
{
	/*
	 * We are starting a new run period:
	 */
800
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
801 802 803 804 805 806
}

/**************************************************
 * Scheduling class queueing methods:
 */

807 808
#ifdef CONFIG_NUMA_BALANCING
/*
809 810 811
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
812
 */
813 814
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
815 816 817

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
818

819 820 821
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

822 823 824 825 826 827 828 829
/*
 * After skipping a page migration on a shared page, skip N more numa page
 * migrations unconditionally. This reduces the number of NUMA migrations
 * in shared memory workloads, and has the effect of pulling tasks towards
 * where their memory lives, over pulling the memory towards the task.
 */
unsigned int sysctl_numa_balancing_migrate_deferred = 16;

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

875 876 877 878 879 880 881 882 883 884 885 886
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

887 888 889 890 891
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
892
	pid_t gid;
893 894 895
	struct list_head task_list;

	struct rcu_head rcu;
896 897
	unsigned long total_faults;
	unsigned long faults[0];
898 899
};

900 901 902 903 904
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

905 906 907 908 909 910 911 912 913 914 915 916 917 918
static inline int task_faults_idx(int nid, int priv)
{
	return 2 * nid + priv;
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
	if (!p->numa_faults)
		return 0;

	return p->numa_faults[task_faults_idx(nid, 0)] +
		p->numa_faults[task_faults_idx(nid, 1)];
}

919 920 921 922 923
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

924
	return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
}

/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

	if (!p->numa_faults)
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
950
	if (!p->numa_group || !p->numa_group->total_faults)
951 952
		return 0;

953
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
954 955
}

956
static unsigned long weighted_cpuload(const int cpu);
957 958 959 960 961
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long power_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

962
/* Cached statistics for all CPUs within a node */
963
struct numa_stats {
964
	unsigned long nr_running;
965
	unsigned long load;
966 967 968 969 970 971 972

	/* Total compute capacity of CPUs on a node */
	unsigned long power;

	/* Approximate capacity in terms of runnable tasks on a node */
	unsigned long capacity;
	int has_capacity;
973
};
974

975 976 977 978 979
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
980
	int cpu, cpus = 0;
981 982 983 984 985 986 987 988

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
		ns->power += power_of(cpu);
989 990

		cpus++;
991 992
	}

993 994 995 996 997 998 999 1000 1001 1002 1003
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
	 * and bail there.
	 */
	if (!cpus)
		return;

1004 1005 1006 1007 1008
	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
	ns->has_capacity = (ns->nr_running < ns->capacity);
}

1009 1010
struct task_numa_env {
	struct task_struct *p;
1011

1012 1013
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1014

1015
	struct numa_stats src_stats, dst_stats;
1016

1017
	int imbalance_pct;
1018 1019 1020

	struct task_struct *best_task;
	long best_imp;
1021 1022 1023
	int best_cpu;
};

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1043 1044
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1045 1046 1047 1048 1049 1050
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
	long dst_load, src_load;
	long load;
1051
	long imp = (groupimp > 0) ? groupimp : taskimp;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1070 1071
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1072
		 * in any group then look only at task weights.
1073
		 */
1074
		if (cur->numa_group == env->p->numa_group) {
1075 1076
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1077 1078 1079 1080 1081 1082
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1083
		} else {
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (env->p->numa_group)
				imp = groupimp;
			else
				imp = taskimp;

			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1100
		}
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	}

	if (imp < env->best_imp)
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
		if (env->src_stats.has_capacity &&
		    !env->dst_stats.has_capacity)
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
	dst_load = env->dst_stats.load;
	src_load = env->src_stats.load;

	/* XXX missing power terms */
	load = task_h_load(env->p);
	dst_load += load;
	src_load -= load;

	if (cur) {
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
	}

	/* make src_load the smaller */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	if (src_load * env->imbalance_pct < dst_load * 100)
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1150 1151
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1152 1153 1154 1155 1156 1157 1158 1159 1160
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1161
		task_numa_compare(env, taskimp, groupimp);
1162 1163 1164
	}
}

1165 1166 1167 1168
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1169

1170
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1171
		.src_nid = task_node(p),
1172 1173 1174 1175 1176 1177

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1178 1179
	};
	struct sched_domain *sd;
1180
	unsigned long taskweight, groupweight;
1181
	int nid, ret;
1182
	long taskimp, groupimp;
1183

1184
	/*
1185 1186 1187 1188 1189 1190
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1191 1192
	 */
	rcu_read_lock();
1193
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1194 1195
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1196 1197
	rcu_read_unlock();

1198 1199 1200 1201 1202 1203 1204
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1205
		p->numa_preferred_nid = task_node(p);
1206 1207 1208
		return -EINVAL;
	}

1209 1210
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1211
	update_numa_stats(&env.src_stats, env.src_nid);
1212
	env.dst_nid = p->numa_preferred_nid;
1213 1214
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1215
	update_numa_stats(&env.dst_stats, env.dst_nid);
1216

1217 1218
	/* If the preferred nid has capacity, try to use it. */
	if (env.dst_stats.has_capacity)
1219
		task_numa_find_cpu(&env, taskimp, groupimp);
1220 1221 1222

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1223 1224 1225
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1226

1227
			/* Only consider nodes where both task and groups benefit */
1228 1229 1230
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1231 1232
				continue;

1233 1234
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1235
			task_numa_find_cpu(&env, taskimp, groupimp);
1236 1237 1238
		}
	}

1239 1240 1241 1242
	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;

1243 1244
	sched_setnuma(p, env.dst_nid);

1245 1246 1247 1248 1249 1250
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1251 1252 1253 1254 1255 1256 1257 1258
	if (env.best_task == NULL) {
		int ret = migrate_task_to(p, env.best_cpu);
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
	put_task_struct(env.best_task);
	return ret;
1259 1260
}

1261 1262 1263
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1264 1265
	/* This task has no NUMA fault statistics yet */
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1266 1267
		return;

1268 1269 1270 1271
	/* Periodically retry migrating the task to the preferred node */
	p->numa_migrate_retry = jiffies + HZ;

	/* Success if task is already running on preferred CPU */
1272
	if (task_node(p) == p->numa_preferred_nid)
1273 1274 1275
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1276
	task_numa_migrate(p);
1277 1278
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
 * period will be for the next scan window. If local/remote ratio is below
 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
 * scan period will decrease
 */
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 3

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1354 1355
static void task_numa_placement(struct task_struct *p)
{
1356 1357
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1358
	unsigned long fault_types[2] = { 0, 0 };
1359
	spinlock_t *group_lock = NULL;
1360

1361
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1362 1363 1364
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1365
	p->numa_scan_period_max = task_scan_max(p);
1366

1367 1368 1369 1370 1371 1372
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
		spin_lock(group_lock);
	}

1373 1374
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1375
		unsigned long faults = 0, group_faults = 0;
1376
		int priv, i;
1377

1378
		for (priv = 0; priv < 2; priv++) {
1379 1380
			long diff;

1381
			i = task_faults_idx(nid, priv);
1382
			diff = -p->numa_faults[i];
1383

1384 1385 1386
			/* Decay existing window, copy faults since last scan */
			p->numa_faults[i] >>= 1;
			p->numa_faults[i] += p->numa_faults_buffer[i];
1387
			fault_types[priv] += p->numa_faults_buffer[i];
1388
			p->numa_faults_buffer[i] = 0;
1389 1390

			faults += p->numa_faults[i];
1391
			diff += p->numa_faults[i];
1392
			p->total_numa_faults += diff;
1393 1394
			if (p->numa_group) {
				/* safe because we can only change our own group */
1395 1396 1397
				p->numa_group->faults[i] += diff;
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1398
			}
1399 1400
		}

1401 1402 1403 1404
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1405 1406 1407 1408 1409 1410 1411

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1412 1413
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	if (p->numa_group) {
		/*
		 * If the preferred task and group nids are different,
		 * iterate over the nodes again to find the best place.
		 */
		if (max_nid != max_group_nid) {
			unsigned long weight, max_weight = 0;

			for_each_online_node(nid) {
				weight = task_weight(p, nid) + group_weight(p, nid);
				if (weight > max_weight) {
					max_weight = weight;
					max_nid = nid;
				}
1428 1429
			}
		}
1430 1431

		spin_unlock(group_lock);
1432 1433
	}

1434
	/* Preferred node as the node with the most faults */
1435
	if (max_faults && max_nid != p->numa_preferred_nid) {
1436
		/* Update the preferred nid and migrate task if possible */
1437
		sched_setnuma(p, max_nid);
1438
		numa_migrate_preferred(p);
1439
	}
1440 1441
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1453 1454
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1455 1456 1457 1458 1459 1460 1461 1462 1463
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1464
				    2*nr_node_ids*sizeof(unsigned long);
1465 1466 1467 1468 1469 1470 1471 1472

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1473
		grp->gid = p->pid;
1474 1475

		for (i = 0; i < 2*nr_node_ids; i++)
1476
			grp->faults[i] = p->numa_faults[i];
1477

1478
		grp->total_faults = p->total_numa_faults;
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1489
		goto no_join;
1490 1491 1492

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1493
		goto no_join;
1494 1495 1496

	my_grp = p->numa_group;
	if (grp == my_grp)
1497
		goto no_join;
1498 1499 1500 1501 1502 1503

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1504
		goto no_join;
1505 1506 1507 1508 1509

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1510
		goto no_join;
1511

1512 1513 1514 1515 1516 1517 1518
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1519

1520 1521 1522
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1523
	if (join && !get_numa_group(grp))
1524
		goto no_join;
1525 1526 1527 1528 1529 1530

	rcu_read_unlock();

	if (!join)
		return;

1531 1532
	double_lock(&my_grp->lock, &grp->lock);

1533
	for (i = 0; i < 2*nr_node_ids; i++) {
1534 1535
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
1536
	}
1537 1538
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
	spin_unlock(&grp->lock);

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1550 1551 1552 1553 1554
	return;

no_join:
	rcu_read_unlock();
	return;
1555 1556 1557 1558 1559 1560
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
	int i;
1561
	void *numa_faults = p->numa_faults;
1562 1563

	if (grp) {
1564
		spin_lock(&grp->lock);
1565
		for (i = 0; i < 2*nr_node_ids; i++)
1566 1567
			grp->faults[i] -= p->numa_faults[i];
		grp->total_faults -= p->total_numa_faults;
1568

1569 1570 1571 1572 1573 1574 1575
		list_del(&p->numa_entry);
		grp->nr_tasks--;
		spin_unlock(&grp->lock);
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1576 1577 1578
	p->numa_faults = NULL;
	p->numa_faults_buffer = NULL;
	kfree(numa_faults);
1579 1580
}

1581 1582 1583
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1584
void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1585 1586
{
	struct task_struct *p = current;
1587
	bool migrated = flags & TNF_MIGRATED;
1588
	int priv;
1589

1590
	if (!numabalancing_enabled)
1591 1592
		return;

1593 1594 1595 1596
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1597 1598 1599 1600
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1601 1602
	/* Allocate buffer to track faults on a per-node basis */
	if (unlikely(!p->numa_faults)) {
1603
		int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1604

1605 1606
		/* numa_faults and numa_faults_buffer share the allocation */
		p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1607 1608
		if (!p->numa_faults)
			return;
1609 1610

		BUG_ON(p->numa_faults_buffer);
1611
		p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1612
		p->total_numa_faults = 0;
1613
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1614
	}
1615

1616 1617 1618 1619 1620 1621 1622 1623
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1624
		if (!priv && !(flags & TNF_NO_GROUP))
1625
			task_numa_group(p, last_cpupid, flags, &priv);
1626 1627
	}

1628
	task_numa_placement(p);
1629

1630 1631 1632 1633 1634
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1635 1636
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1637 1638 1639
	if (migrated)
		p->numa_pages_migrated += pages;

1640
	p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1641
	p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1642 1643
}

1644 1645 1646 1647 1648 1649
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1650 1651 1652 1653 1654 1655 1656 1657 1658
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1659
	struct vm_area_struct *vma;
1660
	unsigned long start, end;
1661
	unsigned long nr_pte_updates = 0;
1662
	long pages;
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1678
	if (!mm->numa_next_scan) {
1679 1680
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1681 1682
	}

1683 1684 1685 1686 1687 1688 1689
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1690 1691 1692 1693
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1694

1695
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1696 1697 1698
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1699 1700 1701 1702 1703 1704
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1705 1706 1707 1708 1709
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1710

1711
	down_read(&mm->mmap_sem);
1712
	vma = find_vma(mm, start);
1713 1714
	if (!vma) {
		reset_ptenuma_scan(p);
1715
		start = 0;
1716 1717
		vma = mm->mmap;
	}
1718
	for (; vma; vma = vma->vm_next) {
1719
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1720 1721
			continue;

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

1732 1733 1734 1735
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1736 1737 1738 1739 1740 1741 1742 1743 1744
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1745

1746 1747 1748 1749
			start = end;
			if (pages <= 0)
				goto out;
		} while (end != vma->vm_end);
1750
	}
1751

1752
out:
1753
	/*
P
Peter Zijlstra 已提交
1754 1755 1756 1757
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
1758 1759
	 */
	if (vma)
1760
		mm->numa_scan_offset = start;
1761 1762 1763
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
1790
		if (!curr->node_stamp)
1791
			curr->numa_scan_period = task_scan_min(curr);
1792
		curr->node_stamp += period;
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
1804 1805 1806 1807 1808 1809 1810 1811

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
1812 1813
#endif /* CONFIG_NUMA_BALANCING */

1814 1815 1816 1817
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
1818
	if (!parent_entity(se))
1819
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1820
#ifdef CONFIG_SMP
1821 1822 1823 1824 1825 1826
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
1827
#endif
1828 1829 1830 1831 1832 1833 1834
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
1835
	if (!parent_entity(se))
1836
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1837 1838
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1839
		list_del_init(&se->group_node);
1840
	}
1841 1842 1843
	cfs_rq->nr_running--;
}

1844 1845
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
1846 1847 1848 1849 1850 1851 1852 1853 1854
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
1855
	tg_weight = atomic_long_read(&tg->load_avg);
1856
	tg_weight -= cfs_rq->tg_load_contrib;
1857 1858 1859 1860 1861
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

1862
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1863
{
1864
	long tg_weight, load, shares;
1865

1866
	tg_weight = calc_tg_weight(tg, cfs_rq);
1867
	load = cfs_rq->load.weight;
1868 1869

	shares = (tg->shares * load);
1870 1871
	if (tg_weight)
		shares /= tg_weight;
1872 1873 1874 1875 1876 1877 1878 1879 1880

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
1881
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1882 1883 1884 1885
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1886 1887 1888
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
1889 1890 1891 1892
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1893
		account_entity_dequeue(cfs_rq, se);
1894
	}
P
Peter Zijlstra 已提交
1895 1896 1897 1898 1899 1900 1901

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

1902 1903
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

1904
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1905 1906 1907
{
	struct task_group *tg;
	struct sched_entity *se;
1908
	long shares;
P
Peter Zijlstra 已提交
1909 1910 1911

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
1912
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
1913
		return;
1914 1915 1916 1917
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
1918
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
1919 1920 1921 1922

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
1923
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
1924 1925 1926 1927
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

1928
#ifdef CONFIG_SMP
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

1957 1958 1959 1960 1961 1962
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
1983 1984
	}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2050 2051
	u64 delta, periods;
	u32 runnable_contrib;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2115
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2116
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2117 2118 2119 2120 2121 2122
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2123
		return 0;
2124 2125 2126

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2127 2128

	return decays;
2129 2130
}

2131 2132 2133 2134 2135
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2136
	long tg_contrib;
2137 2138 2139 2140

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2141 2142
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2143 2144 2145
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2158
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2159 2160 2161 2162 2163 2164 2165 2166 2167
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2168 2169 2170 2171
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2172 2173
	int runnable_avg;

2174 2175 2176
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2177 2178
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2208
}
2209 2210 2211
#else
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2212 2213
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2214
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2215 2216
#endif

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2227 2228 2229 2230 2231
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2232 2233 2234
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2235
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2236 2237
		__update_group_entity_contrib(se);
	}
2238 2239 2240 2241

	return se->avg.load_avg_contrib - old_contrib;
}

2242 2243 2244 2245 2246 2247 2248 2249 2250
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2251 2252
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2253
/* Update a sched_entity's runnable average */
2254 2255
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2256
{
2257 2258
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2259
	u64 now;
2260

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2271 2272 2273
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2274 2275 2276 2277

	if (!update_cfs_rq)
		return;

2278 2279
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2280 2281 2282 2283 2284 2285 2286 2287
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2288
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2289
{
2290
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2291 2292 2293
	u64 decays;

	decays = now - cfs_rq->last_decay;
2294
	if (!decays && !force_update)
2295 2296
		return;

2297 2298 2299
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2300 2301
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2302

2303 2304 2305 2306 2307 2308
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2309 2310

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2311
}
2312 2313 2314

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
2315
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2316
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2317
}
2318 2319 2320

/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2321 2322
						  struct sched_entity *se,
						  int wakeup)
2323
{
2324 2325 2326 2327
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2328 2329 2330 2331
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2332 2333
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2334
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2350 2351
		wakeup = 0;
	} else {
2352 2353 2354 2355 2356 2357 2358
		/*
		 * Task re-woke on same cpu (or else migrate_task_rq_fair()
		 * would have made count negative); we must be careful to avoid
		 * double-accounting blocked time after synchronizing decays.
		 */
		se->avg.last_runnable_update += __synchronize_entity_decay(se)
							<< 20;
2359 2360
	}

2361 2362
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2363
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2364 2365
		update_entity_load_avg(se, 0);
	}
2366

2367
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2368 2369
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2370 2371
}

2372 2373 2374 2375 2376
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2377
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2378 2379
						  struct sched_entity *se,
						  int sleep)
2380
{
2381
	update_entity_load_avg(se, 1);
2382 2383
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2384

2385
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2386 2387 2388 2389
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2390
}
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2412
#else
2413 2414
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2415
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2416
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2417 2418
					   struct sched_entity *se,
					   int wakeup) {}
2419
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2420 2421
					   struct sched_entity *se,
					   int sleep) {}
2422 2423
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2424 2425
#endif

2426
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2427 2428
{
#ifdef CONFIG_SCHEDSTATS
2429 2430 2431 2432 2433
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2434
	if (se->statistics.sleep_start) {
2435
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2436 2437 2438 2439

		if ((s64)delta < 0)
			delta = 0;

2440 2441
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2442

2443
		se->statistics.sleep_start = 0;
2444
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2445

2446
		if (tsk) {
2447
			account_scheduler_latency(tsk, delta >> 10, 1);
2448 2449
			trace_sched_stat_sleep(tsk, delta);
		}
2450
	}
2451
	if (se->statistics.block_start) {
2452
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2453 2454 2455 2456

		if ((s64)delta < 0)
			delta = 0;

2457 2458
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2459

2460
		se->statistics.block_start = 0;
2461
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2462

2463
		if (tsk) {
2464
			if (tsk->in_iowait) {
2465 2466
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2467
				trace_sched_stat_iowait(tsk, delta);
2468 2469
			}

2470 2471
			trace_sched_stat_blocked(tsk, delta);

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2483
		}
2484 2485 2486 2487
	}
#endif
}

P
Peter Zijlstra 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2501 2502 2503
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2504
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2505

2506 2507 2508 2509 2510 2511
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2512
	if (initial && sched_feat(START_DEBIT))
2513
		vruntime += sched_vslice(cfs_rq, se);
2514

2515
	/* sleeps up to a single latency don't count. */
2516
	if (!initial) {
2517
		unsigned long thresh = sysctl_sched_latency;
2518

2519 2520 2521 2522 2523 2524
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2525

2526
		vruntime -= thresh;
2527 2528
	}

2529
	/* ensure we never gain time by being placed backwards. */
2530
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2531 2532
}

2533 2534
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2535
static void
2536
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2537
{
2538 2539
	/*
	 * Update the normalized vruntime before updating min_vruntime
2540
	 * through calling update_curr().
2541
	 */
2542
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2543 2544
		se->vruntime += cfs_rq->min_vruntime;

2545
	/*
2546
	 * Update run-time statistics of the 'current'.
2547
	 */
2548
	update_curr(cfs_rq);
2549
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2550 2551
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2552

2553
	if (flags & ENQUEUE_WAKEUP) {
2554
		place_entity(cfs_rq, se, 0);
2555
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2556
	}
2557

2558
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2559
	check_spread(cfs_rq, se);
2560 2561
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2562
	se->on_rq = 1;
2563

2564
	if (cfs_rq->nr_running == 1) {
2565
		list_add_leaf_cfs_rq(cfs_rq);
2566 2567
		check_enqueue_throttle(cfs_rq);
	}
2568 2569
}

2570
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2571
{
2572 2573 2574 2575 2576 2577 2578 2579
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->last == se)
			cfs_rq->last = NULL;
		else
			break;
	}
}
P
Peter Zijlstra 已提交
2580

2581 2582 2583 2584 2585 2586 2587 2588 2589
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->next == se)
			cfs_rq->next = NULL;
		else
			break;
	}
P
Peter Zijlstra 已提交
2590 2591
}

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		if (cfs_rq->skip == se)
			cfs_rq->skip = NULL;
		else
			break;
	}
}

P
Peter Zijlstra 已提交
2603 2604
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2605 2606 2607 2608 2609
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2610 2611 2612

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2613 2614
}

2615
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2616

2617
static void
2618
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2619
{
2620 2621 2622 2623
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2624
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2625

2626
	update_stats_dequeue(cfs_rq, se);
2627
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2628
#ifdef CONFIG_SCHEDSTATS
2629 2630 2631 2632
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2633
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2634
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2635
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2636
		}
2637
#endif
P
Peter Zijlstra 已提交
2638 2639
	}

P
Peter Zijlstra 已提交
2640
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2641

2642
	if (se != cfs_rq->curr)
2643
		__dequeue_entity(cfs_rq, se);
2644
	se->on_rq = 0;
2645
	account_entity_dequeue(cfs_rq, se);
2646 2647 2648 2649 2650 2651

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2652
	if (!(flags & DEQUEUE_SLEEP))
2653
		se->vruntime -= cfs_rq->min_vruntime;
2654

2655 2656 2657
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2658
	update_min_vruntime(cfs_rq);
2659
	update_cfs_shares(cfs_rq);
2660 2661 2662 2663 2664
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2665
static void
I
Ingo Molnar 已提交
2666
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2667
{
2668
	unsigned long ideal_runtime, delta_exec;
2669 2670
	struct sched_entity *se;
	s64 delta;
2671

P
Peter Zijlstra 已提交
2672
	ideal_runtime = sched_slice(cfs_rq, curr);
2673
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2674
	if (delta_exec > ideal_runtime) {
2675
		resched_task(rq_of(cfs_rq)->curr);
2676 2677 2678 2679 2680
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2692 2693
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2694

2695 2696
	if (delta < 0)
		return;
2697

2698 2699
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
2700 2701
}

2702
static void
2703
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2704
{
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2716
	update_stats_curr_start(cfs_rq, se);
2717
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2718 2719 2720 2721 2722 2723
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2724
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2725
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2726 2727 2728
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2729
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2730 2731
}

2732 2733 2734
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2735 2736 2737 2738 2739 2740 2741
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2742
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2743
{
2744
	struct sched_entity *se = __pick_first_entity(cfs_rq);
2745
	struct sched_entity *left = se;
2746

2747 2748 2749 2750 2751 2752 2753 2754 2755
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
		struct sched_entity *second = __pick_next_entity(se);
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
2756

2757 2758 2759 2760 2761 2762
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

2763 2764 2765 2766 2767 2768
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

2769
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2770 2771

	return se;
2772 2773
}

2774 2775
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);

2776
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2777 2778 2779 2780 2781 2782
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
2783
		update_curr(cfs_rq);
2784

2785 2786 2787
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
2788
	check_spread(cfs_rq, prev);
2789
	if (prev->on_rq) {
2790
		update_stats_wait_start(cfs_rq, prev);
2791 2792
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
2793
		/* in !on_rq case, update occurred at dequeue */
2794
		update_entity_load_avg(prev, 1);
2795
	}
2796
	cfs_rq->curr = NULL;
2797 2798
}

P
Peter Zijlstra 已提交
2799 2800
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2801 2802
{
	/*
2803
	 * Update run-time statistics of the 'current'.
2804
	 */
2805
	update_curr(cfs_rq);
2806

2807 2808 2809
	/*
	 * Ensure that runnable average is periodically updated.
	 */
2810
	update_entity_load_avg(curr, 1);
2811
	update_cfs_rq_blocked_load(cfs_rq, 1);
2812
	update_cfs_shares(cfs_rq);
2813

P
Peter Zijlstra 已提交
2814 2815 2816 2817 2818
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
2819 2820 2821 2822
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
2823 2824 2825 2826 2827 2828 2829 2830
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
2831
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
2832
		check_preempt_tick(cfs_rq, curr);
2833 2834
}

2835 2836 2837 2838 2839 2840

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
2841 2842

#ifdef HAVE_JUMP_LABEL
2843
static struct static_key __cfs_bandwidth_used;
2844 2845 2846

static inline bool cfs_bandwidth_used(void)
{
2847
	return static_key_false(&__cfs_bandwidth_used);
2848 2849
}

2850
void cfs_bandwidth_usage_inc(void)
2851
{
2852 2853 2854 2855 2856 2857
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
2858 2859 2860 2861 2862 2863 2864
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

2865 2866
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
2867 2868
#endif /* HAVE_JUMP_LABEL */

2869 2870 2871 2872 2873 2874 2875 2876
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
2877 2878 2879 2880 2881 2882

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
2883 2884 2885 2886 2887 2888 2889
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
2890
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

2902 2903 2904 2905 2906
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

2907 2908 2909 2910 2911 2912
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

2913
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2914 2915
}

2916 2917
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2918 2919 2920
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
2921
	u64 amount = 0, min_amount, expires;
2922 2923 2924 2925 2926 2927 2928

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
2929
	else {
P
Paul Turner 已提交
2930 2931 2932 2933 2934 2935 2936 2937
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
2938
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
2939
		}
2940 2941 2942 2943 2944 2945

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
2946
	}
P
Paul Turner 已提交
2947
	expires = cfs_b->runtime_expires;
2948 2949 2950
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
2951 2952 2953 2954 2955 2956 2957
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
2958 2959

	return cfs_rq->runtime_remaining > 0;
2960 2961
}

P
Paul Turner 已提交
2962 2963 2964 2965 2966
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2967
{
P
Paul Turner 已提交
2968 2969 2970
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
2971
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2972 2973
		return;

P
Paul Turner 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

2995
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
2996 2997
{
	/* dock delta_exec before expiring quota (as it could span periods) */
2998
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
2999 3000 3001
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3002 3003
		return;

3004 3005 3006 3007 3008 3009
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
3010 3011
}

3012
static __always_inline
3013
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3014
{
3015
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3016 3017 3018 3019 3020
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3021 3022
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3023
	return cfs_bandwidth_used() && cfs_rq->throttled;
3024 3025
}

3026 3027 3028
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3029
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3058
		/* adjust cfs_rq_clock_task() */
3059
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3060
					     cfs_rq->throttled_clock_task;
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3072 3073
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3074
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3075 3076 3077 3078 3079
	cfs_rq->throttle_count++;

	return 0;
}

3080
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3081 3082 3083 3084 3085 3086 3087 3088
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3089
	/* freeze hierarchy runnable averages while throttled */
3090 3091 3092
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
		rq->nr_running -= task_delta;

	cfs_rq->throttled = 1;
3113
	cfs_rq->throttled_clock = rq_clock(rq);
3114 3115
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3116 3117
	if (!cfs_b->timer_active)
		__start_cfs_bandwidth(cfs_b);
3118 3119 3120
	raw_spin_unlock(&cfs_b->lock);
}

3121
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3122 3123 3124 3125 3126 3127 3128
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3129
	se = cfs_rq->tg->se[cpu_of(rq)];
3130 3131

	cfs_rq->throttled = 0;
3132 3133 3134

	update_rq_clock(rq);

3135
	raw_spin_lock(&cfs_b->lock);
3136
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3137 3138 3139
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3140 3141 3142
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
		rq->nr_running += task_delta;

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

3206 3207 3208 3209 3210 3211 3212 3213
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3214 3215
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
3216 3217 3218 3219 3220 3221

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

3222 3223 3224
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
3225
	cfs_b->nr_periods += overrun;
3226

P
Paul Turner 已提交
3227 3228 3229 3230
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

3231 3232 3233 3234 3235 3236 3237
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3238 3239
	__refill_cfs_bandwidth_runtime(cfs_b);

3240 3241 3242 3243 3244 3245
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

3246 3247 3248
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
3273

3274 3275 3276 3277 3278 3279 3280 3281 3282
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3283 3284 3285 3286 3287 3288 3289
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
3290

3291 3292 3293 3294 3295 3296 3297
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3298 3299 3300 3301 3302 3303 3304
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3361 3362 3363
	if (!cfs_bandwidth_used())
		return;

3364
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3380 3381 3382
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3383
		return;
3384
	}
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403

	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

3404 3405 3406 3407 3408 3409 3410
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3411 3412 3413
	if (!cfs_bandwidth_used())
		return;

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3431 3432 3433
	if (!cfs_bandwidth_used())
		return;

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
		return;

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
		return;

	throttle_cfs_rq(cfs_rq);
}
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3506 3507 3508
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3509
		raw_spin_unlock(&cfs_b->lock);
3510
		cpu_relax();
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3527
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3548 3549
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3550
	return rq_clock_task(rq_of(cfs_rq));
3551 3552
}

3553
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3554 3555
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3556
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3557 3558 3559 3560 3561

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3573 3574 3575 3576 3577

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3578 3579
#endif

3580 3581 3582 3583 3584
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3585
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3586 3587 3588

#endif /* CONFIG_CFS_BANDWIDTH */

3589 3590 3591 3592
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3593 3594 3595 3596 3597 3598 3599 3600
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3601
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3616
		if (rq->curr != p)
3617
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3618

3619
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3620 3621
	}
}
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3632
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3633 3634 3635 3636 3637
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3638
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3639 3640 3641 3642
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3643 3644 3645 3646

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3647 3648
#endif

3649 3650 3651 3652 3653
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3654
static void
3655
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3656 3657
{
	struct cfs_rq *cfs_rq;
3658
	struct sched_entity *se = &p->se;
3659 3660

	for_each_sched_entity(se) {
3661
		if (se->on_rq)
3662 3663
			break;
		cfs_rq = cfs_rq_of(se);
3664
		enqueue_entity(cfs_rq, se, flags);
3665 3666 3667 3668 3669 3670 3671 3672 3673

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3674
		cfs_rq->h_nr_running++;
3675

3676
		flags = ENQUEUE_WAKEUP;
3677
	}
P
Peter Zijlstra 已提交
3678

P
Peter Zijlstra 已提交
3679
	for_each_sched_entity(se) {
3680
		cfs_rq = cfs_rq_of(se);
3681
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3682

3683 3684 3685
		if (cfs_rq_throttled(cfs_rq))
			break;

3686
		update_cfs_shares(cfs_rq);
3687
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3688 3689
	}

3690 3691
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3692
		inc_nr_running(rq);
3693
	}
3694
	hrtick_update(rq);
3695 3696
}

3697 3698
static void set_next_buddy(struct sched_entity *se);

3699 3700 3701 3702 3703
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3704
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3705 3706
{
	struct cfs_rq *cfs_rq;
3707
	struct sched_entity *se = &p->se;
3708
	int task_sleep = flags & DEQUEUE_SLEEP;
3709 3710 3711

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3712
		dequeue_entity(cfs_rq, se, flags);
3713 3714 3715 3716 3717 3718 3719 3720 3721

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3722
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3723

3724
		/* Don't dequeue parent if it has other entities besides us */
3725 3726 3727 3728 3729 3730 3731
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
3732 3733 3734

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
3735
			break;
3736
		}
3737
		flags |= DEQUEUE_SLEEP;
3738
	}
P
Peter Zijlstra 已提交
3739

P
Peter Zijlstra 已提交
3740
	for_each_sched_entity(se) {
3741
		cfs_rq = cfs_rq_of(se);
3742
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3743

3744 3745 3746
		if (cfs_rq_throttled(cfs_rq))
			break;

3747
		update_cfs_shares(cfs_rq);
3748
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3749 3750
	}

3751
	if (!se) {
3752
		dec_nr_running(rq);
3753 3754
		update_rq_runnable_avg(rq, 1);
	}
3755
	hrtick_update(rq);
3756 3757
}

3758
#ifdef CONFIG_SMP
3759 3760 3761
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
3762
	return cpu_rq(cpu)->cfs.runnable_load_avg;
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3807
	unsigned long load_avg = rq->cfs.runnable_load_avg;
3808 3809

	if (nr_running)
3810
		return load_avg / nr_running;
3811 3812 3813 3814

	return 0;
}

3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
	if (jiffies > current->wakee_flip_decay_ts + HZ) {
		current->wakee_flips = 0;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
3832

3833
static void task_waking_fair(struct task_struct *p)
3834 3835 3836
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3837 3838 3839 3840
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
3841

3842 3843 3844 3845 3846 3847 3848 3849
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
3850

3851
	se->vruntime -= min_vruntime;
3852
	record_wakee(p);
3853 3854
}

3855
#ifdef CONFIG_FAIR_GROUP_SCHED
3856 3857 3858 3859 3860 3861
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
3905
 */
P
Peter Zijlstra 已提交
3906
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3907
{
P
Peter Zijlstra 已提交
3908
	struct sched_entity *se = tg->se[cpu];
3909

3910
	if (!tg->parent || !wl)	/* the trivial, non-cgroup case */
3911 3912
		return wl;

P
Peter Zijlstra 已提交
3913
	for_each_sched_entity(se) {
3914
		long w, W;
P
Peter Zijlstra 已提交
3915

3916
		tg = se->my_q->tg;
3917

3918 3919 3920 3921
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
3922

3923 3924 3925 3926
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
3927

3928 3929 3930 3931 3932
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
3933 3934
		else
			wl = tg->shares;
3935

3936 3937 3938 3939 3940
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
3941 3942
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
3943 3944 3945 3946

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
3947
		wl -= se->load.weight;
3948 3949 3950 3951 3952 3953 3954 3955

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
3956 3957
		wg = 0;
	}
3958

P
Peter Zijlstra 已提交
3959
	return wl;
3960 3961
}
#else
P
Peter Zijlstra 已提交
3962

3963
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
3964
{
3965
	return wl;
3966
}
P
Peter Zijlstra 已提交
3967

3968 3969
#endif

3970 3971
static int wake_wide(struct task_struct *p)
{
3972
	int factor = this_cpu_read(sd_llc_size);
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

3992
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3993
{
3994
	s64 this_load, load;
3995
	int idx, this_cpu, prev_cpu;
3996
	unsigned long tl_per_task;
3997
	struct task_group *tg;
3998
	unsigned long weight;
3999
	int balanced;
4000

4001 4002 4003 4004 4005 4006 4007
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4008 4009 4010 4011 4012
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4013

4014 4015 4016 4017 4018
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4019 4020 4021 4022
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4023
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4024 4025
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4026

4027 4028
	tg = task_group(p);
	weight = p->se.load.weight;
4029

4030 4031
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4032 4033 4034
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4035 4036 4037 4038
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4039 4040
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
4054

4055
	/*
I
Ingo Molnar 已提交
4056 4057 4058
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
4059
	 */
4060 4061
	if (sync && balanced)
		return 1;
4062

4063
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4064 4065
	tl_per_task = cpu_avg_load_per_task(this_cpu);

4066 4067 4068
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4069 4070 4071 4072 4073
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
4074
		schedstat_inc(sd, ttwu_move_affine);
4075
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4076 4077 4078 4079 4080 4081

		return 1;
	}
	return 0;
}

4082 4083 4084 4085 4086
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4087
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4088
		  int this_cpu, int sd_flag)
4089
{
4090
	struct sched_group *idlest = NULL, *group = sd->groups;
4091
	unsigned long min_load = ULONG_MAX, this_load = 0;
4092
	int load_idx = sd->forkexec_idx;
4093
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4094

4095 4096 4097
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4098 4099 4100 4101
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4102

4103 4104
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4105
					tsk_cpus_allowed(p)))
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
4125
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4151
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4152 4153 4154 4155 4156
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4157 4158 4159
		}
	}

4160 4161
	return idlest;
}
4162

4163 4164 4165
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4166
static int select_idle_sibling(struct task_struct *p, int target)
4167
{
4168
	struct sched_domain *sd;
4169
	struct sched_group *sg;
4170
	int i = task_cpu(p);
4171

4172 4173
	if (idle_cpu(target))
		return target;
4174 4175

	/*
4176
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4177
	 */
4178 4179
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4180 4181

	/*
4182
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4183
	 */
4184
	sd = rcu_dereference(per_cpu(sd_llc, target));
4185
	for_each_lower_domain(sd) {
4186 4187 4188 4189 4190 4191 4192
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4193
				if (i == target || !idle_cpu(i))
4194 4195
					goto next;
			}
4196

4197 4198 4199 4200 4201 4202 4203 4204
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4205 4206 4207
	return target;
}

4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
4219
static int
4220
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4221
{
4222
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4223 4224
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4225
	int want_affine = 0;
4226
	int sync = wake_flags & WF_SYNC;
4227

4228
	if (p->nr_cpus_allowed == 1)
4229 4230
		return prev_cpu;

4231
	if (sd_flag & SD_BALANCE_WAKE) {
4232
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4233 4234 4235
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4236

4237
	rcu_read_lock();
4238
	for_each_domain(cpu, tmp) {
4239 4240 4241
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4242
		/*
4243 4244
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4245
		 */
4246 4247 4248
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4249
			break;
4250
		}
4251

4252
		if (tmp->flags & sd_flag)
4253 4254 4255
			sd = tmp;
	}

4256
	if (affine_sd) {
4257
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4258 4259 4260 4261
			prev_cpu = cpu;

		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4262
	}
4263

4264 4265
	while (sd) {
		struct sched_group *group;
4266
		int weight;
4267

4268
		if (!(sd->flags & sd_flag)) {
4269 4270 4271
			sd = sd->child;
			continue;
		}
4272

4273
		group = find_idlest_group(sd, p, cpu, sd_flag);
4274 4275 4276 4277
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4278

4279
		new_cpu = find_idlest_cpu(group, p, cpu);
4280 4281 4282 4283
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4284
		}
4285 4286 4287

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4288
		weight = sd->span_weight;
4289 4290
		sd = NULL;
		for_each_domain(cpu, tmp) {
4291
			if (weight <= tmp->span_weight)
4292
				break;
4293
			if (tmp->flags & sd_flag)
4294 4295 4296
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4297
	}
4298 4299
unlock:
	rcu_read_unlock();
4300

4301
	return new_cpu;
4302
}
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4324 4325
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4326
	}
4327
}
4328 4329
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4330 4331
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4332 4333 4334 4335
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4336 4337
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4347
	 */
4348
	return calc_delta_fair(gran, se);
4349 4350
}

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4373
	gran = wakeup_gran(curr, se);
4374 4375 4376 4377 4378 4379
	if (vdiff > gran)
		return 1;

	return 0;
}

4380 4381
static void set_last_buddy(struct sched_entity *se)
{
4382 4383 4384 4385 4386
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4387 4388 4389 4390
}

static void set_next_buddy(struct sched_entity *se)
{
4391 4392 4393 4394 4395
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4396 4397
}

4398 4399
static void set_skip_buddy(struct sched_entity *se)
{
4400 4401
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4402 4403
}

4404 4405 4406
/*
 * Preempt the current task with a newly woken task if needed:
 */
4407
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4408 4409
{
	struct task_struct *curr = rq->curr;
4410
	struct sched_entity *se = &curr->se, *pse = &p->se;
4411
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4412
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4413
	int next_buddy_marked = 0;
4414

I
Ingo Molnar 已提交
4415 4416 4417
	if (unlikely(se == pse))
		return;

4418
	/*
4419
	 * This is possible from callers such as move_task(), in which we
4420 4421 4422 4423 4424 4425 4426
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4427
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4428
		set_next_buddy(pse);
4429 4430
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4431

4432 4433 4434
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4435 4436 4437 4438 4439 4440
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4441 4442 4443 4444
	 */
	if (test_tsk_need_resched(curr))
		return;

4445 4446 4447 4448 4449
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4450
	/*
4451 4452
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4453
	 */
4454
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4455
		return;
4456

4457
	find_matching_se(&se, &pse);
4458
	update_curr(cfs_rq_of(se));
4459
	BUG_ON(!pse);
4460 4461 4462 4463 4464 4465 4466
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4467
		goto preempt;
4468
	}
4469

4470
	return;
4471

4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4488 4489
}

4490
static struct task_struct *pick_next_task_fair(struct rq *rq)
4491
{
P
Peter Zijlstra 已提交
4492
	struct task_struct *p;
4493 4494 4495
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

4496
	if (!cfs_rq->nr_running)
4497 4498 4499
		return NULL;

	do {
4500
		se = pick_next_entity(cfs_rq);
4501
		set_next_entity(cfs_rq, se);
4502 4503 4504
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4505
	p = task_of(se);
4506 4507
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4508 4509

	return p;
4510 4511 4512 4513 4514
}

/*
 * Account for a descheduled task:
 */
4515
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4516 4517 4518 4519 4520 4521
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4522
		put_prev_entity(cfs_rq, se);
4523 4524 4525
	}
}

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4551 4552 4553 4554 4555 4556
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4557 4558 4559 4560 4561
	}

	set_skip_buddy(se);
}

4562 4563 4564 4565
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4566 4567
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4578
#ifdef CONFIG_SMP
4579
/**************************************************
P
Peter Zijlstra 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
4696

4697 4698
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

4699 4700
enum fbq_type { regular, remote, all };

4701
#define LBF_ALL_PINNED	0x01
4702
#define LBF_NEED_BREAK	0x02
4703 4704
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
4705 4706 4707 4708 4709

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
4710
	int			src_cpu;
4711 4712 4713 4714

	int			dst_cpu;
	struct rq		*dst_rq;

4715 4716
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
4717
	enum cpu_idle_type	idle;
4718
	long			imbalance;
4719 4720 4721
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

4722
	unsigned int		flags;
4723 4724 4725 4726

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
4727 4728

	enum fbq_type		fbq_type;
4729 4730
};

4731
/*
4732
 * move_task - move a task from one runqueue to another runqueue.
4733 4734
 * Both runqueues must be locked.
 */
4735
static void move_task(struct task_struct *p, struct lb_env *env)
4736
{
4737 4738 4739 4740
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
4741 4742
}

4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
/*
 * Is this task likely cache-hot:
 */
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4789
	if (src_nid == dst_nid)
4790 4791
		return false;

4792 4793 4794 4795
	/* Always encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
		return true;

4796 4797 4798
	/* If both task and group weight improve, this move is a winner. */
	if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
	    group_weight(p, dst_nid) > group_weight(p, src_nid))
4799 4800 4801 4802
		return true;

	return false;
}
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

4818
	if (src_nid == dst_nid)
4819 4820
		return false;

4821 4822 4823 4824
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

4825 4826 4827
	/* If either task or group weight get worse, don't do it. */
	if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
	    group_weight(p, dst_nid) < group_weight(p, src_nid))
4828 4829 4830 4831 4832
		return true;

	return false;
}

4833 4834 4835 4836 4837 4838
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
4839 4840 4841 4842 4843 4844

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
4845 4846
#endif

4847 4848 4849 4850
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
4851
int can_migrate_task(struct task_struct *p, struct lb_env *env)
4852 4853 4854 4855
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
4856
	 * 1) throttled_lb_pair, or
4857
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4858 4859
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
4860
	 */
4861 4862 4863
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

4864
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4865
		int cpu;
4866

4867
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4868

4869 4870
		env->flags |= LBF_SOME_PINNED;

4871 4872 4873 4874 4875 4876 4877 4878
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
4879
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4880 4881
			return 0;

4882 4883 4884
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4885
				env->flags |= LBF_DST_PINNED;
4886 4887 4888
				env->new_dst_cpu = cpu;
				break;
			}
4889
		}
4890

4891 4892
		return 0;
	}
4893 4894

	/* Record that we found atleast one task that could run on dst_cpu */
4895
	env->flags &= ~LBF_ALL_PINNED;
4896

4897
	if (task_running(env->src_rq, p)) {
4898
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4899 4900 4901 4902 4903
		return 0;
	}

	/*
	 * Aggressive migration if:
4904 4905 4906
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
4907
	 */
4908
	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4909 4910
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

4922
	if (!tsk_cache_hot ||
4923
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
4924

4925
		if (tsk_cache_hot) {
4926
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4927
			schedstat_inc(p, se.statistics.nr_forced_migrations);
4928
		}
Z
Zhang Hang 已提交
4929

4930 4931 4932
		return 1;
	}

Z
Zhang Hang 已提交
4933 4934
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
4935 4936
}

4937 4938 4939 4940 4941 4942 4943
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
4944
static int move_one_task(struct lb_env *env)
4945 4946 4947
{
	struct task_struct *p, *n;

4948 4949 4950
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
4951

4952 4953 4954 4955 4956 4957 4958 4959
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
4960 4961 4962 4963
	}
	return 0;
}

4964 4965
static const unsigned int sched_nr_migrate_break = 32;

4966
/*
4967
 * move_tasks tries to move up to imbalance weighted load from busiest to
4968 4969 4970 4971 4972 4973
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
4974
{
4975 4976
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
4977 4978
	unsigned long load;
	int pulled = 0;
4979

4980
	if (env->imbalance <= 0)
4981
		return 0;
4982

4983 4984
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
4985

4986 4987
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
4988
		if (env->loop > env->loop_max)
4989
			break;
4990 4991

		/* take a breather every nr_migrate tasks */
4992
		if (env->loop > env->loop_break) {
4993
			env->loop_break += sched_nr_migrate_break;
4994
			env->flags |= LBF_NEED_BREAK;
4995
			break;
4996
		}
4997

4998
		if (!can_migrate_task(p, env))
4999 5000 5001
			goto next;

		load = task_h_load(p);
5002

5003
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5004 5005
			goto next;

5006
		if ((load / 2) > env->imbalance)
5007
			goto next;
5008

5009
		move_task(p, env);
5010
		pulled++;
5011
		env->imbalance -= load;
5012 5013

#ifdef CONFIG_PREEMPT
5014 5015 5016 5017 5018
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
5019
		if (env->idle == CPU_NEWLY_IDLE)
5020
			break;
5021 5022
#endif

5023 5024 5025 5026
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5027
		if (env->imbalance <= 0)
5028
			break;
5029 5030 5031

		continue;
next:
5032
		list_move_tail(&p->se.group_node, tasks);
5033
	}
5034

5035
	/*
5036 5037 5038
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
5039
	 */
5040
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5041

5042
	return pulled;
5043 5044
}

P
Peter Zijlstra 已提交
5045
#ifdef CONFIG_FAIR_GROUP_SCHED
5046 5047 5048
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5049
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5050
{
5051 5052
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5053

5054 5055 5056
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5057

5058
	update_cfs_rq_blocked_load(cfs_rq, 1);
5059

5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5074
		struct rq *rq = rq_of(cfs_rq);
5075 5076
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5077 5078
}

5079
static void update_blocked_averages(int cpu)
5080 5081
{
	struct rq *rq = cpu_rq(cpu);
5082 5083
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5084

5085 5086
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5087 5088 5089 5090
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5091
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5092 5093 5094 5095 5096 5097
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5098
	}
5099 5100

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5101 5102
}

5103
/*
5104
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5105 5106 5107
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5108
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5109
{
5110 5111
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5112
	unsigned long now = jiffies;
5113
	unsigned long load;
5114

5115
	if (cfs_rq->last_h_load_update == now)
5116 5117
		return;

5118 5119 5120 5121 5122 5123 5124
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5125

5126
	if (!se) {
5127
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5139 5140
}

5141
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5142
{
5143
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5144

5145
	update_cfs_rq_h_load(cfs_rq);
5146 5147
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5148 5149
}
#else
5150
static inline void update_blocked_averages(int cpu)
5151 5152 5153
{
}

5154
static unsigned long task_h_load(struct task_struct *p)
5155
{
5156
	return p->se.avg.load_avg_contrib;
5157
}
P
Peter Zijlstra 已提交
5158
#endif
5159 5160 5161 5162 5163 5164 5165 5166 5167

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5168
	unsigned long load_per_task;
5169
	unsigned long group_power;
5170 5171 5172 5173
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int group_capacity;
	unsigned int idle_cpus;
	unsigned int group_weight;
5174
	int group_imb; /* Is there an imbalance in the group ? */
5175
	int group_has_capacity; /* Is there extra capacity in the group? */
5176 5177 5178 5179
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5180 5181
};

J
Joonsoo Kim 已提交
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_pwr;	/* Total power of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5194
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5195 5196
};

5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
		.total_pwr = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5216 5217 5218
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5219
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5220 5221
 *
 * Return: The load index.
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5244
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5245
{
5246
	return SCHED_POWER_SCALE;
5247 5248 5249 5250 5251 5252 5253
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

5254
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5255
{
5256
	unsigned long weight = sd->span_weight;
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

5269
static unsigned long scale_rt_power(int cpu)
5270 5271
{
	struct rq *rq = cpu_rq(cpu);
5272
	u64 total, available, age_stamp, avg;
5273

5274 5275 5276 5277 5278 5279 5280
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5281
	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5282

5283
	if (unlikely(total < avg)) {
5284 5285 5286
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
5287
		available = total - avg;
5288
	}
5289

5290 5291
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
5292

5293
	total >>= SCHED_POWER_SHIFT;
5294 5295 5296 5297 5298 5299

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
5300
	unsigned long weight = sd->span_weight;
5301
	unsigned long power = SCHED_POWER_SCALE;
5302 5303 5304 5305 5306 5307 5308 5309
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

5310
		power >>= SCHED_POWER_SHIFT;
5311 5312
	}

5313
	sdg->sgp->power_orig = power;
5314 5315 5316 5317 5318 5319

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

5320
	power >>= SCHED_POWER_SHIFT;
5321

5322
	power *= scale_rt_power(cpu);
5323
	power >>= SCHED_POWER_SHIFT;
5324 5325 5326 5327

	if (!power)
		power = 1;

5328
	cpu_rq(cpu)->cpu_power = power;
5329
	sdg->sgp->power = power;
5330 5331
}

5332
void update_group_power(struct sched_domain *sd, int cpu)
5333 5334 5335
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5336
	unsigned long power, power_orig;
5337 5338 5339 5340 5341
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
5342 5343 5344 5345 5346 5347

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

5348
	power_orig = power = 0;
5349

P
Peter Zijlstra 已提交
5350 5351 5352 5353 5354 5355
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5356
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5357 5358
			struct sched_group_power *sgp;
			struct rq *rq = cpu_rq(cpu);
5359

5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
			/*
			 * build_sched_domains() -> init_sched_groups_power()
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
			 * Use power_of(), which is set irrespective of domains
			 * in update_cpu_power().
			 *
			 * This avoids power/power_orig from being 0 and
			 * causing divide-by-zero issues on boot.
			 *
			 * Runtime updates will correct power_orig.
			 */
			if (unlikely(!rq->sd)) {
				power_orig += power_of(cpu);
				power += power_of(cpu);
				continue;
			}
5378

5379 5380 5381
			sgp = rq->sd->groups->sgp;
			power_orig += sgp->power_orig;
			power += sgp->power;
5382
		}
P
Peter Zijlstra 已提交
5383 5384 5385 5386 5387 5388 5389 5390
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5391
			power_orig += group->sgp->power_orig;
P
Peter Zijlstra 已提交
5392 5393 5394 5395
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
5396

5397 5398
	sdg->sgp->power_orig = power_orig;
	sdg->sgp->power = power;
5399 5400
}

5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5412
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5413
	 */
P
Peter Zijlstra 已提交
5414
	if (!(sd->flags & SD_SHARE_CPUPOWER))
5415 5416 5417 5418 5419
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
5420
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5421 5422 5423 5424 5425
		return 1;

	return 0;
}

5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5442 5443
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5444 5445
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5446
 * update_sd_pick_busiest(). And calculate_imbalance() and
5447
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5448 5449 5450 5451 5452 5453 5454
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5455
static inline int sg_imbalanced(struct sched_group *group)
5456
{
5457
	return group->sgp->imbalance;
5458 5459
}

5460 5461 5462
/*
 * Compute the group capacity.
 *
5463 5464 5465
 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
 * first dividing out the smt factor and computing the actual number of cores
 * and limit power unit capacity with that.
5466 5467 5468
 */
static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
{
5469 5470 5471 5472 5473 5474
	unsigned int capacity, smt, cpus;
	unsigned int power, power_orig;

	power = group->sgp->power;
	power_orig = group->sgp->power_orig;
	cpus = group->group_weight;
5475

5476 5477 5478
	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
	capacity = cpus / smt; /* cores */
5479

5480
	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5481 5482 5483 5484 5485 5486
	if (!capacity)
		capacity = fix_small_capacity(env->sd, group);

	return capacity;
}

5487 5488
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5489
 * @env: The load balancing environment.
5490 5491 5492 5493 5494
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5495 5496
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5497
			int local_group, struct sg_lb_stats *sgs)
5498
{
5499
	unsigned long load;
5500
	int i;
5501

5502 5503
	memset(sgs, 0, sizeof(*sgs));

5504
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5505 5506 5507
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5508
		if (local_group)
5509
			load = target_load(i, load_idx);
5510
		else
5511 5512 5513
			load = source_load(i, load_idx);

		sgs->group_load += load;
5514
		sgs->sum_nr_running += rq->nr_running;
5515 5516 5517 5518
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
5519
		sgs->sum_weighted_load += weighted_cpuload(i);
5520 5521
		if (idle_cpu(i))
			sgs->idle_cpus++;
5522 5523 5524
	}

	/* Adjust by relative CPU power of the group */
5525 5526
	sgs->group_power = group->sgp->power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5527

5528
	if (sgs->sum_nr_running)
5529
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5530

5531
	sgs->group_weight = group->group_weight;
5532

5533 5534 5535
	sgs->group_imb = sg_imbalanced(group);
	sgs->group_capacity = sg_capacity(env, group);

5536 5537
	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
5538 5539
}

5540 5541
/**
 * update_sd_pick_busiest - return 1 on busiest group
5542
 * @env: The load balancing environment.
5543 5544
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5545
 * @sgs: sched_group statistics
5546 5547 5548
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5549 5550 5551
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5552
 */
5553
static bool update_sd_pick_busiest(struct lb_env *env,
5554 5555
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5556
				   struct sg_lb_stats *sgs)
5557
{
J
Joonsoo Kim 已提交
5558
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5572 5573
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

5614
/**
5615
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5616
 * @env: The load balancing environment.
5617 5618
 * @sds: variable to hold the statistics for this sched_domain.
 */
5619
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5620
{
5621 5622
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
5623
	struct sg_lb_stats tmp_sgs;
5624 5625 5626 5627 5628
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

5629
	load_idx = get_sd_load_idx(env->sd, env->idle);
5630 5631

	do {
J
Joonsoo Kim 已提交
5632
		struct sg_lb_stats *sgs = &tmp_sgs;
5633 5634
		int local_group;

5635
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
5636 5637 5638
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
5639 5640 5641 5642

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgp->next_update))
				update_group_power(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
5643
		}
5644

J
Joonsoo Kim 已提交
5645
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5646

5647 5648 5649
		if (local_group)
			goto next_group;

5650 5651
		/*
		 * In case the child domain prefers tasks go to siblings
5652
		 * first, lower the sg capacity to one so that we'll try
5653 5654 5655 5656 5657 5658
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
5659
		 */
5660 5661
		if (prefer_sibling && sds->local &&
		    sds->local_stat.group_has_capacity)
5662
			sgs->group_capacity = min(sgs->group_capacity, 1U);
5663

5664
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5665
			sds->busiest = sg;
J
Joonsoo Kim 已提交
5666
			sds->busiest_stat = *sgs;
5667 5668
		}

5669 5670 5671 5672 5673
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
		sds->total_pwr += sgs->group_power;

5674
		sg = sg->next;
5675
	} while (sg != env->sd->groups);
5676 5677 5678

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
5698
 * Return: 1 when packing is required and a task should be moved to
5699 5700
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
5701
 * @env: The load balancing environment.
5702 5703
 * @sds: Statistics of the sched_domain which is to be packed
 */
5704
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5705 5706 5707
{
	int busiest_cpu;

5708
	if (!(env->sd->flags & SD_ASYM_PACKING))
5709 5710 5711 5712 5713 5714
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
5715
	if (env->dst_cpu > busiest_cpu)
5716 5717
		return 0;

5718
	env->imbalance = DIV_ROUND_CLOSEST(
5719 5720
		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
		SCHED_POWER_SCALE);
5721

5722
	return 1;
5723 5724 5725 5726 5727 5728
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
5729
 * @env: The load balancing environment.
5730 5731
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
5732 5733
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5734 5735 5736
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
5737
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
5738
	struct sg_lb_stats *local, *busiest;
5739

J
Joonsoo Kim 已提交
5740 5741
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5742

J
Joonsoo Kim 已提交
5743 5744 5745 5746
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
5747

J
Joonsoo Kim 已提交
5748 5749
	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
5750
		busiest->group_power;
J
Joonsoo Kim 已提交
5751

5752 5753
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
5754
		env->imbalance = busiest->load_per_task;
5755 5756 5757 5758 5759 5760 5761 5762 5763
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

5764
	pwr_now += busiest->group_power *
J
Joonsoo Kim 已提交
5765
			min(busiest->load_per_task, busiest->avg_load);
5766
	pwr_now += local->group_power *
J
Joonsoo Kim 已提交
5767
			min(local->load_per_task, local->avg_load);
5768
	pwr_now /= SCHED_POWER_SCALE;
5769 5770

	/* Amount of load we'd subtract */
J
Joonsoo Kim 已提交
5771
	tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5772
		busiest->group_power;
J
Joonsoo Kim 已提交
5773
	if (busiest->avg_load > tmp) {
5774
		pwr_move += busiest->group_power *
J
Joonsoo Kim 已提交
5775 5776 5777
			    min(busiest->load_per_task,
				busiest->avg_load - tmp);
	}
5778 5779

	/* Amount of load we'd add */
5780
	if (busiest->avg_load * busiest->group_power <
J
Joonsoo Kim 已提交
5781
	    busiest->load_per_task * SCHED_POWER_SCALE) {
5782 5783
		tmp = (busiest->avg_load * busiest->group_power) /
		      local->group_power;
J
Joonsoo Kim 已提交
5784 5785
	} else {
		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5786
		      local->group_power;
J
Joonsoo Kim 已提交
5787
	}
5788 5789
	pwr_move += local->group_power *
		    min(local->load_per_task, local->avg_load + tmp);
5790
	pwr_move /= SCHED_POWER_SCALE;
5791 5792 5793

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
J
Joonsoo Kim 已提交
5794
		env->imbalance = busiest->load_per_task;
5795 5796 5797 5798 5799
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
5800
 * @env: load balance environment
5801 5802
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
5803
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5804
{
5805
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
5806 5807 5808 5809
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
5810

J
Joonsoo Kim 已提交
5811
	if (busiest->group_imb) {
5812 5813 5814 5815
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
5816 5817
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
5818 5819
	}

5820 5821 5822 5823 5824
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
5825 5826
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
5827 5828
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
5829 5830
	}

J
Joonsoo Kim 已提交
5831
	if (!busiest->group_imb) {
5832 5833
		/*
		 * Don't want to pull so many tasks that a group would go idle.
5834 5835
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
5836
		 */
J
Joonsoo Kim 已提交
5837 5838
		load_above_capacity =
			(busiest->sum_nr_running - busiest->group_capacity);
5839

5840
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5841
		load_above_capacity /= busiest->group_power;
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
5852
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5853 5854

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
5855
	env->imbalance = min(
5856 5857
		max_pull * busiest->group_power,
		(sds->avg_load - local->avg_load) * local->group_power
J
Joonsoo Kim 已提交
5858
	) / SCHED_POWER_SCALE;
5859 5860 5861

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
5862
	 * there is no guarantee that any tasks will be moved so we'll have
5863 5864 5865
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
5866
	if (env->imbalance < busiest->load_per_task)
5867
		return fix_small_imbalance(env, sds);
5868
}
5869

5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
5882
 * @env: The load balancing environment.
5883
 *
5884
 * Return:	- The busiest group if imbalance exists.
5885 5886 5887 5888
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
5889
static struct sched_group *find_busiest_group(struct lb_env *env)
5890
{
J
Joonsoo Kim 已提交
5891
	struct sg_lb_stats *local, *busiest;
5892 5893
	struct sd_lb_stats sds;

5894
	init_sd_lb_stats(&sds);
5895 5896 5897 5898 5899

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
5900
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
5901 5902
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
5903

5904 5905
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
5906 5907
		return sds.busiest;

5908
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
5909
	if (!sds.busiest || busiest->sum_nr_running == 0)
5910 5911
		goto out_balanced;

5912
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5913

P
Peter Zijlstra 已提交
5914 5915
	/*
	 * If the busiest group is imbalanced the below checks don't
5916
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
5917 5918
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
5919
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
5920 5921
		goto force_balance;

5922
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
J
Joonsoo Kim 已提交
5923 5924
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
	    !busiest->group_has_capacity)
5925 5926
		goto force_balance;

5927 5928 5929 5930
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
5931
	if (local->avg_load >= busiest->avg_load)
5932 5933
		goto out_balanced;

5934 5935 5936 5937
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
5938
	if (local->avg_load >= sds.avg_load)
5939 5940
		goto out_balanced;

5941
	if (env->idle == CPU_IDLE) {
5942 5943 5944 5945 5946 5947
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
5948 5949
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
5950
			goto out_balanced;
5951 5952 5953 5954 5955
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
5956 5957
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
5958
			goto out_balanced;
5959
	}
5960

5961
force_balance:
5962
	/* Looks like there is an imbalance. Compute it */
5963
	calculate_imbalance(env, &sds);
5964 5965 5966
	return sds.busiest;

out_balanced:
5967
	env->imbalance = 0;
5968 5969 5970 5971 5972 5973
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
5974
static struct rq *find_busiest_queue(struct lb_env *env,
5975
				     struct sched_group *group)
5976 5977
{
	struct rq *busiest = NULL, *rq;
5978
	unsigned long busiest_load = 0, busiest_power = 1;
5979 5980
	int i;

5981
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5982 5983 5984 5985 5986
		unsigned long power, capacity, wl;
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
5987

5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

		power = power_of(i);
		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6012
		if (!capacity)
6013
			capacity = fix_small_capacity(env->sd, group);
6014

6015
		wl = weighted_cpuload(i);
6016

6017 6018 6019 6020
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
6021
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6022 6023
			continue;

6024 6025 6026 6027 6028
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
6029 6030 6031 6032 6033
		 *
		 * Thus we're looking for max(wl_i / power_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * power_j > wl_j * power_i;  where j is our
		 * previous maximum.
6034
		 */
6035 6036 6037
		if (wl * busiest_power > busiest_load * power) {
			busiest_load = wl;
			busiest_power = power;
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6052
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6053

6054
static int need_active_balance(struct lb_env *env)
6055
{
6056 6057 6058
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6059 6060 6061 6062 6063 6064

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6065
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6066
			return 1;
6067 6068 6069 6070 6071
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6072 6073
static int active_load_balance_cpu_stop(void *data);

6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6105
	return balance_cpu == env->dst_cpu;
6106 6107
}

6108 6109 6110 6111 6112 6113
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6114
			int *continue_balancing)
6115
{
6116
	int ld_moved, cur_ld_moved, active_balance = 0;
6117
	struct sched_domain *sd_parent = sd->parent;
6118 6119 6120
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6121
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6122

6123 6124
	struct lb_env env = {
		.sd		= sd,
6125 6126
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6127
		.dst_grpmask    = sched_group_cpus(sd->groups),
6128
		.idle		= idle,
6129
		.loop_break	= sched_nr_migrate_break,
6130
		.cpus		= cpus,
6131
		.fbq_type	= all,
6132 6133
	};

6134 6135 6136 6137
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6138
	if (idle == CPU_NEWLY_IDLE)
6139 6140
		env.dst_grpmask = NULL;

6141 6142 6143 6144 6145
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6146 6147
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6148
		goto out_balanced;
6149
	}
6150

6151
	group = find_busiest_group(&env);
6152 6153 6154 6155 6156
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6157
	busiest = find_busiest_queue(&env, group);
6158 6159 6160 6161 6162
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6163
	BUG_ON(busiest == env.dst_rq);
6164

6165
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6166 6167 6168 6169 6170 6171 6172 6173 6174

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6175
		env.flags |= LBF_ALL_PINNED;
6176 6177 6178
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6179

6180
more_balance:
6181
		local_irq_save(flags);
6182
		double_rq_lock(env.dst_rq, busiest);
6183 6184 6185 6186 6187 6188 6189

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
6190
		double_rq_unlock(env.dst_rq, busiest);
6191 6192 6193 6194 6195
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6196 6197 6198
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6199 6200 6201 6202 6203
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6223
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6224

6225 6226 6227
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6228
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6229
			env.dst_cpu	 = env.new_dst_cpu;
6230
			env.flags	&= ~LBF_DST_PINNED;
6231 6232
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6233

6234 6235 6236 6237 6238 6239
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6240

6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgp->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6253
		/* All tasks on this runqueue were pinned by CPU affinity */
6254
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6255
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6256 6257 6258
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6259
				goto redo;
6260
			}
6261 6262 6263 6264 6265 6266
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6267 6268 6269 6270 6271 6272 6273 6274
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6275

6276
		if (need_active_balance(&env)) {
6277 6278
			raw_spin_lock_irqsave(&busiest->lock, flags);

6279 6280 6281
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6282 6283
			 */
			if (!cpumask_test_cpu(this_cpu,
6284
					tsk_cpus_allowed(busiest->curr))) {
6285 6286
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6287
				env.flags |= LBF_ALL_PINNED;
6288 6289 6290
				goto out_one_pinned;
			}

6291 6292 6293 6294 6295
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6296 6297 6298 6299 6300 6301
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6302

6303
			if (active_balance) {
6304 6305 6306
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6307
			}
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6341
	if (((env.flags & LBF_ALL_PINNED) &&
6342
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6343 6344 6345
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6346
	ld_moved = 0;
6347 6348 6349 6350 6351 6352 6353 6354
out:
	return ld_moved;
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6355
void idle_balance(int this_cpu, struct rq *this_rq)
6356 6357 6358 6359
{
	struct sched_domain *sd;
	int pulled_task = 0;
	unsigned long next_balance = jiffies + HZ;
6360
	u64 curr_cost = 0;
6361

6362
	this_rq->idle_stamp = rq_clock(this_rq);
6363 6364 6365 6366

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

6367 6368 6369 6370 6371
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6372
	update_blocked_averages(this_cpu);
6373
	rcu_read_lock();
6374 6375
	for_each_domain(this_cpu, sd) {
		unsigned long interval;
6376
		int continue_balancing = 1;
6377
		u64 t0, domain_cost;
6378 6379 6380 6381

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6382 6383 6384
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
			break;

6385
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6386 6387
			t0 = sched_clock_cpu(this_cpu);

6388
			/* If we've pulled tasks over stop searching: */
6389
			pulled_task = load_balance(this_cpu, this_rq,
6390 6391
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6392 6393 6394 6395 6396 6397

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6398
		}
6399 6400 6401 6402

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
N
Nikhil Rao 已提交
6403 6404
		if (pulled_task) {
			this_rq->idle_stamp = 0;
6405
			break;
N
Nikhil Rao 已提交
6406
		}
6407
	}
6408
	rcu_read_unlock();
6409 6410 6411

	raw_spin_lock(&this_rq->lock);

6412 6413 6414 6415 6416 6417 6418
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
	}
6419 6420 6421

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;
6422 6423 6424
}

/*
6425 6426 6427 6428
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6429
 */
6430
static int active_load_balance_cpu_stop(void *data)
6431
{
6432 6433
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6434
	int target_cpu = busiest_rq->push_cpu;
6435
	struct rq *target_rq = cpu_rq(target_cpu);
6436
	struct sched_domain *sd;
6437 6438 6439 6440 6441 6442 6443

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6444 6445 6446

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6447
		goto out_unlock;
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6460
	rcu_read_lock();
6461 6462 6463 6464 6465 6466 6467
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6468 6469
		struct lb_env env = {
			.sd		= sd,
6470 6471 6472 6473
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6474 6475 6476
			.idle		= CPU_IDLE,
		};

6477 6478
		schedstat_inc(sd, alb_count);

6479
		if (move_one_task(&env))
6480 6481 6482 6483
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6484
	rcu_read_unlock();
6485
	double_unlock_balance(busiest_rq, target_rq);
6486 6487 6488 6489
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6490 6491
}

6492
#ifdef CONFIG_NO_HZ_COMMON
6493 6494 6495 6496 6497 6498
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6499
static struct {
6500
	cpumask_var_t idle_cpus_mask;
6501
	atomic_t nr_cpus;
6502 6503
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6504

6505
static inline int find_new_ilb(int call_cpu)
6506
{
6507
	int ilb = cpumask_first(nohz.idle_cpus_mask);
6508

6509 6510 6511 6512
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
6513 6514
}

6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
static void nohz_balancer_kick(int cpu)
{
	int ilb_cpu;

	nohz.next_balance++;

6526
	ilb_cpu = find_new_ilb(cpu);
6527

6528 6529
	if (ilb_cpu >= nr_cpu_ids)
		return;
6530

6531
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6532 6533 6534 6535 6536 6537 6538 6539
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
6540 6541 6542
	return;
}

6543
static inline void nohz_balance_exit_idle(int cpu)
6544 6545 6546 6547 6548 6549 6550 6551
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
		atomic_dec(&nohz.nr_cpus);
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

6552 6553 6554
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
6555
	int cpu = smp_processor_id();
6556 6557

	rcu_read_lock();
6558
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6559 6560 6561 6562 6563

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

6564
	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6565
unlock:
6566 6567 6568 6569 6570 6571
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
6572
	int cpu = smp_processor_id();
6573 6574

	rcu_read_lock();
6575
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6576 6577 6578 6579 6580

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

6581
	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6582
unlock:
6583 6584 6585
	rcu_read_unlock();
}

6586
/*
6587
 * This routine will record that the cpu is going idle with tick stopped.
6588
 * This info will be used in performing idle load balancing in the future.
6589
 */
6590
void nohz_balance_enter_idle(int cpu)
6591
{
6592 6593 6594 6595 6596 6597
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

6598 6599
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
6600

6601 6602 6603
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6604
}
6605

6606
static int sched_ilb_notifier(struct notifier_block *nfb,
6607 6608 6609 6610
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
6611
		nohz_balance_exit_idle(smp_processor_id());
6612 6613 6614 6615 6616
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
6617 6618 6619 6620
#endif

static DEFINE_SPINLOCK(balancing);

6621 6622 6623 6624
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
6625
void update_max_interval(void)
6626 6627 6628 6629
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

6630 6631 6632 6633
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
6634
 * Balancing parameters are set up in init_sched_domains.
6635 6636 6637
 */
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
6638
	int continue_balancing = 1;
6639 6640
	struct rq *rq = cpu_rq(cpu);
	unsigned long interval;
6641
	struct sched_domain *sd;
6642 6643 6644
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
6645 6646
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
6647

6648
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
6649

6650
	rcu_read_lock();
6651
	for_each_domain(cpu, sd) {
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

6664 6665 6666
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

6678 6679 6680 6681 6682 6683
		interval = sd->balance_interval;
		if (idle != CPU_IDLE)
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
6684
		interval = clamp(interval, 1UL, max_load_balance_interval);
6685 6686 6687 6688 6689 6690 6691 6692 6693

		need_serialize = sd->flags & SD_SERIALIZE;

		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
6694
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6695
				/*
6696
				 * The LBF_DST_PINNED logic could have changed
6697 6698
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
6699
				 */
6700
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
			}
			sd->last_balance = jiffies;
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
6711 6712
	}
	if (need_decay) {
6713
		/*
6714 6715
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
6716
		 */
6717 6718
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
6719
	}
6720
	rcu_read_unlock();
6721 6722 6723 6724 6725 6726 6727 6728 6729 6730

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

6731
#ifdef CONFIG_NO_HZ_COMMON
6732
/*
6733
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6734 6735
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
6736 6737 6738 6739 6740 6741
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
{
	struct rq *this_rq = cpu_rq(this_cpu);
	struct rq *rq;
	int balance_cpu;

6742 6743 6744
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
6745 6746

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6747
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6748 6749 6750 6751 6752 6753 6754
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
6755
		if (need_resched())
6756 6757
			break;

V
Vincent Guittot 已提交
6758 6759 6760 6761 6762 6763
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
6764 6765 6766 6767 6768 6769 6770

		rebalance_domains(balance_cpu, CPU_IDLE);

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
6771 6772
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6773 6774 6775
}

/*
6776 6777 6778 6779 6780 6781 6782
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
6783 6784 6785 6786
 */
static inline int nohz_kick_needed(struct rq *rq, int cpu)
{
	unsigned long now = jiffies;
6787
	struct sched_domain *sd;
6788 6789
	struct sched_group_power *sgp;
	int nr_busy;
6790

6791
	if (unlikely(idle_cpu(cpu)))
6792 6793
		return 0;

6794 6795 6796 6797
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
6798
	set_cpu_sd_state_busy();
6799
	nohz_balance_exit_idle(cpu);
6800 6801 6802 6803 6804 6805 6806

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
6807 6808

	if (time_before(now, nohz.next_balance))
6809 6810
		return 0;

6811 6812
	if (rq->nr_running >= 2)
		goto need_kick;
6813

6814
	rcu_read_lock();
6815
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6816

6817 6818 6819
	if (sd) {
		sgp = sd->groups->sgp;
		nr_busy = atomic_read(&sgp->nr_busy_cpus);
6820

6821
		if (nr_busy > 1)
6822
			goto need_kick_unlock;
6823
	}
6824 6825 6826 6827 6828 6829 6830

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

6831
	rcu_read_unlock();
6832
	return 0;
6833 6834 6835

need_kick_unlock:
	rcu_read_unlock();
6836 6837
need_kick:
	return 1;
6838 6839 6840 6841 6842 6843 6844 6845 6846
}
#else
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
6847 6848 6849 6850
static void run_rebalance_domains(struct softirq_action *h)
{
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
6851
	enum cpu_idle_type idle = this_rq->idle_balance ?
6852 6853 6854 6855 6856
						CPU_IDLE : CPU_NOT_IDLE;

	rebalance_domains(this_cpu, idle);

	/*
6857
	 * If this cpu has a pending nohz_balance_kick, then do the
6858 6859 6860
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
6861
	nohz_idle_balance(this_cpu, idle);
6862 6863 6864 6865
}

static inline int on_null_domain(int cpu)
{
6866
	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6867 6868 6869 6870 6871
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
6872
void trigger_load_balance(struct rq *rq, int cpu)
6873 6874 6875 6876 6877
{
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
		raise_softirq(SCHED_SOFTIRQ);
6878
#ifdef CONFIG_NO_HZ_COMMON
6879
	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6880 6881
		nohz_balancer_kick(cpu);
#endif
6882 6883
}

6884 6885 6886 6887 6888 6889 6890 6891
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
6892 6893 6894

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
6895 6896
}

6897
#endif /* CONFIG_SMP */
6898

6899 6900 6901
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
6902
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6903 6904 6905 6906 6907 6908
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
6909
		entity_tick(cfs_rq, se, queued);
6910
	}
6911

6912
	if (numabalancing_enabled)
6913
		task_tick_numa(rq, curr);
6914

6915
	update_rq_runnable_avg(rq, 1);
6916 6917 6918
}

/*
P
Peter Zijlstra 已提交
6919 6920 6921
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
6922
 */
P
Peter Zijlstra 已提交
6923
static void task_fork_fair(struct task_struct *p)
6924
{
6925 6926
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
6927
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
6928 6929 6930
	struct rq *rq = this_rq();
	unsigned long flags;

6931
	raw_spin_lock_irqsave(&rq->lock, flags);
6932

6933 6934
	update_rq_clock(rq);

6935 6936 6937
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

6938 6939 6940 6941 6942 6943 6944 6945 6946
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
6947

6948
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
6949

6950 6951
	if (curr)
		se->vruntime = curr->vruntime;
6952
	place_entity(cfs_rq, se, 1);
6953

P
Peter Zijlstra 已提交
6954
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
6955
		/*
6956 6957 6958
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
6959
		swap(curr->vruntime, se->vruntime);
6960
		resched_task(rq->curr);
6961
	}
6962

6963 6964
	se->vruntime -= cfs_rq->min_vruntime;

6965
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6966 6967
}

6968 6969 6970 6971
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
6972 6973
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6974
{
P
Peter Zijlstra 已提交
6975 6976 6977
	if (!p->se.on_rq)
		return;

6978 6979 6980 6981 6982
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
6983
	if (rq->curr == p) {
6984 6985 6986
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
6987
		check_preempt_curr(rq, p, 0);
6988 6989
}

P
Peter Zijlstra 已提交
6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Ensure the task's vruntime is normalized, so that when its
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it was !on_rq, then only when
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
	if (!se->on_rq && p->state != TASK_RUNNING) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7012

7013
#ifdef CONFIG_SMP
7014 7015 7016 7017 7018
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7019 7020 7021
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7022 7023
	}
#endif
P
Peter Zijlstra 已提交
7024 7025
}

7026 7027 7028
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7029
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7030
{
P
Peter Zijlstra 已提交
7031 7032 7033
	if (!p->se.on_rq)
		return;

7034 7035 7036 7037 7038
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7039
	if (rq->curr == p)
7040 7041
		resched_task(rq->curr);
	else
7042
		check_preempt_curr(rq, p, 0);
7043 7044
}

7045 7046 7047 7048 7049 7050 7051 7052 7053
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7054 7055 7056 7057 7058 7059 7060
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7061 7062
}

7063 7064 7065 7066 7067 7068 7069
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7070
#ifdef CONFIG_SMP
7071
	atomic64_set(&cfs_rq->decay_counter, 1);
7072
	atomic_long_set(&cfs_rq->removed_load, 0);
7073
#endif
7074 7075
}

P
Peter Zijlstra 已提交
7076
#ifdef CONFIG_FAIR_GROUP_SCHED
7077
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
7078
{
7079
	struct cfs_rq *cfs_rq;
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7093 7094 7095 7096 7097 7098
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7099 7100
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7101 7102 7103 7104
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
7105
	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7106 7107
		on_rq = 1;

7108 7109 7110
	if (!on_rq)
		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
	set_task_rq(p, task_cpu(p));
7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123
	if (!on_rq) {
		cfs_rq = cfs_rq_of(&p->se);
		p->se.vruntime += cfs_rq->min_vruntime;
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
#endif
	}
P
Peter Zijlstra 已提交
7124
}
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

	se->my_q = cfs_rq;
7223 7224
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7255 7256 7257

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7258
		for_each_sched_entity(se)
7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7280

7281
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7282 7283 7284 7285 7286 7287 7288 7289 7290
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7291
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7292 7293 7294 7295

	return rr_interval;
}

7296 7297 7298
/*
 * All the scheduling class methods:
 */
7299
const struct sched_class fair_sched_class = {
7300
	.next			= &idle_sched_class,
7301 7302 7303
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7304
	.yield_to_task		= yield_to_task_fair,
7305

I
Ingo Molnar 已提交
7306
	.check_preempt_curr	= check_preempt_wakeup,
7307 7308 7309 7310

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7311
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7312
	.select_task_rq		= select_task_rq_fair,
7313
	.migrate_task_rq	= migrate_task_rq_fair,
7314

7315 7316
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7317 7318

	.task_waking		= task_waking_fair,
7319
#endif
7320

7321
	.set_curr_task          = set_curr_task_fair,
7322
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7323
	.task_fork		= task_fork_fair,
7324 7325

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7326
	.switched_from		= switched_from_fair,
7327
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7328

7329 7330
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7331
#ifdef CONFIG_FAIR_GROUP_SCHED
7332
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7333
#endif
7334 7335 7336
};

#ifdef CONFIG_SCHED_DEBUG
7337
void print_cfs_stats(struct seq_file *m, int cpu)
7338 7339 7340
{
	struct cfs_rq *cfs_rq;

7341
	rcu_read_lock();
7342
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7343
		print_cfs_rq(m, cpu, cfs_rq);
7344
	rcu_read_unlock();
7345 7346
}
#endif
7347 7348 7349 7350 7351 7352

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7353
#ifdef CONFIG_NO_HZ_COMMON
7354
	nohz.next_balance = jiffies;
7355
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7356
	cpu_notifier(sched_ilb_notifier, 0);
7357 7358 7359 7360
#endif
#endif /* SMP */

}