hugetlb.c 100.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42 43
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

44 45
__initdata LIST_HEAD(huge_boot_pages);

46 47 48
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
49
static unsigned long __initdata default_hstate_size;
50

51
/*
52 53
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
54
 */
55
DEFINE_SPINLOCK(hugetlb_lock);
56

57 58 59 60 61 62 63
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
139
	return subpool_inode(file_inode(vma->vm_file));
140 141
}

142 143 144
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
145
 *
146 147
 * The region data structures are embedded into a resv_map and
 * protected by a resv_map's lock
148 149 150 151 152 153 154
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

155
static long region_add(struct resv_map *resv, long f, long t)
156
{
157
	struct list_head *head = &resv->regions;
158 159
	struct file_region *rg, *nrg, *trg;

160
	spin_lock(&resv->lock);
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
190
	spin_unlock(&resv->lock);
191 192 193
	return 0;
}

194
static long region_chg(struct resv_map *resv, long f, long t)
195
{
196
	struct list_head *head = &resv->regions;
197
	struct file_region *rg, *nrg = NULL;
198 199
	long chg = 0;

200 201
retry:
	spin_lock(&resv->lock);
202 203 204 205 206 207 208 209 210
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
211 212 213 214 215 216 217 218 219 220 221
		if (!nrg) {
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
222

223 224 225
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
226 227 228 229 230 231 232 233 234 235 236 237
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
238
			goto out;
239

L
Lucas De Marchi 已提交
240
		/* We overlap with this area, if it extends further than
241 242 243 244 245 246 247 248
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
249 250 251 252 253 254 255 256

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
257 258 259
	return chg;
}

260
static long region_truncate(struct resv_map *resv, long end)
261
{
262
	struct list_head *head = &resv->regions;
263 264 265
	struct file_region *rg, *trg;
	long chg = 0;

266
	spin_lock(&resv->lock);
267 268 269 270 271
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
272
		goto out;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
289 290 291

out:
	spin_unlock(&resv->lock);
292 293 294
	return chg;
}

295
static long region_count(struct resv_map *resv, long f, long t)
296
{
297
	struct list_head *head = &resv->regions;
298 299 300
	struct file_region *rg;
	long chg = 0;

301
	spin_lock(&resv->lock);
302 303
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
304 305
		long seg_from;
		long seg_to;
306 307 308 309 310 311 312 313 314 315 316

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
317
	spin_unlock(&resv->lock);
318 319 320 321

	return chg;
}

322 323 324 325
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
326 327
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
328
{
329 330
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
331 332
}

333 334 335 336 337 338
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

339 340 341 342 343 344 345 346 347 348 349 350 351
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

352
	return 1UL << huge_page_shift(hstate);
353
}
354
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355

356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

369 370 371 372 373 374 375
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
376
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377

378 379 380 381 382 383 384 385 386
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
387 388 389 390 391 392 393 394 395
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
396
 */
397 398 399 400 401 402 403 404 405 406 407
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

408
struct resv_map *resv_map_alloc(void)
409 410 411 412 413 414
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
415
	spin_lock_init(&resv_map->lock);
416 417 418 419 420
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

421
void resv_map_release(struct kref *ref)
422 423 424 425
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
426
	region_truncate(resv_map, 0);
427 428 429
	kfree(resv_map);
}

430 431 432 433 434
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

435
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436
{
437
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
438 439 440 441 442 443 444
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
445 446
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
447
	}
448 449
}

450
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451
{
452 453
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
454

455 456
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
457 458 459 460
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
461 462
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
463 464

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465 466 467 468
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
469
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
470 471

	return (get_vma_private_data(vma) & flag) != 0;
472 473
}

474
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475 476
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
477
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
478
	if (!(vma->vm_flags & VM_MAYSHARE))
479 480 481 482
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
483
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484
{
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
500 501

	/* Shared mappings always use reserves */
502
	if (vma->vm_flags & VM_MAYSHARE)
503
		return 1;
504 505 506 507 508

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
509 510
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
511

512
	return 0;
513 514
}

515
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
516 517
{
	int nid = page_to_nid(page);
518
	list_move(&page->lru, &h->hugepage_freelists[nid]);
519 520
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
521 522
}

523 524 525 526
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

527 528 529 530 531 532 533 534
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
535
		return NULL;
536
	list_move(&page->lru, &h->hugepage_activelist);
537
	set_page_refcounted(page);
538 539 540 541 542
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

543 544 545
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
546
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
547 548 549 550 551
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

552 553
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
554 555
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
556
{
557
	struct page *page = NULL;
558
	struct mempolicy *mpol;
559
	nodemask_t *nodemask;
560
	struct zonelist *zonelist;
561 562
	struct zone *zone;
	struct zoneref *z;
563
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
564

565 566 567 568 569
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
570
	if (!vma_has_reserves(vma, chg) &&
571
			h->free_huge_pages - h->resv_huge_pages == 0)
572
		goto err;
573

574
	/* If reserves cannot be used, ensure enough pages are in the pool */
575
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576
		goto err;
577

578
retry_cpuset:
579
	cpuset_mems_cookie = read_mems_allowed_begin();
580
	zonelist = huge_zonelist(vma, address,
581
					htlb_alloc_mask(h), &mpol, &nodemask);
582

583 584
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
585
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
586 587
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
588 589 590 591 592
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

593
				SetPagePrivate(page);
594
				h->resv_huge_pages--;
595 596
				break;
			}
A
Andrew Morton 已提交
597
		}
L
Linus Torvalds 已提交
598
	}
599

600
	mpol_cond_put(mpol);
601
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602
		goto retry_cpuset;
L
Linus Torvalds 已提交
603
	return page;
604 605 606

err:
	return NULL;
L
Linus Torvalds 已提交
607 608
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
					unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__ClearPageTail(p);
		set_page_refcounted(p);
		p->first_page = NULL;
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

820
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
821 822
{
	int i;
823

824 825
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
826

827 828 829
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
830 831
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
832 833
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
834
	}
835
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
836 837
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
838 839 840 841 842 843 844
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		arch_release_hugepage(page);
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
845 846
}

847 848 849 850 851 852 853 854 855 856 857
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

858
void free_huge_page(struct page *page)
859
{
860 861 862 863
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
864
	struct hstate *h = page_hstate(page);
865
	int nid = page_to_nid(page);
866 867
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
868
	bool restore_reserve;
869

870
	set_page_private(page, 0);
871
	page->mapping = NULL;
872
	BUG_ON(page_count(page));
873
	BUG_ON(page_mapcount(page));
874
	restore_reserve = PagePrivate(page);
875
	ClearPagePrivate(page);
876 877

	spin_lock(&hugetlb_lock);
878 879
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
880 881 882
	if (restore_reserve)
		h->resv_huge_pages++;

883
	if (h->surplus_huge_pages_node[nid]) {
884 885
		/* remove the page from active list */
		list_del(&page->lru);
886 887 888
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
889
	} else {
890
		arch_clear_hugepage_flags(page);
891
		enqueue_huge_page(h, page);
892
	}
893
	spin_unlock(&hugetlb_lock);
894
	hugepage_subpool_put_pages(spool, 1);
895 896
}

897
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
898
{
899
	INIT_LIST_HEAD(&page->lru);
900 901
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
902
	set_hugetlb_cgroup(page, NULL);
903 904
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
905 906 907 908
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

909
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
910 911 912 913 914 915 916 917
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
918
	__ClearPageReserved(page);
919
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
920 921 922 923 924 925 926 927 928 929 930 931 932
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
933
		set_page_count(p, 0);
934
		p->first_page = page;
935 936 937
		/* Make sure p->first_page is always valid for PageTail() */
		smp_wmb();
		__SetPageTail(p);
938 939 940
	}
}

A
Andrew Morton 已提交
941 942 943 944 945
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
946 947 948 949 950 951
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
952
	return get_compound_page_dtor(page) == free_huge_page;
953
}
954 955
EXPORT_SYMBOL_GPL(PageHuge);

956 957 958 959 960 961 962 963 964
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

965
	return get_compound_page_dtor(page_head) == free_huge_page;
966 967
}

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

985
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
986 987
{
	struct page *page;
988

989
	page = alloc_pages_exact_node(nid,
990
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
991
						__GFP_REPEAT|__GFP_NOWARN,
992
		huge_page_order(h));
L
Linus Torvalds 已提交
993
	if (page) {
994
		if (arch_prepare_hugepage(page)) {
995
			__free_pages(page, huge_page_order(h));
996
			return NULL;
997
		}
998
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
999
	}
1000 1001 1002 1003

	return page;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1026 1027 1028 1029 1030 1031
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1032 1033
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1034
{
1035
	int nr_nodes, node;
1036 1037
	int ret = 0;

1038
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1039 1040 1041 1042
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1043 1044
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1045
			struct page *page =
1046
				list_entry(h->hugepage_freelists[node].next,
1047 1048 1049
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1050
			h->free_huge_pages_node[node]--;
1051 1052
			if (acct_surplus) {
				h->surplus_huge_pages--;
1053
				h->surplus_huge_pages_node[node]--;
1054
			}
1055 1056
			update_and_free_page(h, page);
			ret = 1;
1057
			break;
1058
		}
1059
	}
1060 1061 1062 1063

	return ret;
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

1093 1094 1095
	if (!hugepages_supported())
		return;

1096 1097 1098 1099 1100 1101 1102 1103 1104
	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1105
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1106 1107
{
	struct page *page;
1108
	unsigned int r_nid;
1109

1110
	if (hstate_is_gigantic(h))
1111 1112
		return NULL;

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1137
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1138 1139 1140
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1141 1142
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1143 1144 1145
	}
	spin_unlock(&hugetlb_lock);

1146
	if (nid == NUMA_NO_NODE)
1147
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1148 1149 1150 1151
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
1152
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1153
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1154

1155 1156
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
1157
		page = NULL;
1158 1159
	}

1160
	spin_lock(&hugetlb_lock);
1161
	if (page) {
1162
		INIT_LIST_HEAD(&page->lru);
1163
		r_nid = page_to_nid(page);
1164
		set_compound_page_dtor(page, free_huge_page);
1165
		set_hugetlb_cgroup(page, NULL);
1166 1167 1168
		/*
		 * We incremented the global counters already
		 */
1169 1170
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1171
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1172
	} else {
1173 1174
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1175
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1176
	}
1177
	spin_unlock(&hugetlb_lock);
1178 1179 1180 1181

	return page;
}

1182 1183 1184 1185 1186 1187 1188
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1189
	struct page *page = NULL;
1190 1191

	spin_lock(&hugetlb_lock);
1192 1193
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1194 1195
	spin_unlock(&hugetlb_lock);

1196
	if (!page)
1197 1198 1199 1200 1201
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1202
/*
L
Lucas De Marchi 已提交
1203
 * Increase the hugetlb pool such that it can accommodate a reservation
1204 1205
 * of size 'delta'.
 */
1206
static int gather_surplus_pages(struct hstate *h, int delta)
1207 1208 1209 1210 1211
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1212
	bool alloc_ok = true;
1213

1214
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1215
	if (needed <= 0) {
1216
		h->resv_huge_pages += delta;
1217
		return 0;
1218
	}
1219 1220 1221 1222 1223 1224 1225 1226

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1227
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1228 1229 1230 1231
		if (!page) {
			alloc_ok = false;
			break;
		}
1232 1233
		list_add(&page->lru, &surplus_list);
	}
1234
	allocated += i;
1235 1236 1237 1238 1239 1240

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1241 1242
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1253 1254
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1255
	 * needed to accommodate the reservation.  Add the appropriate number
1256
	 * of pages to the hugetlb pool and free the extras back to the buddy
1257 1258 1259
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1260 1261
	 */
	needed += allocated;
1262
	h->resv_huge_pages += delta;
1263
	ret = 0;
1264

1265
	/* Free the needed pages to the hugetlb pool */
1266
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1267 1268
		if ((--needed) < 0)
			break;
1269 1270 1271 1272 1273
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1274
		VM_BUG_ON_PAGE(page_count(page), page);
1275
		enqueue_huge_page(h, page);
1276
	}
1277
free:
1278
	spin_unlock(&hugetlb_lock);
1279 1280

	/* Free unnecessary surplus pages to the buddy allocator */
1281 1282
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1283
	spin_lock(&hugetlb_lock);
1284 1285 1286 1287 1288 1289 1290 1291

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1292
 * Called with hugetlb_lock held.
1293
 */
1294 1295
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1296 1297 1298
{
	unsigned long nr_pages;

1299
	/* Uncommit the reservation */
1300
	h->resv_huge_pages -= unused_resv_pages;
1301

1302
	/* Cannot return gigantic pages currently */
1303
	if (hstate_is_gigantic(h))
1304 1305
		return;

1306
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1307

1308 1309
	/*
	 * We want to release as many surplus pages as possible, spread
1310 1311 1312 1313 1314
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1315 1316
	 */
	while (nr_pages--) {
1317
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1318
			break;
1319
		cond_resched_lock(&hugetlb_lock);
1320 1321 1322
	}
}

1323 1324 1325
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1326 1327 1328 1329 1330 1331
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1332
 */
1333
static long vma_needs_reservation(struct hstate *h,
1334
			struct vm_area_struct *vma, unsigned long addr)
1335
{
1336 1337 1338
	struct resv_map *resv;
	pgoff_t idx;
	long chg;
1339

1340 1341
	resv = vma_resv_map(vma);
	if (!resv)
1342
		return 1;
1343

1344 1345
	idx = vma_hugecache_offset(h, vma, addr);
	chg = region_chg(resv, idx, idx + 1);
1346

1347 1348 1349 1350
	if (vma->vm_flags & VM_MAYSHARE)
		return chg;
	else
		return chg < 0 ? chg : 0;
1351
}
1352 1353
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1354
{
1355 1356
	struct resv_map *resv;
	pgoff_t idx;
1357

1358 1359 1360
	resv = vma_resv_map(vma);
	if (!resv)
		return;
1361

1362 1363
	idx = vma_hugecache_offset(h, vma, addr);
	region_add(resv, idx, idx + 1);
1364 1365
}

1366
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1367
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1368
{
1369
	struct hugepage_subpool *spool = subpool_vma(vma);
1370
	struct hstate *h = hstate_vma(vma);
1371
	struct page *page;
1372
	long chg;
1373 1374
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1375

1376
	idx = hstate_index(h);
1377
	/*
1378 1379 1380 1381 1382 1383
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1384
	 */
1385
	chg = vma_needs_reservation(h, vma, addr);
1386
	if (chg < 0)
1387
		return ERR_PTR(-ENOMEM);
1388 1389
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1390
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1391

1392
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1393 1394 1395
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1396
	spin_lock(&hugetlb_lock);
1397
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1398
	if (!page) {
1399
		spin_unlock(&hugetlb_lock);
1400
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1401 1402 1403
		if (!page)
			goto out_uncharge_cgroup;

1404 1405
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1406
		/* Fall through */
K
Ken Chen 已提交
1407
	}
1408 1409
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1410

1411
	set_page_private(page, (unsigned long)spool);
1412

1413
	vma_commit_reservation(h, vma, addr);
1414
	return page;
1415 1416 1417 1418 1419 1420 1421

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
	if (chg || avoid_reserve)
		hugepage_subpool_put_pages(spool, 1);
	return ERR_PTR(-ENOSPC);
1422 1423
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1438
int __weak alloc_bootmem_huge_page(struct hstate *h)
1439 1440
{
	struct huge_bootmem_page *m;
1441
	int nr_nodes, node;
1442

1443
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1444 1445
		void *addr;

1446 1447 1448
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1449 1450 1451 1452 1453 1454 1455
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1456
			goto found;
1457 1458 1459 1460 1461
		}
	}
	return 0;

found:
1462
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1463 1464 1465 1466 1467 1468
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1469
static void __init prep_compound_huge_page(struct page *page, int order)
1470 1471 1472 1473 1474 1475 1476
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1477 1478 1479 1480 1481 1482 1483
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1484 1485 1486 1487
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1488 1489
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1490 1491 1492
#else
		page = virt_to_page(m);
#endif
1493
		WARN_ON(page_count(page) != 1);
1494
		prep_compound_huge_page(page, h->order);
1495
		WARN_ON(PageReserved(page));
1496
		prep_new_huge_page(h, page, page_to_nid(page));
1497 1498 1499 1500 1501 1502
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
1503
		if (hstate_is_gigantic(h))
1504
			adjust_managed_page_count(page, 1 << h->order);
1505 1506 1507
	}
}

1508
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1509 1510
{
	unsigned long i;
1511

1512
	for (i = 0; i < h->max_huge_pages; ++i) {
1513
		if (hstate_is_gigantic(h)) {
1514 1515
			if (!alloc_bootmem_huge_page(h))
				break;
1516
		} else if (!alloc_fresh_huge_page(h,
1517
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1518 1519
			break;
	}
1520
	h->max_huge_pages = i;
1521 1522 1523 1524 1525 1526 1527
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1528
		/* oversize hugepages were init'ed in early boot */
1529
		if (!hstate_is_gigantic(h))
1530
			hugetlb_hstate_alloc_pages(h);
1531 1532 1533
	}
}

A
Andi Kleen 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1545 1546 1547 1548 1549
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1550
		char buf[32];
1551
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1552 1553
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1554 1555 1556
	}
}

L
Linus Torvalds 已提交
1557
#ifdef CONFIG_HIGHMEM
1558 1559
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1560
{
1561 1562
	int i;

1563
	if (hstate_is_gigantic(h))
1564 1565
		return;

1566
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1567
		struct page *page, *next;
1568 1569 1570
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1571
				return;
L
Linus Torvalds 已提交
1572 1573 1574
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1575
			update_and_free_page(h, page);
1576 1577
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1578 1579 1580 1581
		}
	}
}
#else
1582 1583
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1584 1585 1586 1587
{
}
#endif

1588 1589 1590 1591 1592
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1593 1594
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1595
{
1596
	int nr_nodes, node;
1597 1598 1599

	VM_BUG_ON(delta != -1 && delta != 1);

1600 1601 1602 1603
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1604
		}
1605 1606 1607 1608 1609
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1610
		}
1611 1612
	}
	return 0;
1613

1614 1615 1616 1617
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1618 1619
}

1620
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1621 1622
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1623
{
1624
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1625

1626
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1627 1628
		return h->max_huge_pages;

1629 1630 1631 1632
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1633 1634 1635 1636 1637 1638
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1639
	 */
L
Linus Torvalds 已提交
1640
	spin_lock(&hugetlb_lock);
1641
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1642
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1643 1644 1645
			break;
	}

1646
	while (count > persistent_huge_pages(h)) {
1647 1648 1649 1650 1651 1652
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1653 1654 1655 1656
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
1657 1658 1659 1660
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1661 1662 1663
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1664 1665 1666 1667 1668 1669 1670 1671
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1672 1673 1674 1675 1676 1677 1678 1679
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1680
	 */
1681
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1682
	min_count = max(count, min_count);
1683
	try_to_free_low(h, min_count, nodes_allowed);
1684
	while (min_count < persistent_huge_pages(h)) {
1685
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1686
			break;
1687
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
1688
	}
1689
	while (count < persistent_huge_pages(h)) {
1690
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1691 1692 1693
			break;
	}
out:
1694
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1695
	spin_unlock(&hugetlb_lock);
1696
	return ret;
L
Linus Torvalds 已提交
1697 1698
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1709 1710 1711
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1712 1713
{
	int i;
1714

1715
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1716 1717 1718
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1719
			return &hstates[i];
1720 1721 1722
		}

	return kobj_to_node_hstate(kobj, nidp);
1723 1724
}

1725
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1726 1727
					struct kobj_attribute *attr, char *buf)
{
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1739
}
1740

1741 1742 1743
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
1744 1745
{
	int err;
1746
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1747

1748
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1749 1750 1751 1752
		err = -EINVAL;
		goto out;
	}

1753 1754 1755 1756 1757 1758 1759
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1760
			nodes_allowed = &node_states[N_MEMORY];
1761 1762 1763 1764 1765 1766 1767 1768 1769
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1770
		nodes_allowed = &node_states[N_MEMORY];
1771

1772
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1773

1774
	if (nodes_allowed != &node_states[N_MEMORY])
1775 1776 1777
		NODEMASK_FREE(nodes_allowed);

	return len;
1778 1779 1780
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1781 1782
}

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

1800 1801 1802 1803 1804 1805 1806 1807 1808
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
1809
	return nr_hugepages_store_common(false, kobj, buf, len);
1810 1811 1812
}
HSTATE_ATTR(nr_hugepages);

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
1828
	return nr_hugepages_store_common(true, kobj, buf, len);
1829 1830 1831 1832 1833
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1834 1835 1836
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1837
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1838 1839
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1840

1841 1842 1843 1844 1845
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1846
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1847

1848
	if (hstate_is_gigantic(h))
1849 1850
		return -EINVAL;

1851
	err = kstrtoul(buf, 10, &input);
1852
	if (err)
1853
		return err;
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1877 1878 1879 1880 1881 1882
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1883
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1884 1885 1886 1887 1888 1889 1890
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1902 1903 1904 1905 1906 1907 1908 1909 1910
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1911 1912 1913
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1914 1915 1916 1917 1918 1919 1920
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1921 1922 1923
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1924 1925
{
	int retval;
1926
	int hi = hstate_index(h);
1927

1928 1929
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1930 1931
		return -ENOMEM;

1932
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1933
	if (retval)
1934
		kobject_put(hstate_kobjs[hi]);
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1949 1950
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1951
		if (err)
1952
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1953 1954 1955
	}
}

1956 1957 1958 1959
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1960 1961 1962
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1963 1964 1965 1966 1967 1968 1969 1970 1971
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1972
 * A subset of global hstate attributes for node devices
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1986
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2009
 * Unregister hstate attributes from a single node device.
2010 2011
 * No-op if no hstate attributes attached.
 */
2012
static void hugetlb_unregister_node(struct node *node)
2013 2014
{
	struct hstate *h;
2015
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2016 2017

	if (!nhs->hugepages_kobj)
2018
		return;		/* no hstate attributes */
2019

2020 2021 2022 2023 2024
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2025
		}
2026
	}
2027 2028 2029 2030 2031 2032

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2033
 * hugetlb module exit:  unregister hstate attributes from node devices
2034 2035 2036 2037 2038 2039 2040
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2041
	 * disable node device registrations.
2042 2043 2044 2045 2046 2047 2048
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2049
		hugetlb_unregister_node(node_devices[nid]);
2050 2051 2052
}

/*
2053
 * Register hstate attributes for a single node device.
2054 2055
 * No-op if attributes already registered.
 */
2056
static void hugetlb_register_node(struct node *node)
2057 2058
{
	struct hstate *h;
2059
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2060 2061 2062 2063 2064 2065
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2066
							&node->dev.kobj);
2067 2068 2069 2070 2071 2072 2073 2074
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2075 2076
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2077 2078 2079 2080 2081 2082 2083
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2084
 * hugetlb init time:  register hstate attributes for all registered node
2085 2086
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2087
 */
2088
static void __init hugetlb_register_all_nodes(void)
2089 2090 2091
{
	int nid;

2092
	for_each_node_state(nid, N_MEMORY) {
2093
		struct node *node = node_devices[nid];
2094
		if (node->dev.id == nid)
2095 2096 2097 2098
			hugetlb_register_node(node);
	}

	/*
2099
	 * Let the node device driver know we're here so it can
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2121 2122 2123 2124
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2125 2126
	hugetlb_unregister_all_nodes();

2127
	for_each_hstate(h) {
2128
		kobject_put(hstate_kobjs[hstate_index(h)]);
2129 2130 2131
	}

	kobject_put(hugepages_kobj);
2132
	kfree(htlb_fault_mutex_table);
2133 2134 2135 2136 2137
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2138 2139
	int i;

2140
	if (!hugepages_supported())
2141
		return 0;
2142

2143 2144 2145 2146
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2147
	}
2148
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2149 2150
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2151 2152

	hugetlb_init_hstates();
2153
	gather_bootmem_prealloc();
2154 2155 2156
	report_hugepages();

	hugetlb_sysfs_init();
2157
	hugetlb_register_all_nodes();
2158
	hugetlb_cgroup_file_init();
2159

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
	htlb_fault_mutex_table =
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
	BUG_ON(!htlb_fault_mutex_table);

	for (i = 0; i < num_fault_mutexes; i++)
		mutex_init(&htlb_fault_mutex_table[i]);
2171 2172 2173 2174 2175 2176 2177 2178
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2179 2180
	unsigned long i;

2181
	if (size_to_hstate(PAGE_SIZE << order)) {
2182
		pr_warning("hugepagesz= specified twice, ignoring\n");
2183 2184
		return;
	}
2185
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2186
	BUG_ON(order == 0);
2187
	h = &hstates[hugetlb_max_hstate++];
2188 2189
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2190 2191 2192 2193
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2194
	INIT_LIST_HEAD(&h->hugepage_activelist);
2195 2196
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2197 2198
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2199

2200 2201 2202
	parsed_hstate = h;
}

2203
static int __init hugetlb_nrpages_setup(char *s)
2204 2205
{
	unsigned long *mhp;
2206
	static unsigned long *last_mhp;
2207 2208

	/*
2209
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2210 2211
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2212
	if (!hugetlb_max_hstate)
2213 2214 2215 2216
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2217
	if (mhp == last_mhp) {
2218 2219
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2220 2221 2222
		return 1;
	}

2223 2224 2225
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2226 2227 2228 2229 2230
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2231
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2232 2233 2234 2235
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2236 2237
	return 1;
}
2238 2239 2240 2241 2242 2243 2244 2245
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2246

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2259 2260 2261
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2262
{
2263
	struct hstate *h = &default_hstate;
2264
	unsigned long tmp = h->max_huge_pages;
2265
	int ret;
2266

2267 2268 2269
	if (!hugepages_supported())
		return -ENOTSUPP;

2270 2271
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2272 2273 2274
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2275

2276 2277 2278
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2279 2280
out:
	return ret;
L
Linus Torvalds 已提交
2281
}
2282

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2300
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2301
			void __user *buffer,
2302 2303
			size_t *length, loff_t *ppos)
{
2304
	struct hstate *h = &default_hstate;
2305
	unsigned long tmp;
2306
	int ret;
2307

2308 2309 2310
	if (!hugepages_supported())
		return -ENOTSUPP;

2311
	tmp = h->nr_overcommit_huge_pages;
2312

2313
	if (write && hstate_is_gigantic(h))
2314 2315
		return -EINVAL;

2316 2317
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2318 2319 2320
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2321 2322 2323 2324 2325 2326

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2327 2328
out:
	return ret;
2329 2330
}

L
Linus Torvalds 已提交
2331 2332
#endif /* CONFIG_SYSCTL */

2333
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2334
{
2335
	struct hstate *h = &default_hstate;
2336 2337
	if (!hugepages_supported())
		return;
2338
	seq_printf(m,
2339 2340 2341 2342 2343
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2344 2345 2346 2347 2348
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2349 2350 2351 2352
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2353
	struct hstate *h = &default_hstate;
2354 2355
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2356 2357
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2358 2359
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2360 2361 2362
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2363 2364
}

2365 2366 2367 2368 2369
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2370 2371 2372
	if (!hugepages_supported())
		return;

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2383 2384 2385
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2386 2387 2388 2389 2390 2391
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2392 2393
}

2394
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2417
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2418 2419
			goto out;

2420 2421
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2422 2423 2424 2425 2426 2427
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2428
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2429 2430 2431 2432 2433 2434

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2435 2436
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2437
	struct resv_map *resv = vma_resv_map(vma);
2438 2439 2440 2441 2442

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2443
	 * has a reference to the reservation map it cannot disappear until
2444 2445 2446
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2447
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2448
		kref_get(&resv->refs);
2449 2450
}

2451 2452
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2453
	struct hstate *h = hstate_vma(vma);
2454
	struct resv_map *resv = vma_resv_map(vma);
2455
	struct hugepage_subpool *spool = subpool_vma(vma);
2456
	unsigned long reserve, start, end;
2457

2458 2459
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2460

2461 2462
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2463

2464
	reserve = (end - start) - region_count(resv, start, end);
2465

2466 2467 2468 2469 2470
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
		hugetlb_acct_memory(h, -reserve);
		hugepage_subpool_put_pages(spool, reserve);
2471
	}
2472 2473
}

L
Linus Torvalds 已提交
2474 2475 2476 2477 2478 2479
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2480
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2481 2482
{
	BUG();
N
Nick Piggin 已提交
2483
	return 0;
L
Linus Torvalds 已提交
2484 2485
}

2486
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2487
	.fault = hugetlb_vm_op_fault,
2488
	.open = hugetlb_vm_op_open,
2489
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2490 2491
};

2492 2493
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2494 2495 2496
{
	pte_t entry;

2497
	if (writable) {
2498 2499
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2500
	} else {
2501 2502
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2503 2504 2505
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2506
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2507 2508 2509 2510

	return entry;
}

2511 2512 2513 2514 2515
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2516
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2517
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2518
		update_mmu_cache(vma, address, ptep);
2519 2520
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
2546

D
David Gibson 已提交
2547 2548 2549 2550 2551
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2552
	unsigned long addr;
2553
	int cow;
2554 2555
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2556 2557 2558
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2559 2560

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2561

2562 2563 2564 2565 2566
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2567
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2568
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2569 2570 2571
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2572
		dst_pte = huge_pte_alloc(dst, addr, sz);
2573 2574 2575 2576
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2577 2578 2579 2580 2581

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2582 2583 2584
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
2603
			if (cow) {
2604
				huge_ptep_set_wrprotect(src, addr, src_pte);
2605 2606 2607
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
2608
			entry = huge_ptep_get(src_pte);
2609 2610
			ptepage = pte_page(entry);
			get_page(ptepage);
2611
			page_dup_rmap(ptepage);
2612 2613
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2614 2615
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2616 2617
	}

2618 2619 2620 2621
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2622 2623
}

2624 2625 2626
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2627
{
2628
	int force_flush = 0;
D
David Gibson 已提交
2629 2630
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2631
	pte_t *ptep;
D
David Gibson 已提交
2632
	pte_t pte;
2633
	spinlock_t *ptl;
D
David Gibson 已提交
2634
	struct page *page;
2635 2636
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2637 2638
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2639

D
David Gibson 已提交
2640
	WARN_ON(!is_vm_hugetlb_page(vma));
2641 2642
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2643

2644
	tlb_start_vma(tlb, vma);
2645
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2646
	address = start;
2647
again:
2648
	for (; address < end; address += sz) {
2649
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2650
		if (!ptep)
2651 2652
			continue;

2653
		ptl = huge_pte_lock(h, mm, ptep);
2654
		if (huge_pmd_unshare(mm, &address, ptep))
2655
			goto unlock;
2656

2657 2658
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2659
			goto unlock;
2660 2661

		/*
2662 2663
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
2664
		 */
2665
		if (unlikely(!pte_present(pte))) {
2666
			huge_pte_clear(mm, address, ptep);
2667
			goto unlock;
2668
		}
2669 2670

		page = pte_page(pte);
2671 2672 2673 2674 2675 2676 2677
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2678
				goto unlock;
2679 2680 2681 2682 2683 2684 2685 2686 2687

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2688
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2689
		tlb_remove_tlb_entry(tlb, ptep, address);
2690
		if (huge_pte_dirty(pte))
2691
			set_page_dirty(page);
2692

2693 2694
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2695
		if (force_flush) {
2696
			address += sz;
2697
			spin_unlock(ptl);
2698
			break;
2699
		}
2700
		/* Bail out after unmapping reference page if supplied */
2701 2702
		if (ref_page) {
			spin_unlock(ptl);
2703
			break;
2704 2705 2706
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2707
	}
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2718
	}
2719
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2720
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2721
}
D
David Gibson 已提交
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
2735
	 * is to clear it before releasing the i_mmap_rwsem. This works
2736
	 * because in the context this is called, the VMA is about to be
2737
	 * destroyed and the i_mmap_rwsem is held.
2738 2739 2740 2741
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2742
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2743
			  unsigned long end, struct page *ref_page)
2744
{
2745 2746 2747 2748 2749
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2750
	tlb_gather_mmu(&tlb, mm, start, end);
2751 2752
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2753 2754
}

2755 2756 2757 2758 2759 2760
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2761 2762
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
2763
{
2764
	struct hstate *h = hstate_vma(vma);
2765 2766 2767 2768 2769 2770 2771 2772
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2773
	address = address & huge_page_mask(h);
2774 2775
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2776
	mapping = file_inode(vma->vm_file)->i_mapping;
2777

2778 2779 2780 2781 2782
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2783
	i_mmap_lock_write(mapping);
2784
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2797 2798
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2799
	}
2800
	i_mmap_unlock_write(mapping);
2801 2802
}

2803 2804
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2805 2806 2807
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2808
 */
2809
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2810
			unsigned long address, pte_t *ptep, pte_t pte,
2811
			struct page *pagecache_page, spinlock_t *ptl)
2812
{
2813
	struct hstate *h = hstate_vma(vma);
2814
	struct page *old_page, *new_page;
2815
	int ret = 0, outside_reserve = 0;
2816 2817
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2818 2819 2820

	old_page = pte_page(pte);

2821
retry_avoidcopy:
2822 2823
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2824 2825
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2826
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2827
		return 0;
2828 2829
	}

2830 2831 2832 2833 2834 2835 2836 2837 2838
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2839
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2840 2841 2842
			old_page != pagecache_page)
		outside_reserve = 1;

2843
	page_cache_get(old_page);
2844

2845 2846 2847 2848
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
2849
	spin_unlock(ptl);
2850
	new_page = alloc_huge_page(vma, address, outside_reserve);
2851

2852
	if (IS_ERR(new_page)) {
2853 2854 2855 2856 2857 2858 2859 2860
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
2861
			page_cache_release(old_page);
2862
			BUG_ON(huge_pte_none(pte));
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
2875 2876
		}

2877 2878 2879
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
2880 2881
	}

2882 2883 2884 2885
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2886
	if (unlikely(anon_vma_prepare(vma))) {
2887 2888
		ret = VM_FAULT_OOM;
		goto out_release_all;
2889
	}
2890

A
Andrea Arcangeli 已提交
2891 2892
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2893
	__SetPageUptodate(new_page);
2894

2895 2896 2897
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2898

2899
	/*
2900
	 * Retake the page table lock to check for racing updates
2901 2902
	 * before the page tables are altered
	 */
2903
	spin_lock(ptl);
2904
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2905
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2906 2907
		ClearPagePrivate(new_page);

2908
		/* Break COW */
2909
		huge_ptep_clear_flush(vma, address, ptep);
2910
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2911 2912
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2913
		page_remove_rmap(old_page);
2914
		hugepage_add_new_anon_rmap(new_page, vma, address);
2915 2916 2917
		/* Make the old page be freed below */
		new_page = old_page;
	}
2918
	spin_unlock(ptl);
2919
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2920
out_release_all:
2921
	page_cache_release(new_page);
2922
out_release_old:
2923
	page_cache_release(old_page);
2924

2925 2926
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
2927 2928
}

2929
/* Return the pagecache page at a given address within a VMA */
2930 2931
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2932 2933
{
	struct address_space *mapping;
2934
	pgoff_t idx;
2935 2936

	mapping = vma->vm_file->f_mapping;
2937
	idx = vma_hugecache_offset(h, vma, address);
2938 2939 2940 2941

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2942 2943 2944 2945 2946
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2962
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2963 2964
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
2965
{
2966
	struct hstate *h = hstate_vma(vma);
2967
	int ret = VM_FAULT_SIGBUS;
2968
	int anon_rmap = 0;
A
Adam Litke 已提交
2969 2970
	unsigned long size;
	struct page *page;
2971
	pte_t new_pte;
2972
	spinlock_t *ptl;
A
Adam Litke 已提交
2973

2974 2975 2976
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2977
	 * COW. Warn that such a situation has occurred as it may not be obvious
2978 2979
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2980 2981
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2982 2983 2984
		return ret;
	}

A
Adam Litke 已提交
2985 2986 2987 2988
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2989 2990 2991
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2992
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2993 2994
		if (idx >= size)
			goto out;
2995
		page = alloc_huge_page(vma, address, 0);
2996
		if (IS_ERR(page)) {
2997 2998 2999 3000 3001
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3002 3003
			goto out;
		}
A
Andrea Arcangeli 已提交
3004
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3005
		__SetPageUptodate(page);
3006

3007
		if (vma->vm_flags & VM_MAYSHARE) {
3008
			int err;
K
Ken Chen 已提交
3009
			struct inode *inode = mapping->host;
3010 3011 3012 3013 3014 3015 3016 3017

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3018
			ClearPagePrivate(page);
K
Ken Chen 已提交
3019 3020

			spin_lock(&inode->i_lock);
3021
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
3022
			spin_unlock(&inode->i_lock);
3023
		} else {
3024
			lock_page(page);
3025 3026 3027 3028
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3029
			anon_rmap = 1;
3030
		}
3031
	} else {
3032 3033 3034 3035 3036 3037
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3038
			ret = VM_FAULT_HWPOISON |
3039
				VM_FAULT_SET_HINDEX(hstate_index(h));
3040 3041
			goto backout_unlocked;
		}
3042
	}
3043

3044 3045 3046 3047 3048 3049
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3050
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3051 3052 3053 3054
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3055

3056 3057
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3058
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3059 3060 3061
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3062
	ret = 0;
3063
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3064 3065
		goto backout;

3066 3067
	if (anon_rmap) {
		ClearPagePrivate(page);
3068
		hugepage_add_new_anon_rmap(page, vma, address);
3069
	} else
3070
		page_dup_rmap(page);
3071 3072 3073 3074
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3075
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3076
		/* Optimization, do the COW without a second fault */
3077
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3078 3079
	}

3080
	spin_unlock(ptl);
A
Adam Litke 已提交
3081 3082
	unlock_page(page);
out:
3083
	return ret;
A
Adam Litke 已提交
3084 3085

backout:
3086
	spin_unlock(ptl);
3087
backout_unlocked:
A
Adam Litke 已提交
3088 3089 3090
	unlock_page(page);
	put_page(page);
	goto out;
3091 3092
}

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
#ifdef CONFIG_SMP
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3128
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3129
			unsigned long address, unsigned int flags)
3130
{
3131
	pte_t *ptep, entry;
3132
	spinlock_t *ptl;
3133
	int ret;
3134 3135
	u32 hash;
	pgoff_t idx;
3136
	struct page *page = NULL;
3137
	struct page *pagecache_page = NULL;
3138
	struct hstate *h = hstate_vma(vma);
3139
	struct address_space *mapping;
3140
	int need_wait_lock = 0;
3141

3142 3143
	address &= huge_page_mask(h);

3144 3145 3146
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3147
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3148
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3149 3150
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3151
			return VM_FAULT_HWPOISON_LARGE |
3152
				VM_FAULT_SET_HINDEX(hstate_index(h));
3153 3154
	}

3155
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3156 3157 3158
	if (!ptep)
		return VM_FAULT_OOM;

3159 3160 3161
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3162 3163 3164 3165 3166
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3167 3168 3169
	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&htlb_fault_mutex_table[hash]);

3170 3171
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3172
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3173
		goto out_mutex;
3174
	}
3175

N
Nick Piggin 已提交
3176
	ret = 0;
3177

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3188 3189 3190 3191 3192 3193 3194 3195
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3196
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3197 3198
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3199
			goto out_mutex;
3200
		}
3201

3202
		if (!(vma->vm_flags & VM_MAYSHARE))
3203 3204 3205 3206
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3207 3208 3209 3210 3211 3212
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3213 3214 3215 3216 3217 3218 3219
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3220 3221 3222 3223
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3224

3225
	get_page(page);
3226

3227
	if (flags & FAULT_FLAG_WRITE) {
3228
		if (!huge_pte_write(entry)) {
3229
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3230
					pagecache_page, ptl);
3231
			goto out_put_page;
3232
		}
3233
		entry = huge_pte_mkdirty(entry);
3234 3235
	}
	entry = pte_mkyoung(entry);
3236 3237
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3238
		update_mmu_cache(vma, address, ptep);
3239 3240 3241 3242
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3243 3244
out_ptl:
	spin_unlock(ptl);
3245 3246 3247 3248 3249

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3250
out_mutex:
3251
	mutex_unlock(&htlb_fault_mutex_table[hash]);
3252 3253 3254 3255 3256 3257 3258 3259 3260
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3261
	return ret;
3262 3263
}

3264 3265 3266 3267
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3268
{
3269 3270
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3271
	unsigned long remainder = *nr_pages;
3272
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3273 3274

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3275
		pte_t *pte;
3276
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3277
		int absent;
A
Adam Litke 已提交
3278
		struct page *page;
D
David Gibson 已提交
3279

A
Adam Litke 已提交
3280 3281
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3282
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3283
		 * first, for the page indexing below to work.
3284 3285
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3286
		 */
3287
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3288 3289
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3290 3291 3292 3293
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3294 3295 3296 3297
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3298
		 */
H
Hugh Dickins 已提交
3299 3300
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3301 3302
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3303 3304 3305
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3306

3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3318 3319
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3320
			int ret;
D
David Gibson 已提交
3321

3322 3323
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3324 3325
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3326
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3327
				continue;
D
David Gibson 已提交
3328

A
Adam Litke 已提交
3329 3330 3331 3332
			remainder = 0;
			break;
		}

3333
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3334
		page = pte_page(huge_ptep_get(pte));
3335
same_page:
3336
		if (pages) {
H
Hugh Dickins 已提交
3337
			pages[i] = mem_map_offset(page, pfn_offset);
3338
			get_page_foll(pages[i]);
3339
		}
D
David Gibson 已提交
3340 3341 3342 3343 3344

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3345
		++pfn_offset;
D
David Gibson 已提交
3346 3347
		--remainder;
		++i;
3348
		if (vaddr < vma->vm_end && remainder &&
3349
				pfn_offset < pages_per_huge_page(h)) {
3350 3351 3352 3353 3354 3355
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3356
		spin_unlock(ptl);
D
David Gibson 已提交
3357
	}
3358
	*nr_pages = remainder;
D
David Gibson 已提交
3359 3360
	*position = vaddr;

H
Hugh Dickins 已提交
3361
	return i ? i : -EFAULT;
D
David Gibson 已提交
3362
}
3363

3364
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3365 3366 3367 3368 3369 3370
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3371
	struct hstate *h = hstate_vma(vma);
3372
	unsigned long pages = 0;
3373 3374 3375 3376

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3377
	mmu_notifier_invalidate_range_start(mm, start, end);
3378
	i_mmap_lock_write(vma->vm_file->f_mapping);
3379
	for (; address < end; address += huge_page_size(h)) {
3380
		spinlock_t *ptl;
3381 3382 3383
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3384
		ptl = huge_pte_lock(h, mm, ptep);
3385 3386
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3387
			spin_unlock(ptl);
3388
			continue;
3389
		}
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3410
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3411
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3412
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3413
			set_huge_pte_at(mm, address, ptep, pte);
3414
			pages++;
3415
		}
3416
		spin_unlock(ptl);
3417
	}
3418
	/*
3419
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3420
	 * may have cleared our pud entry and done put_page on the page table:
3421
	 * once we release i_mmap_rwsem, another task can do the final put_page
3422 3423
	 * and that page table be reused and filled with junk.
	 */
3424
	flush_tlb_range(vma, start, end);
3425
	mmu_notifier_invalidate_range(mm, start, end);
3426
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3427
	mmu_notifier_invalidate_range_end(mm, start, end);
3428 3429

	return pages << h->order;
3430 3431
}

3432 3433
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3434
					struct vm_area_struct *vma,
3435
					vm_flags_t vm_flags)
3436
{
3437
	long ret, chg;
3438
	struct hstate *h = hstate_inode(inode);
3439
	struct hugepage_subpool *spool = subpool_inode(inode);
3440
	struct resv_map *resv_map;
3441

3442 3443 3444
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3445
	 * without using reserves
3446
	 */
3447
	if (vm_flags & VM_NORESERVE)
3448 3449
		return 0;

3450 3451 3452 3453 3454 3455
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3456
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3457
		resv_map = inode_resv_map(inode);
3458

3459
		chg = region_chg(resv_map, from, to);
3460 3461 3462

	} else {
		resv_map = resv_map_alloc();
3463 3464 3465
		if (!resv_map)
			return -ENOMEM;

3466
		chg = to - from;
3467

3468 3469 3470 3471
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3472 3473 3474 3475
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3476

3477
	/* There must be enough pages in the subpool for the mapping */
3478 3479 3480 3481
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3482 3483

	/*
3484
	 * Check enough hugepages are available for the reservation.
3485
	 * Hand the pages back to the subpool if there are not
3486
	 */
3487
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3488
	if (ret < 0) {
3489
		hugepage_subpool_put_pages(spool, chg);
3490
		goto out_err;
K
Ken Chen 已提交
3491
	}
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3504
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3505
		region_add(resv_map, from, to);
3506
	return 0;
3507
out_err:
J
Joonsoo Kim 已提交
3508 3509
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3510
	return ret;
3511 3512 3513 3514
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3515
	struct hstate *h = hstate_inode(inode);
3516
	struct resv_map *resv_map = inode_resv_map(inode);
3517
	long chg = 0;
3518
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3519

3520
	if (resv_map)
3521
		chg = region_truncate(resv_map, offset);
K
Ken Chen 已提交
3522
	spin_lock(&inode->i_lock);
3523
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3524 3525
	spin_unlock(&inode->i_lock);

3526
	hugepage_subpool_put_pages(spool, (chg - freed));
3527
	hugetlb_acct_memory(h, -(chg - freed));
3528
}
3529

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
3575
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3589
	spinlock_t *ptl;
3590 3591 3592 3593

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

3594
	i_mmap_lock_write(mapping);
3595 3596 3597 3598 3599 3600 3601 3602
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
3603
				mm_inc_nr_pmds(mm);
3604 3605 3606 3607 3608 3609 3610 3611 3612
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3613 3614
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3615
	if (pud_none(*pud)) {
3616 3617
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3618
	} else {
3619
		put_page(virt_to_page(spte));
3620 3621
		mm_inc_nr_pmds(mm);
	}
3622
	spin_unlock(ptl);
3623 3624
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3625
	i_mmap_unlock_write(mapping);
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3636
 * called with page table lock held.
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
3652
	mm_dec_nr_pmds(mm);
3653 3654 3655
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3656 3657 3658 3659 3660 3661 3662
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3663 3664
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
3723
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3724
		pmd_t *pmd, int flags)
3725
{
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
		page = pte_page(*(pte_t *)pmd) +
			((address & ~PMD_MASK) >> PAGE_SHIFT);
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
3755 3756 3757
	return page;
}

3758
struct page * __weak
3759
follow_huge_pud(struct mm_struct *mm, unsigned long address,
3760
		pud_t *pud, int flags)
3761
{
3762 3763
	if (flags & FOLL_GET)
		return NULL;
3764

3765
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3766 3767
}

3768 3769
#ifdef CONFIG_MEMORY_FAILURE

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3784 3785 3786 3787
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3788
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3789 3790 3791
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3792
	int ret = -EBUSY;
3793 3794

	spin_lock(&hugetlb_lock);
3795
	if (is_hugepage_on_freelist(hpage)) {
3796 3797 3798 3799 3800 3801 3802
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3803
		set_page_refcounted(hpage);
3804 3805 3806 3807
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3808
	spin_unlock(&hugetlb_lock);
3809
	return ret;
3810
}
3811
#endif
3812 3813 3814

bool isolate_huge_page(struct page *page, struct list_head *list)
{
3815
	VM_BUG_ON_PAGE(!PageHead(page), page);
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
3826
	VM_BUG_ON_PAGE(!PageHead(page), page);
3827 3828 3829 3830 3831
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3832 3833 3834

bool is_hugepage_active(struct page *page)
{
3835
	VM_BUG_ON_PAGE(!PageHuge(page), page);
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}