sched_fair.c 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
82 83 84 85 86
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

P
Peter Zijlstra 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

189
#else	/* CONFIG_FAIR_GROUP_SCHED */
190

191 192 193
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
194 195 196 197
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
198 199
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
200

P
Peter Zijlstra 已提交
201
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202
{
P
Peter Zijlstra 已提交
203
	return &task_rq(p)->cfs;
204 205
}

P
Peter Zijlstra 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

239 240 241 242 243
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
244 245
#endif	/* CONFIG_FAIR_GROUP_SCHED */

246 247 248 249 250

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

251
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252
{
253 254
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
255 256 257 258 259
		min_vruntime = vruntime;

	return min_vruntime;
}

260
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
261 262 263 264 265 266 267 268
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

269
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270
{
271
	return se->vruntime - cfs_rq->min_vruntime;
272 273
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

		if (vruntime == cfs_rq->min_vruntime)
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

295 296 297
/*
 * Enqueue an entity into the rb-tree:
 */
298
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 300 301 302
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
303
	s64 key = entity_key(cfs_rq, se);
304 305 306 307 308 309 310 311 312 313 314 315
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
316
		if (key < entity_key(cfs_rq, entry)) {
317 318 319 320 321 322 323 324 325 326 327
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
328
	if (leftmost)
I
Ingo Molnar 已提交
329
		cfs_rq->rb_leftmost = &se->run_node;
330 331 332 333 334

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

335
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336
{
P
Peter Zijlstra 已提交
337 338 339 340 341 342
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
343

344 345 346 347 348
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
349 350 351 352 353 354
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
355 356
}

357
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
358
{
359
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
360

361 362
	if (!last)
		return NULL;
363 364

	return rb_entry(last, struct sched_entity, run_node);
365 366
}

367 368 369 370
/**************************************************************
 * Scheduling class statistics methods:
 */

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
387

388
/*
389
 * delta /= w
390 391 392 393
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
394 395
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
396 397 398 399

	return delta;
}

400 401 402 403 404 405 406 407
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
408 409 410
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
411
	unsigned long nr_latency = sched_nr_latency;
412 413

	if (unlikely(nr_running > nr_latency)) {
414
		period = sysctl_sched_min_granularity;
415 416 417 418 419 420
		period *= nr_running;
	}

	return period;
}

421 422 423 424
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
425
 * s = p*P[w/rw]
426
 */
P
Peter Zijlstra 已提交
427
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
428
{
M
Mike Galbraith 已提交
429
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
430

M
Mike Galbraith 已提交
431 432
	for_each_sched_entity(se) {
		struct load_weight *load = &cfs_rq->load;
433

M
Mike Galbraith 已提交
434 435 436 437 438 439 440 441 442
		if (unlikely(!se->on_rq)) {
			struct load_weight lw = cfs_rq->load;

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
443 444
}

445
/*
446
 * We calculate the vruntime slice of a to be inserted task
447
 *
448
 * vs = s/w
449
 */
450
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
451
{
452
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
453 454
}

455 456 457 458 459
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
460 461
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
462
{
463
	unsigned long delta_exec_weighted;
464

465
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
466 467

	curr->sum_exec_runtime += delta_exec;
468
	schedstat_add(cfs_rq, exec_clock, delta_exec);
469
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
470
	curr->vruntime += delta_exec_weighted;
471
	update_min_vruntime(cfs_rq);
472 473
}

474
static void update_curr(struct cfs_rq *cfs_rq)
475
{
476
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
477
	u64 now = rq_of(cfs_rq)->clock;
478 479 480 481 482 483 484 485 486 487
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
488
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
489 490
	if (!delta_exec)
		return;
491

I
Ingo Molnar 已提交
492 493
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
494 495 496 497 498

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
499
		account_group_exec_runtime(curtask, delta_exec);
500
	}
501 502 503
}

static inline void
504
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
505
{
506
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
507 508 509 510 511
}

/*
 * Task is being enqueued - update stats:
 */
512
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
513 514 515 516 517
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
518
	if (se != cfs_rq->curr)
519
		update_stats_wait_start(cfs_rq, se);
520 521 522
}

static void
523
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
524
{
525 526
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
527 528 529
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
530
	schedstat_set(se->wait_start, 0);
531 532 533
}

static inline void
534
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
535 536 537 538 539
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
540
	if (se != cfs_rq->curr)
541
		update_stats_wait_end(cfs_rq, se);
542 543 544 545 546 547
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
548
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 550 551 552
{
	/*
	 * We are starting a new run period:
	 */
553
	se->exec_start = rq_of(cfs_rq)->clock;
554 555 556 557 558 559
}

/**************************************************
 * Scheduling class queueing methods:
 */

560 561 562 563 564 565 566 567 568 569 570 571 572
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

573 574 575 576
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
577 578
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
579
	if (entity_is_task(se)) {
580
		add_cfs_task_weight(cfs_rq, se->load.weight);
581 582
		list_add(&se->group_node, &cfs_rq->tasks);
	}
583 584 585 586 587 588 589 590
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
591 592
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
593
	if (entity_is_task(se)) {
594
		add_cfs_task_weight(cfs_rq, -se->load.weight);
595 596
		list_del_init(&se->group_node);
	}
597 598 599 600
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

601
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
602 603 604
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
605
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
606
		struct task_struct *tsk = task_of(se);
607 608 609 610 611 612 613 614 615

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
616 617

		account_scheduler_latency(tsk, delta >> 10, 1);
618 619
	}
	if (se->block_start) {
620
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
621
		struct task_struct *tsk = task_of(se);
622 623 624 625 626 627 628 629 630

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
631 632 633 634 635 636 637

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
638

I
Ingo Molnar 已提交
639 640 641
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
642
		account_scheduler_latency(tsk, delta >> 10, 0);
643 644 645 646
	}
#endif
}

P
Peter Zijlstra 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

660 661 662
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
663
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
664

665 666 667 668 669 670
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
671
	if (initial && sched_feat(START_DEBIT))
672
		vruntime += sched_vslice(cfs_rq, se);
673

I
Ingo Molnar 已提交
674
	if (!initial) {
675
		/* sleeps upto a single latency don't count. */
676 677 678 679 680 681 682 683 684 685 686
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
			 * convert the sleeper threshold into virtual time
			 */
			if (sched_feat(NORMALIZED_SLEEPER))
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
687

688 689
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
690 691
	}

P
Peter Zijlstra 已提交
692
	se->vruntime = vruntime;
693 694
}

695
static void
696
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
697 698
{
	/*
699
	 * Update run-time statistics of the 'current'.
700
	 */
701
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
702
	account_entity_enqueue(cfs_rq, se);
703

I
Ingo Molnar 已提交
704
	if (wakeup) {
705
		place_entity(cfs_rq, se, 0);
706
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
707
	}
708

709
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
710
	check_spread(cfs_rq, se);
711 712
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
713 714
}

P
Peter Zijlstra 已提交
715 716 717 718 719 720 721 722 723
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->last == se)
		cfs_rq->last = NULL;

	if (cfs_rq->next == se)
		cfs_rq->next = NULL;
}

724
static void
725
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
726
{
727 728 729 730 731
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

732
	update_stats_dequeue(cfs_rq, se);
733
	if (sleep) {
P
Peter Zijlstra 已提交
734
#ifdef CONFIG_SCHEDSTATS
735 736 737 738
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
739
				se->sleep_start = rq_of(cfs_rq)->clock;
740
			if (tsk->state & TASK_UNINTERRUPTIBLE)
741
				se->block_start = rq_of(cfs_rq)->clock;
742
		}
743
#endif
P
Peter Zijlstra 已提交
744 745
	}

P
Peter Zijlstra 已提交
746
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
747

748
	if (se != cfs_rq->curr)
749 750
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
751
	update_min_vruntime(cfs_rq);
752 753 754 755 756
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
757
static void
I
Ingo Molnar 已提交
758
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
759
{
760 761
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
762
	ideal_runtime = sched_slice(cfs_rq, curr);
763
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
I
Ingo Molnar 已提交
764
	if (delta_exec > ideal_runtime)
765 766 767
		resched_task(rq_of(cfs_rq)->curr);
}

768
static void
769
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
770
{
771 772 773 774 775 776 777 778 779 780 781
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

782
	update_stats_curr_start(cfs_rq, se);
783
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
784 785 786 787 788 789
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
790
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
791 792 793 794
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
795
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
796 797
}

798 799 800
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

801
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
802
{
803 804
	struct sched_entity *se = __pick_next_entity(cfs_rq);

P
Peter Zijlstra 已提交
805 806
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
		return cfs_rq->next;
807

P
Peter Zijlstra 已提交
808 809 810 811
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
		return cfs_rq->last;

	return se;
812 813
}

814
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
815 816 817 818 819 820
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
821
		update_curr(cfs_rq);
822

P
Peter Zijlstra 已提交
823
	check_spread(cfs_rq, prev);
824
	if (prev->on_rq) {
825
		update_stats_wait_start(cfs_rq, prev);
826 827 828
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
829
	cfs_rq->curr = NULL;
830 831
}

P
Peter Zijlstra 已提交
832 833
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
834 835
{
	/*
836
	 * Update run-time statistics of the 'current'.
837
	 */
838
	update_curr(cfs_rq);
839

P
Peter Zijlstra 已提交
840 841 842 843 844
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
845 846 847 848
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
849 850 851 852 853 854 855 856
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

857
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
858
		check_preempt_tick(cfs_rq, curr);
859 860 861 862 863 864
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
888
		if (rq->curr != p)
889
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
890

891
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
892 893
	}
}
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
910
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
911 912 913 914
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
915 916 917 918

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
919 920
#endif

921 922 923 924 925
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
926
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
927 928
{
	struct cfs_rq *cfs_rq;
929
	struct sched_entity *se = &p->se;
930 931

	for_each_sched_entity(se) {
932
		if (se->on_rq)
933 934
			break;
		cfs_rq = cfs_rq_of(se);
935
		enqueue_entity(cfs_rq, se, wakeup);
936
		wakeup = 1;
937
	}
P
Peter Zijlstra 已提交
938

939
	hrtick_update(rq);
940 941 942 943 944 945 946
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
947
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
948 949
{
	struct cfs_rq *cfs_rq;
950
	struct sched_entity *se = &p->se;
951 952 953

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
954
		dequeue_entity(cfs_rq, se, sleep);
955
		/* Don't dequeue parent if it has other entities besides us */
956
		if (cfs_rq->load.weight)
957
			break;
958
		sleep = 1;
959
	}
P
Peter Zijlstra 已提交
960

961
	hrtick_update(rq);
962 963 964
}

/*
965 966 967
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
968
 */
969
static void yield_task_fair(struct rq *rq)
970
{
971 972 973
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
974 975

	/*
976 977 978 979 980
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
981 982
	clear_buddies(cfs_rq, se);

983
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
984
		update_rq_clock(rq);
985
		/*
986
		 * Update run-time statistics of the 'current'.
987
		 */
D
Dmitry Adamushko 已提交
988
		update_curr(cfs_rq);
989 990 991 992 993

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
994
	 */
D
Dmitry Adamushko 已提交
995
	rightmost = __pick_last_entity(cfs_rq);
996 997 998
	/*
	 * Already in the rightmost position?
	 */
999
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1000 1001 1002 1003
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1004 1005
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1006
	 */
1007
	se->vruntime = rightmost->vruntime + 1;
1008 1009
}

1010 1011 1012 1013 1014
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
1015 1016
 * Domains may include CPUs that are not usable for migration,
 * hence we need to mask them out (cpu_active_map)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1036
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1037 1038 1039
		return cpu;

	for_each_domain(cpu, sd) {
1040 1041 1042
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1043
			cpus_and(tmp, sd->span, p->cpus_allowed);
1044
			cpus_and(tmp, tmp, cpu_active_map);
1045
			for_each_cpu_mask_nr(i, tmp) {
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1060
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1061 1062 1063 1064 1065 1066 1067
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1068

1069
#ifdef CONFIG_FAIR_GROUP_SCHED
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1091 1092
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1093
{
P
Peter Zijlstra 已提交
1094
	struct sched_entity *se = tg->se[cpu];
1095 1096 1097 1098

	if (!tg->parent)
		return wl;

1099 1100 1101 1102 1103 1104 1105
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1106
	for_each_sched_entity(se) {
1107
		long S, rw, s, a, b;
1108 1109 1110 1111 1112 1113 1114 1115 1116
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1117 1118 1119

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1120
		rw = se->my_q->rq_weight;
1121

1122 1123
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1124

1125 1126 1127 1128 1129
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1130 1131 1132 1133 1134 1135 1136
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1137 1138
		wg = 0;
	}
1139

P
Peter Zijlstra 已提交
1140
	return wl;
1141
}
P
Peter Zijlstra 已提交
1142

1143
#else
P
Peter Zijlstra 已提交
1144

1145 1146
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1147
{
1148
	return wl;
1149
}
P
Peter Zijlstra 已提交
1150

1151 1152
#endif

1153
static int
1154
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1155 1156
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1157 1158
	    unsigned int imbalance)
{
I
Ingo Molnar 已提交
1159
	struct task_struct *curr = this_rq->curr;
1160
	struct task_group *tg;
1161 1162
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1163
	unsigned long weight;
1164
	int balanced;
1165

1166
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1167 1168
		return 0;

M
Mike Galbraith 已提交
1169 1170 1171
	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
			p->se.avg_overlap > sysctl_sched_migration_cost))
		sync = 0;
1172

1173 1174 1175 1176 1177
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1178 1179 1180 1181 1182 1183 1184
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1185

1186 1187
	tg = task_group(p);
	weight = p->se.load.weight;
1188

1189 1190
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1191

1192
	/*
I
Ingo Molnar 已提交
1193 1194 1195
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1196
	 */
1197 1198
	if (sync && balanced)
		return 1;
1199 1200 1201 1202

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1203 1204
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1218 1219 1220
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1221
	int prev_cpu, this_cpu, new_cpu;
1222
	unsigned long load, this_load;
1223
	struct rq *this_rq;
1224 1225
	unsigned int imbalance;
	int idx;
1226

1227 1228
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1229
	this_rq		= cpu_rq(this_cpu);
1230
	new_cpu		= prev_cpu;
1231

1232 1233
	if (prev_cpu == this_cpu)
		goto out;
1234 1235 1236 1237
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1238
	for_each_domain(this_cpu, sd) {
1239
		if (cpu_isset(prev_cpu, sd->span)) {
1240 1241 1242 1243 1244 1245
			this_sd = sd;
			break;
		}
	}

	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1246
		goto out;
1247 1248 1249 1250

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1251
	if (!this_sd)
1252
		goto out;
1253

1254 1255 1256 1257
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1258
	load = source_load(prev_cpu, idx);
1259 1260
	this_load = target_load(this_cpu, idx);

1261
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1262 1263 1264
				     load, this_load, imbalance))
		return this_cpu;

1265 1266 1267 1268 1269 1270 1271 1272
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1273
			return this_cpu;
1274 1275 1276
		}
	}

1277
out:
1278 1279 1280 1281
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

1282 1283 1284 1285 1286
static unsigned long wakeup_gran(struct sched_entity *se)
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
1287 1288
	 * More easily preempt - nice tasks, while not making it harder for
	 * + nice tasks.
1289
	 */
1290 1291
	if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
		gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1292 1293 1294 1295

	return gran;
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

	gran = wakeup_gran(curr);
	if (vdiff > gran)
		return 1;

	return 0;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static void set_last_buddy(struct sched_entity *se)
{
	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
}

static void set_next_buddy(struct sched_entity *se)
{
	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
}

1337 1338 1339
/*
 * Preempt the current task with a newly woken task if needed:
 */
1340
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1341 1342
{
	struct task_struct *curr = rq->curr;
1343
	struct sched_entity *se = &curr->se, *pse = &p->se;
1344
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1345

1346
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1347

1348
	if (unlikely(rt_prio(p->prio))) {
1349 1350 1351
		resched_task(curr);
		return;
	}
1352

P
Peter Zijlstra 已提交
1353 1354 1355
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1356 1357 1358
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	/*
	 * Only set the backward buddy when the current task is still on the
	 * rq. This can happen when a wakeup gets interleaved with schedule on
	 * the ->pre_schedule() or idle_balance() point, either of which can
	 * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class, for
	 * obvious reasons its a bad idea to schedule back to the idle thread.
	 */
	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1369 1370
		set_last_buddy(se);
	set_next_buddy(pse);
P
Peter Zijlstra 已提交
1371

1372 1373 1374 1375 1376 1377 1378
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1379 1380 1381 1382 1383 1384
	/*
	 * Batch tasks do not preempt (their preemption is driven by
	 * the tick):
	 */
	if (unlikely(p->policy == SCHED_BATCH))
		return;
1385

1386 1387
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1388

1389 1390 1391
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1392 1393 1394 1395
		resched_task(curr);
		return;
	}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	find_matching_se(&se, &pse);

	while (se) {
		BUG_ON(!pse);

		if (wakeup_preempt_entity(se, pse) == 1) {
			resched_task(curr);
			break;
		}

		se = parent_entity(se);
		pse = parent_entity(pse);
	}
1409 1410
}

1411
static struct task_struct *pick_next_task_fair(struct rq *rq)
1412
{
P
Peter Zijlstra 已提交
1413
	struct task_struct *p;
1414 1415 1416 1417 1418 1419 1420
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1421
		se = pick_next_entity(cfs_rq);
1422
		set_next_entity(cfs_rq, se);
1423 1424 1425
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1426 1427 1428 1429
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1430 1431 1432 1433 1434
}

/*
 * Account for a descheduled task:
 */
1435
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1436 1437 1438 1439 1440 1441
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1442
		put_prev_entity(cfs_rq, se);
1443 1444 1445
	}
}

1446
#ifdef CONFIG_SMP
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1458
static struct task_struct *
1459
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1460
{
D
Dhaval Giani 已提交
1461 1462
	struct task_struct *p = NULL;
	struct sched_entity *se;
1463

1464 1465 1466
	if (next == &cfs_rq->tasks)
		return NULL;

1467 1468 1469
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1470

1471 1472 1473 1474 1475 1476 1477
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1478
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1479 1480 1481 1482 1483 1484
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1485
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1486 1487
}

1488 1489 1490 1491 1492
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1493
{
1494
	struct rq_iterator cfs_rq_iterator;
1495

1496 1497 1498
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1499

1500 1501 1502
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1503 1504
}

1505
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1506
static unsigned long
1507
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1508
		  unsigned long max_load_move,
1509 1510
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1511 1512
{
	long rem_load_move = max_load_move;
1513 1514
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1515

1516
	rcu_read_lock();
1517
	update_h_load(busiest_cpu);
1518

1519
	list_for_each_entry_rcu(tg, &task_groups, list) {
1520
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1521 1522
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1523
		u64 rem_load, moved_load;
1524

1525 1526 1527
		/*
		 * empty group
		 */
1528
		if (!busiest_cfs_rq->task_weight)
1529 1530
			continue;

S
Srivatsa Vaddagiri 已提交
1531 1532
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1533

1534
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1535
				rem_load, sd, idle, all_pinned, this_best_prio,
1536
				tg->cfs_rq[busiest_cpu]);
1537

1538
		if (!moved_load)
1539 1540
			continue;

1541
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1542
		moved_load = div_u64(moved_load, busiest_weight + 1);
1543

1544 1545
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1546 1547
			break;
	}
1548
	rcu_read_unlock();
1549

P
Peter Williams 已提交
1550
	return max_load_move - rem_load_move;
1551
}
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1564

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1588
#endif /* CONFIG_SMP */
1589

1590 1591 1592
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1593
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1594 1595 1596 1597 1598 1599
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1600
		entity_tick(cfs_rq, se, queued);
1601 1602 1603
	}
}

1604
#define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1605

1606 1607 1608 1609 1610 1611 1612
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1613
static void task_new_fair(struct rq *rq, struct task_struct *p)
1614 1615
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1616
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1617
	int this_cpu = smp_processor_id();
1618 1619 1620

	sched_info_queued(p);

1621
	update_curr(cfs_rq);
1622
	place_entity(cfs_rq, se, 1);
1623

1624
	/* 'curr' will be NULL if the child belongs to a different group */
1625
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1626
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1627
		/*
1628 1629 1630
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1631
		swap(curr->vruntime, se->vruntime);
1632
		resched_task(rq->curr);
1633
	}
1634

1635
	enqueue_task_fair(rq, p, 0);
1636 1637
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1654
		check_preempt_curr(rq, p, 0);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1671
		check_preempt_curr(rq, p, 0);
1672 1673
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1697 1698 1699
/*
 * All the scheduling class methods:
 */
1700 1701
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1702 1703 1704 1705
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1706
	.check_preempt_curr	= check_preempt_wakeup,
1707 1708 1709 1710

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1711
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1712 1713
	.select_task_rq		= select_task_rq_fair,

1714
	.load_balance		= load_balance_fair,
1715
	.move_one_task		= move_one_task_fair,
1716
#endif
1717

1718
	.set_curr_task          = set_curr_task_fair,
1719 1720
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1721 1722 1723

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1724 1725 1726 1727

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1728 1729 1730
};

#ifdef CONFIG_SCHED_DEBUG
1731
static void print_cfs_stats(struct seq_file *m, int cpu)
1732 1733 1734
{
	struct cfs_rq *cfs_rq;

1735
	rcu_read_lock();
1736
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1737
		print_cfs_rq(m, cpu, cfs_rq);
1738
	rcu_read_unlock();
1739 1740
}
#endif