i915_gem.c 139.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41 42
#define RQ_BUG_ON(expr)

43
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45
static void
46 47 48
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

532 533 534
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
535
static int
536 537 538 539 540 541 542
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

543
	if (unlikely(page_do_bit17_swizzling))
544 545 546 547 548 549 550 551 552 553 554
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

555
	return ret ? -EFAULT : 0;
556 557
}

558 559 560 561
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
562
	if (unlikely(swizzled)) {
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

580 581 582 583 584 585 586 587 588 589 590 591
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
592 593 594
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
595 596 597 598 599 600 601 602 603 604 605

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

606
	return ret ? - EFAULT : 0;
607 608
}

609
static int
610 611 612 613
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
614
{
615
	char __user *user_data;
616
	ssize_t remain;
617
	loff_t offset;
618
	int shmem_page_offset, page_length, ret = 0;
619
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620
	int prefaulted = 0;
621
	int needs_clflush = 0;
622
	struct sg_page_iter sg_iter;
623

V
Ville Syrjälä 已提交
624
	user_data = to_user_ptr(args->data_ptr);
625 626
	remain = args->size;

627
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628

629
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 631 632
	if (ret)
		return ret;

633
	offset = args->offset;
634

635 636
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
637
		struct page *page = sg_page_iter_page(&sg_iter);
638 639 640 641

		if (remain <= 0)
			break;

642 643 644 645 646
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
647
		shmem_page_offset = offset_in_page(offset);
648 649 650 651
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

652 653 654
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

655 656 657 658 659
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
660 661 662

		mutex_unlock(&dev->struct_mutex);

663
		if (likely(!i915.prefault_disable) && !prefaulted) {
664
			ret = fault_in_multipages_writeable(user_data, remain);
665 666 667 668 669 670 671
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
672

673 674 675
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
676

677
		mutex_lock(&dev->struct_mutex);
678 679

		if (ret)
680 681
			goto out;

682
next_page:
683
		remain -= page_length;
684
		user_data += page_length;
685 686 687
		offset += page_length;
	}

688
out:
689 690
	i915_gem_object_unpin_pages(obj);

691 692 693
	return ret;
}

694 695 696 697 698 699 700
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701
		     struct drm_file *file)
702 703
{
	struct drm_i915_gem_pread *args = data;
704
	struct drm_i915_gem_object *obj;
705
	int ret = 0;
706

707 708 709 710
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
711
		       to_user_ptr(args->data_ptr),
712 713 714
		       args->size))
		return -EFAULT;

715
	ret = i915_mutex_lock_interruptible(dev);
716
	if (ret)
717
		return ret;
718

719
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720
	if (&obj->base == NULL) {
721 722
		ret = -ENOENT;
		goto unlock;
723
	}
724

725
	/* Bounds check source.  */
726 727
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
728
		ret = -EINVAL;
729
		goto out;
C
Chris Wilson 已提交
730 731
	}

732 733 734 735 736 737 738 739
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
740 741
	trace_i915_gem_object_pread(obj, args->offset, args->size);

742
	ret = i915_gem_shmem_pread(dev, obj, args, file);
743

744
out:
745
	drm_gem_object_unreference(&obj->base);
746
unlock:
747
	mutex_unlock(&dev->struct_mutex);
748
	return ret;
749 750
}

751 752
/* This is the fast write path which cannot handle
 * page faults in the source data
753
 */
754 755 756 757 758 759

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
760
{
761 762
	void __iomem *vaddr_atomic;
	void *vaddr;
763
	unsigned long unwritten;
764

P
Peter Zijlstra 已提交
765
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 767 768
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
769
						      user_data, length);
P
Peter Zijlstra 已提交
770
	io_mapping_unmap_atomic(vaddr_atomic);
771
	return unwritten;
772 773
}

774 775 776 777
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
778
static int
779 780
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
781
			 struct drm_i915_gem_pwrite *args,
782
			 struct drm_file *file)
783
{
784
	struct drm_i915_private *dev_priv = dev->dev_private;
785
	ssize_t remain;
786
	loff_t offset, page_base;
787
	char __user *user_data;
D
Daniel Vetter 已提交
788 789
	int page_offset, page_length, ret;

790
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
791 792 793 794 795 796 797 798 799 800
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
801

V
Ville Syrjälä 已提交
802
	user_data = to_user_ptr(args->data_ptr);
803 804
	remain = args->size;

805
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806

807
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808

809 810 811
	while (remain > 0) {
		/* Operation in this page
		 *
812 813 814
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
815
		 */
816 817
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
818 819 820 821 822
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
823 824
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
825
		 */
B
Ben Widawsky 已提交
826
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
827 828
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
829
			goto out_flush;
D
Daniel Vetter 已提交
830
		}
831

832 833 834
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
835 836
	}

837 838
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
839
out_unpin:
B
Ben Widawsky 已提交
840
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
841
out:
842
	return ret;
843 844
}

845 846 847 848
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
849
static int
850 851 852 853 854
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
855
{
856
	char *vaddr;
857
	int ret;
858

859
	if (unlikely(page_do_bit17_swizzling))
860
		return -EINVAL;
861

862 863 864 865
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
866 867
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
868 869 870 871
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
872

873
	return ret ? -EFAULT : 0;
874 875
}

876 877
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
878
static int
879 880 881 882 883
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
884
{
885 886
	char *vaddr;
	int ret;
887

888
	vaddr = kmap(page);
889
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 891 892
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
893 894
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 896
						user_data,
						page_length);
897 898 899 900 901
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
902 903 904
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
905
	kunmap(page);
906

907
	return ret ? -EFAULT : 0;
908 909 910
}

static int
911 912 913 914
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
915 916
{
	ssize_t remain;
917 918
	loff_t offset;
	char __user *user_data;
919
	int shmem_page_offset, page_length, ret = 0;
920
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921
	int hit_slowpath = 0;
922 923
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
924
	struct sg_page_iter sg_iter;
925

V
Ville Syrjälä 已提交
926
	user_data = to_user_ptr(args->data_ptr);
927 928
	remain = args->size;

929
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930

931 932 933 934 935
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
936
		needs_clflush_after = cpu_write_needs_clflush(obj);
937 938 939
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
940
	}
941 942 943 944 945
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
946

947 948 949 950
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

951
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952

953 954
	i915_gem_object_pin_pages(obj);

955
	offset = args->offset;
956
	obj->dirty = 1;
957

958 959
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
960
		struct page *page = sg_page_iter_page(&sg_iter);
961
		int partial_cacheline_write;
962

963 964 965
		if (remain <= 0)
			break;

966 967 968 969 970
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
971
		shmem_page_offset = offset_in_page(offset);
972 973 974 975 976

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

977 978 979 980 981 982 983
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

984 985 986
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

987 988 989 990 991 992
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
993 994 995

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
996 997 998 999
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1000

1001
		mutex_lock(&dev->struct_mutex);
1002 1003

		if (ret)
1004 1005
			goto out;

1006
next_page:
1007
		remain -= page_length;
1008
		user_data += page_length;
1009
		offset += page_length;
1010 1011
	}

1012
out:
1013 1014
	i915_gem_object_unpin_pages(obj);

1015
	if (hit_slowpath) {
1016 1017 1018 1019 1020 1021 1022
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 1024
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1025
		}
1026
	}
1027

1028
	if (needs_clflush_after)
1029
		i915_gem_chipset_flush(dev);
1030

1031
	intel_fb_obj_flush(obj, false);
1032
	return ret;
1033 1034 1035 1036 1037 1038 1039 1040 1041
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042
		      struct drm_file *file)
1043
{
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1045
	struct drm_i915_gem_pwrite *args = data;
1046
	struct drm_i915_gem_object *obj;
1047 1048 1049 1050 1051 1052
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1053
		       to_user_ptr(args->data_ptr),
1054 1055 1056
		       args->size))
		return -EFAULT;

1057
	if (likely(!i915.prefault_disable)) {
1058 1059 1060 1061 1062
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1063

1064 1065
	intel_runtime_pm_get(dev_priv);

1066
	ret = i915_mutex_lock_interruptible(dev);
1067
	if (ret)
1068
		goto put_rpm;
1069

1070
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071
	if (&obj->base == NULL) {
1072 1073
		ret = -ENOENT;
		goto unlock;
1074
	}
1075

1076
	/* Bounds check destination. */
1077 1078
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1079
		ret = -EINVAL;
1080
		goto out;
C
Chris Wilson 已提交
1081 1082
	}

1083 1084 1085 1086 1087 1088 1089 1090
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1091 1092
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1093
	ret = -EFAULT;
1094 1095 1096 1097 1098 1099
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1100 1101 1102
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1103
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1104 1105 1106
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1107
	}
1108

1109 1110 1111 1112 1113 1114
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1115

1116
out:
1117
	drm_gem_object_unreference(&obj->base);
1118
unlock:
1119
	mutex_unlock(&dev->struct_mutex);
1120 1121 1122
put_rpm:
	intel_runtime_pm_put(dev_priv);

1123 1124 1125
	return ret;
}

1126
int
1127
i915_gem_check_wedge(struct i915_gpu_error *error,
1128 1129
		     bool interruptible)
{
1130
	if (i915_reset_in_progress(error)) {
1131 1132 1133 1134 1135
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1136 1137
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1138 1139
			return -EIO;

1140 1141 1142 1143 1144 1145 1146
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1147 1148 1149 1150 1151 1152
	}

	return 0;
}

/*
1153
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154
 */
1155
int
1156
i915_gem_check_olr(struct drm_i915_gem_request *req)
1157
{
1158
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1159

1160
	if (req == req->ring->outstanding_lazy_request)
1161
		i915_add_request(req);
1162

1163
	return 0;
1164 1165
}

1166 1167 1168 1169 1170 1171
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1172
		       struct intel_engine_cs *ring)
1173 1174 1175 1176
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

D
Daniel Vetter 已提交
1177
static int __i915_spin_request(struct drm_i915_gem_request *req)
1178
{
1179 1180
	unsigned long timeout;

D
Daniel Vetter 已提交
1181
	if (i915_gem_request_get_ring(req)->irq_refcount)
1182 1183 1184 1185
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
D
Daniel Vetter 已提交
1186
		if (i915_gem_request_completed(req, true))
1187 1188 1189 1190
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1191

1192 1193
		cpu_relax_lowlatency();
	}
D
Daniel Vetter 已提交
1194
	if (i915_gem_request_completed(req, false))
1195 1196 1197
		return 0;

	return -EAGAIN;
1198 1199
}

1200
/**
1201 1202 1203
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1204 1205 1206
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1207 1208 1209 1210 1211 1212 1213
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1214
 * Returns 0 if the request was found within the alloted time. Else returns the
1215 1216
 * errno with remaining time filled in timeout argument.
 */
1217
int __i915_wait_request(struct drm_i915_gem_request *req,
1218
			unsigned reset_counter,
1219
			bool interruptible,
1220
			s64 *timeout,
1221
			struct intel_rps_client *rps)
1222
{
1223
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1224
	struct drm_device *dev = ring->dev;
1225
	struct drm_i915_private *dev_priv = dev->dev_private;
1226 1227
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1228
	DEFINE_WAIT(wait);
1229
	unsigned long timeout_expire;
1230
	s64 before, now;
1231 1232
	int ret;

1233
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1234

1235 1236 1237
	if (list_empty(&req->list))
		return 0;

1238
	if (i915_gem_request_completed(req, true))
1239 1240
		return 0;

1241 1242
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1243

1244
	if (INTEL_INFO(dev_priv)->gen >= 6)
1245
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1246

1247
	/* Record current time in case interrupted by signal, or wedged */
1248
	trace_i915_gem_request_wait_begin(req);
1249
	before = ktime_get_raw_ns();
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1261 1262
	for (;;) {
		struct timer_list timer;
1263

1264 1265
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1266

1267 1268
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1269 1270 1271 1272 1273 1274 1275 1276
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1277

1278
		if (i915_gem_request_completed(req, false)) {
1279 1280 1281
			ret = 0;
			break;
		}
1282

1283 1284 1285 1286 1287
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1288
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1289 1290 1291 1292 1293 1294
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1295 1296
			unsigned long expire;

1297
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1298
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1299 1300 1301
			mod_timer(&timer, expire);
		}

1302
		io_schedule();
1303 1304 1305 1306 1307 1308

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1309 1310
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1311 1312

	finish_wait(&ring->irq_queue, &wait);
1313

1314 1315 1316 1317
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1318
	if (timeout) {
1319 1320 1321
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1332 1333
	}

1334
	return ret;
1335 1336
}

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	put_pid(request->pid);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->ring;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1394
/**
1395
 * Waits for a request to be signaled, and cleans up the
1396 1397 1398
 * request and object lists appropriately for that event.
 */
int
1399
i915_wait_request(struct drm_i915_gem_request *req)
1400
{
1401 1402 1403
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1404 1405
	int ret;

1406 1407 1408 1409 1410 1411
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1412 1413
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1414
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415 1416 1417
	if (ret)
		return ret;

1418
	ret = i915_gem_check_olr(req);
1419 1420 1421
	if (ret)
		return ret;

1422 1423
	ret = __i915_wait_request(req,
				  atomic_read(&dev_priv->gpu_error.reset_counter),
1424
				  interruptible, NULL, NULL);
1425 1426
	if (ret)
		return ret;
1427

1428
	__i915_gem_request_retire__upto(req);
1429 1430 1431
	return 0;
}

1432 1433 1434 1435
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1436
int
1437 1438 1439
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1440
	int ret, i;
1441

1442
	if (!obj->active)
1443 1444
		return 0;

1445 1446 1447 1448 1449
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
			i = obj->last_write_req->ring->id;
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
		RQ_BUG_ON(obj->active);
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
	int ring = req->ring->id;

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1486 1487
}

1488 1489 1490 1491 1492
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1493
					    struct intel_rps_client *rps,
1494 1495 1496 1497
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1498
	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1499
	unsigned reset_counter;
1500
	int ret, i, n = 0;
1501 1502 1503 1504

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1505
	if (!obj->active)
1506 1507
		return 0;

1508
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1509 1510 1511
	if (ret)
		return ret;

1512
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		ret = i915_gem_check_olr(req);
		if (ret)
			goto err;

		requests[n++] = i915_gem_request_reference(req);
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++) {
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			ret = i915_gem_check_olr(req);
			if (ret)
				goto err;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1542
	mutex_unlock(&dev->struct_mutex);
1543 1544
	for (i = 0; ret == 0 && i < n; i++)
		ret = __i915_wait_request(requests[i], reset_counter, true,
1545
					  NULL, rps);
1546 1547
	mutex_lock(&dev->struct_mutex);

1548 1549 1550 1551 1552 1553 1554 1555
err:
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1556 1557
}

1558 1559 1560 1561 1562 1563
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1564
/**
1565 1566
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1567 1568 1569
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1570
			  struct drm_file *file)
1571 1572
{
	struct drm_i915_gem_set_domain *args = data;
1573
	struct drm_i915_gem_object *obj;
1574 1575
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1576 1577
	int ret;

1578
	/* Only handle setting domains to types used by the CPU. */
1579
	if (write_domain & I915_GEM_GPU_DOMAINS)
1580 1581
		return -EINVAL;

1582
	if (read_domains & I915_GEM_GPU_DOMAINS)
1583 1584 1585 1586 1587 1588 1589 1590
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1591
	ret = i915_mutex_lock_interruptible(dev);
1592
	if (ret)
1593
		return ret;
1594

1595
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1596
	if (&obj->base == NULL) {
1597 1598
		ret = -ENOENT;
		goto unlock;
1599
	}
1600

1601 1602 1603 1604
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1605
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1606
							  to_rps_client(file),
1607
							  !write_domain);
1608 1609 1610
	if (ret)
		goto unref;

1611
	if (read_domains & I915_GEM_DOMAIN_GTT)
1612
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1613
	else
1614
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1615

1616
unref:
1617
	drm_gem_object_unreference(&obj->base);
1618
unlock:
1619 1620 1621 1622 1623 1624 1625 1626 1627
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1628
			 struct drm_file *file)
1629 1630
{
	struct drm_i915_gem_sw_finish *args = data;
1631
	struct drm_i915_gem_object *obj;
1632 1633
	int ret = 0;

1634
	ret = i915_mutex_lock_interruptible(dev);
1635
	if (ret)
1636
		return ret;
1637

1638
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1639
	if (&obj->base == NULL) {
1640 1641
		ret = -ENOENT;
		goto unlock;
1642 1643 1644
	}

	/* Pinned buffers may be scanout, so flush the cache */
1645
	if (obj->pin_display)
1646
		i915_gem_object_flush_cpu_write_domain(obj);
1647

1648
	drm_gem_object_unreference(&obj->base);
1649
unlock:
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1670 1671 1672
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673
		    struct drm_file *file)
1674 1675 1676 1677 1678
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1679 1680 1681 1682 1683 1684
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1685
	obj = drm_gem_object_lookup(dev, file, args->handle);
1686
	if (obj == NULL)
1687
		return -ENOENT;
1688

1689 1690 1691 1692 1693 1694 1695 1696
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1697
	addr = vm_mmap(obj->filp, 0, args->size,
1698 1699
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1713
	drm_gem_object_unreference_unlocked(obj);
1714 1715 1716 1717 1718 1719 1720 1721
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1740 1741
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1742
	struct drm_i915_private *dev_priv = dev->dev_private;
1743
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1744 1745 1746
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1747
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1748

1749 1750
	intel_runtime_pm_get(dev_priv);

1751 1752 1753 1754
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1755 1756 1757
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1758

C
Chris Wilson 已提交
1759 1760
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1761 1762 1763 1764 1765 1766 1767 1768 1769
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1770 1771
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1772
		ret = -EFAULT;
1773 1774 1775
		goto unlock;
	}

1776
	/* Use a partial view if the object is bigger than the aperture. */
1777 1778
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1779
		static const unsigned int chunk_size = 256; // 1 MiB
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1793 1794
	if (ret)
		goto unlock;
1795

1796 1797 1798
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1799

1800
	ret = i915_gem_object_get_fence(obj);
1801
	if (ret)
1802
		goto unpin;
1803

1804
	/* Finally, remap it using the new GTT offset */
1805 1806
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1807
	pfn >>= PAGE_SHIFT;
1808

1809 1810 1811 1812 1813 1814 1815 1816 1817
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1818

1819 1820
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1821 1822 1823 1824 1825
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1847
unpin:
1848
	i915_gem_object_ggtt_unpin_view(obj, &view);
1849
unlock:
1850
	mutex_unlock(&dev->struct_mutex);
1851
out:
1852
	switch (ret) {
1853
	case -EIO:
1854 1855 1856 1857 1858 1859 1860
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1861 1862 1863
			ret = VM_FAULT_SIGBUS;
			break;
		}
1864
	case -EAGAIN:
D
Daniel Vetter 已提交
1865 1866 1867 1868
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1869
		 */
1870 1871
	case 0:
	case -ERESTARTSYS:
1872
	case -EINTR:
1873 1874 1875 1876 1877
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1878 1879
		ret = VM_FAULT_NOPAGE;
		break;
1880
	case -ENOMEM:
1881 1882
		ret = VM_FAULT_OOM;
		break;
1883
	case -ENOSPC:
1884
	case -EFAULT:
1885 1886
		ret = VM_FAULT_SIGBUS;
		break;
1887
	default:
1888
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1889 1890
		ret = VM_FAULT_SIGBUS;
		break;
1891
	}
1892 1893 1894

	intel_runtime_pm_put(dev_priv);
	return ret;
1895 1896
}

1897 1898 1899 1900
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1901
 * Preserve the reservation of the mmapping with the DRM core code, but
1902 1903 1904 1905 1906 1907 1908 1909 1910
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1911
void
1912
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1913
{
1914 1915
	if (!obj->fault_mappable)
		return;
1916

1917 1918
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1919
	obj->fault_mappable = false;
1920 1921
}

1922 1923 1924 1925 1926 1927 1928 1929 1930
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1931
uint32_t
1932
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1933
{
1934
	uint32_t gtt_size;
1935 1936

	if (INTEL_INFO(dev)->gen >= 4 ||
1937 1938
	    tiling_mode == I915_TILING_NONE)
		return size;
1939 1940 1941

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1942
		gtt_size = 1024*1024;
1943
	else
1944
		gtt_size = 512*1024;
1945

1946 1947
	while (gtt_size < size)
		gtt_size <<= 1;
1948

1949
	return gtt_size;
1950 1951
}

1952 1953 1954 1955 1956
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1957
 * potential fence register mapping.
1958
 */
1959 1960 1961
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1962 1963 1964 1965 1966
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1967
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1968
	    tiling_mode == I915_TILING_NONE)
1969 1970
		return 4096;

1971 1972 1973 1974
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1975
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1976 1977
}

1978 1979 1980 1981 1982
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1983
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1984 1985
		return 0;

1986 1987
	dev_priv->mm.shrinker_no_lock_stealing = true;

1988 1989
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1990
		goto out;
1991 1992 1993 1994 1995 1996 1997 1998

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1999 2000 2001 2002 2003
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2004 2005
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2006
		goto out;
2007 2008

	i915_gem_shrink_all(dev_priv);
2009 2010 2011 2012 2013
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2014 2015 2016 2017 2018 2019 2020
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2021
int
2022 2023
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2024
		  uint32_t handle,
2025
		  uint64_t *offset)
2026
{
2027
	struct drm_i915_gem_object *obj;
2028 2029
	int ret;

2030
	ret = i915_mutex_lock_interruptible(dev);
2031
	if (ret)
2032
		return ret;
2033

2034
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2035
	if (&obj->base == NULL) {
2036 2037 2038
		ret = -ENOENT;
		goto unlock;
	}
2039

2040
	if (obj->madv != I915_MADV_WILLNEED) {
2041
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2042
		ret = -EFAULT;
2043
		goto out;
2044 2045
	}

2046 2047 2048
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2049

2050
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2051

2052
out:
2053
	drm_gem_object_unreference(&obj->base);
2054
unlock:
2055
	mutex_unlock(&dev->struct_mutex);
2056
	return ret;
2057 2058
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2080
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2081 2082
}

D
Daniel Vetter 已提交
2083 2084 2085
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2086
{
2087
	i915_gem_object_free_mmap_offset(obj);
2088

2089 2090
	if (obj->base.filp == NULL)
		return;
2091

D
Daniel Vetter 已提交
2092 2093 2094 2095 2096
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2097
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2098 2099
	obj->madv = __I915_MADV_PURGED;
}
2100

2101 2102 2103
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2104
{
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2119 2120
}

2121
static void
2122
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2123
{
2124 2125
	struct sg_page_iter sg_iter;
	int ret;
2126

2127
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2128

C
Chris Wilson 已提交
2129 2130 2131 2132 2133 2134
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2135
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2136 2137 2138
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2139
	if (i915_gem_object_needs_bit17_swizzle(obj))
2140 2141
		i915_gem_object_save_bit_17_swizzle(obj);

2142 2143
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2144

2145
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2146
		struct page *page = sg_page_iter_page(&sg_iter);
2147

2148
		if (obj->dirty)
2149
			set_page_dirty(page);
2150

2151
		if (obj->madv == I915_MADV_WILLNEED)
2152
			mark_page_accessed(page);
2153

2154
		page_cache_release(page);
2155
	}
2156
	obj->dirty = 0;
2157

2158 2159
	sg_free_table(obj->pages);
	kfree(obj->pages);
2160
}
C
Chris Wilson 已提交
2161

2162
int
2163 2164 2165 2166
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2167
	if (obj->pages == NULL)
2168 2169
		return 0;

2170 2171 2172
	if (obj->pages_pin_count)
		return -EBUSY;

2173
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2174

2175 2176 2177
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2178
	list_del(&obj->global_list);
2179

2180
	ops->put_pages(obj);
2181
	obj->pages = NULL;
2182

2183
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2184 2185 2186 2187

	return 0;
}

2188
static int
C
Chris Wilson 已提交
2189
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2190
{
C
Chris Wilson 已提交
2191
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2192 2193
	int page_count, i;
	struct address_space *mapping;
2194 2195
	struct sg_table *st;
	struct scatterlist *sg;
2196
	struct sg_page_iter sg_iter;
2197
	struct page *page;
2198
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2199
	gfp_t gfp;
2200

C
Chris Wilson 已提交
2201 2202 2203 2204 2205 2206 2207
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2208 2209 2210 2211
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2212
	page_count = obj->base.size / PAGE_SIZE;
2213 2214
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2215
		return -ENOMEM;
2216
	}
2217

2218 2219 2220 2221 2222
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2223
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2224
	gfp = mapping_gfp_mask(mapping);
2225
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2226
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2227 2228 2229
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2230 2231
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2232 2233 2234 2235 2236
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2237 2238 2239 2240 2241 2242 2243 2244
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2245
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2246 2247 2248
			if (IS_ERR(page))
				goto err_pages;
		}
2249 2250 2251 2252 2253 2254 2255 2256
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2257 2258 2259 2260 2261 2262 2263 2264 2265
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2266 2267 2268

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2269
	}
2270 2271 2272 2273
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2274 2275
	obj->pages = st;

2276
	if (i915_gem_object_needs_bit17_swizzle(obj))
2277 2278
		i915_gem_object_do_bit_17_swizzle(obj);

2279 2280 2281 2282
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2283 2284 2285
	return 0;

err_pages:
2286 2287
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2288
		page_cache_release(sg_page_iter_page(&sg_iter));
2289 2290
	sg_free_table(st);
	kfree(st);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2304 2305
}

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2320
	if (obj->pages)
2321 2322
		return 0;

2323
	if (obj->madv != I915_MADV_WILLNEED) {
2324
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2325
		return -EFAULT;
2326 2327
	}

2328 2329
	BUG_ON(obj->pages_pin_count);

2330 2331 2332 2333
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2334
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2335 2336 2337 2338

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2339
	return 0;
2340 2341
}

2342
void i915_vma_move_to_active(struct i915_vma *vma,
2343
			     struct drm_i915_gem_request *req)
2344
{
2345
	struct drm_i915_gem_object *obj = vma->obj;
2346 2347 2348
	struct intel_engine_cs *ring;

	ring = i915_gem_request_get_ring(req);
2349 2350

	/* Add a reference if we're newly entering the active list. */
2351
	if (obj->active == 0)
2352
		drm_gem_object_reference(&obj->base);
2353
	obj->active |= intel_ring_flag(ring);
2354

2355
	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2356
	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2357

2358
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2359 2360
}

2361 2362
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2363
{
2364 2365 2366 2367 2368
	RQ_BUG_ON(obj->last_write_req == NULL);
	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));

	i915_gem_request_assign(&obj->last_write_req, NULL);
	intel_fb_obj_flush(obj, true);
B
Ben Widawsky 已提交
2369 2370
}

2371
static void
2372
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2373
{
2374
	struct i915_vma *vma;
2375

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
	RQ_BUG_ON(!(obj->active & (1 << ring)));

	list_del_init(&obj->ring_list[ring]);
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2388

2389 2390 2391
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2392
	}
2393

2394
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2395
	drm_gem_object_unreference(&obj->base);
2396 2397
}

2398
static int
2399
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2400
{
2401
	struct drm_i915_private *dev_priv = dev->dev_private;
2402
	struct intel_engine_cs *ring;
2403
	int ret, i, j;
2404

2405
	/* Carefully retire all requests without writing to the rings */
2406
	for_each_ring(ring, dev_priv, i) {
2407 2408 2409
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2410 2411
	}
	i915_gem_retire_requests(dev);
2412 2413

	/* Finally reset hw state */
2414
	for_each_ring(ring, dev_priv, i) {
2415
		intel_ring_init_seqno(ring, seqno);
2416

2417 2418
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2419
	}
2420

2421
	return 0;
2422 2423
}

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2450 2451
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2452
{
2453 2454 2455 2456
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2457
		int ret = i915_gem_init_seqno(dev, 0);
2458 2459
		if (ret)
			return ret;
2460

2461 2462
		dev_priv->next_seqno = 1;
	}
2463

2464
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2465
	return 0;
2466 2467
}

2468 2469 2470 2471 2472
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2473
void __i915_add_request(struct drm_i915_gem_request *request,
2474
			struct drm_file *file,
2475 2476
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2477
{
2478 2479
	struct intel_engine_cs *ring;
	struct drm_i915_private *dev_priv;
2480
	struct intel_ringbuffer *ringbuf;
2481
	u32 request_start;
2482 2483
	int ret;

2484
	if (WARN_ON(request == NULL))
2485
		return;
2486

2487 2488 2489 2490 2491
	ring = request->ring;
	dev_priv = ring->dev->dev_private;
	ringbuf = request->ringbuf;

	WARN_ON(request != ring->outstanding_lazy_request);
2492

2493 2494 2495 2496 2497 2498 2499
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2500
	request_start = intel_ring_get_tail(ringbuf);
2501 2502 2503 2504 2505 2506 2507
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2508 2509 2510 2511 2512 2513 2514 2515
	if (flush_caches) {
		if (i915.enable_execlists)
			ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
		else
			ret = intel_ring_flush_all_caches(ring);
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2516

2517 2518 2519 2520 2521
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2522
	request->postfix = intel_ring_get_tail(ringbuf);
2523

2524
	if (i915.enable_execlists)
2525
		ret = ring->emit_request(ringbuf, request);
2526
	else {
2527
		ret = ring->add_request(ring);
2528 2529

		request->tail = intel_ring_get_tail(ringbuf);
2530
	}
2531 2532
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2533

2534 2535 2536 2537 2538 2539 2540 2541
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2542
	request->batch_obj = obj;
2543

2544
	request->emitted_jiffies = jiffies;
2545
	list_add_tail(&request->list, &ring->request_list);
2546
	request->file_priv = NULL;
2547

C
Chris Wilson 已提交
2548 2549 2550
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2551
		spin_lock(&file_priv->mm.lock);
2552
		request->file_priv = file_priv;
2553
		list_add_tail(&request->client_list,
2554
			      &file_priv->mm.request_list);
2555
		spin_unlock(&file_priv->mm.lock);
2556 2557

		request->pid = get_pid(task_pid(current));
2558
	}
2559

2560
	trace_i915_gem_request_add(request);
2561
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2562

2563
	i915_queue_hangcheck(ring->dev);
2564

2565 2566 2567 2568
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2569

2570 2571
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2572 2573
}

2574
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2575
				   const struct intel_context *ctx)
2576
{
2577
	unsigned long elapsed;
2578

2579 2580 2581
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2582 2583
		return true;

2584 2585
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2586
		if (!i915_gem_context_is_default(ctx)) {
2587
			DRM_DEBUG("context hanging too fast, banning!\n");
2588
			return true;
2589 2590 2591
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2592
			return true;
2593
		}
2594 2595 2596 2597 2598
	}

	return false;
}

2599
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2600
				  struct intel_context *ctx,
2601
				  const bool guilty)
2602
{
2603 2604 2605 2606
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2607

2608 2609 2610
	hs = &ctx->hang_stats;

	if (guilty) {
2611
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2612 2613 2614 2615
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2616 2617 2618
	}
}

2619 2620 2621 2622 2623 2624
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2625 2626
	if (ctx) {
		if (i915.enable_execlists) {
2627
			struct intel_engine_cs *ring = req->ring;
2628

2629 2630 2631
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2632

2633 2634
		i915_gem_context_unreference(ctx);
	}
2635

2636
	kmem_cache_free(req->i915->requests, req);
2637 2638
}

2639
int i915_gem_request_alloc(struct intel_engine_cs *ring,
2640 2641
			   struct intel_context *ctx,
			   struct drm_i915_gem_request **req_out)
2642
{
2643
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
D
Daniel Vetter 已提交
2644
	struct drm_i915_gem_request *req;
2645 2646
	int ret;

2647 2648 2649 2650
	if (!req_out)
		return -EINVAL;

	if ((*req_out = ring->outstanding_lazy_request) != NULL)
2651 2652
		return 0;

D
Daniel Vetter 已提交
2653 2654
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2655 2656
		return -ENOMEM;

D
Daniel Vetter 已提交
2657
	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2658 2659
	if (ret)
		goto err;
2660

2661 2662
	kref_init(&req->ref);
	req->i915 = dev_priv;
D
Daniel Vetter 已提交
2663
	req->ring = ring;
2664 2665
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2666 2667

	if (i915.enable_execlists)
2668
		ret = intel_logical_ring_alloc_request_extras(req);
2669
	else
D
Daniel Vetter 已提交
2670
		ret = intel_ring_alloc_request_extras(req);
2671 2672
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2673
		goto err;
2674
	}
2675

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 *
	 * Note further that this call merely notes the reserve request. A
	 * subsequent call to *_ring_begin() is required to actually ensure
	 * that the reservation is available. Without the begin, if the
	 * request creator immediately submitted the request without adding
	 * any commands to it then there might not actually be sufficient
	 * room for the submission commands. Unfortunately, the current
	 * *_ring_begin() implementations potentially call back here to
	 * i915_gem_request_alloc(). Thus calling _begin() here would lead to
	 * infinite recursion! Until that back call path is removed, it is
	 * necessary to do a manual _begin() outside.
	 */
	intel_ring_reserved_space_reserve(req->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

2696
	*req_out = ring->outstanding_lazy_request = req;
2697
	return 0;
2698 2699 2700 2701

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2702 2703
}

2704 2705 2706 2707 2708 2709 2710
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2711
struct drm_i915_gem_request *
2712
i915_gem_find_active_request(struct intel_engine_cs *ring)
2713
{
2714 2715 2716
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2717
		if (i915_gem_request_completed(request, false))
2718
			continue;
2719

2720
		return request;
2721
	}
2722 2723 2724 2725 2726

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2727
				       struct intel_engine_cs *ring)
2728 2729 2730 2731
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2732
	request = i915_gem_find_active_request(ring);
2733 2734 2735 2736 2737 2738

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2739
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2740 2741

	list_for_each_entry_continue(request, &ring->request_list, list)
2742
		i915_set_reset_status(dev_priv, request->ctx, false);
2743
}
2744

2745
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2746
					struct intel_engine_cs *ring)
2747
{
2748
	while (!list_empty(&ring->active_list)) {
2749
		struct drm_i915_gem_object *obj;
2750

2751 2752
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
2753
				       ring_list[ring->id]);
2754

2755
		i915_gem_object_retire__read(obj, ring->id);
2756
	}
2757

2758 2759 2760 2761 2762 2763
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2764
		struct drm_i915_gem_request *submit_req;
2765 2766

		submit_req = list_first_entry(&ring->execlist_queue,
2767
				struct drm_i915_gem_request,
2768 2769
				execlist_link);
		list_del(&submit_req->execlist_link);
2770 2771 2772 2773

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2774
		i915_gem_request_unreference(submit_req);
2775 2776
	}

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

2791
		i915_gem_request_retire(request);
2792
	}
2793

2794 2795
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2796 2797
}

2798
void i915_gem_restore_fences(struct drm_device *dev)
2799 2800 2801 2802
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2803
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2804
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2805

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2816 2817 2818
	}
}

2819
void i915_gem_reset(struct drm_device *dev)
2820
{
2821
	struct drm_i915_private *dev_priv = dev->dev_private;
2822
	struct intel_engine_cs *ring;
2823
	int i;
2824

2825 2826 2827 2828 2829 2830 2831 2832
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2833
	for_each_ring(ring, dev_priv, i)
2834
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2835

2836 2837
	i915_gem_context_reset(dev);

2838
	i915_gem_restore_fences(dev);
2839 2840

	WARN_ON(i915_verify_lists(dev));
2841 2842 2843 2844 2845
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2846
void
2847
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2848
{
C
Chris Wilson 已提交
2849
	WARN_ON(i915_verify_lists(ring->dev));
2850

2851 2852 2853 2854
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2855
	 */
2856
	while (!list_empty(&ring->request_list)) {
2857 2858
		struct drm_i915_gem_request *request;

2859
		request = list_first_entry(&ring->request_list,
2860 2861 2862
					   struct drm_i915_gem_request,
					   list);

2863
		if (!i915_gem_request_completed(request, true))
2864 2865
			break;

2866
		i915_gem_request_retire(request);
2867
	}
2868

2869 2870 2871 2872 2873 2874 2875 2876 2877
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
2878
				      ring_list[ring->id]);
2879

2880
		if (!list_empty(&obj->last_read_req[ring->id]->list))
2881 2882
			break;

2883
		i915_gem_object_retire__read(obj, ring->id);
2884 2885
	}

2886 2887
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2888
		ring->irq_put(ring);
2889
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2890
	}
2891

C
Chris Wilson 已提交
2892
	WARN_ON(i915_verify_lists(ring->dev));
2893 2894
}

2895
bool
2896 2897
i915_gem_retire_requests(struct drm_device *dev)
{
2898
	struct drm_i915_private *dev_priv = dev->dev_private;
2899
	struct intel_engine_cs *ring;
2900
	bool idle = true;
2901
	int i;
2902

2903
	for_each_ring(ring, dev_priv, i) {
2904
		i915_gem_retire_requests_ring(ring);
2905
		idle &= list_empty(&ring->request_list);
2906 2907 2908 2909 2910 2911 2912 2913 2914
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2915 2916 2917 2918 2919 2920 2921 2922
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2923 2924
}

2925
static void
2926 2927
i915_gem_retire_work_handler(struct work_struct *work)
{
2928 2929 2930
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2931
	bool idle;
2932

2933
	/* Come back later if the device is busy... */
2934 2935 2936 2937
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2938
	}
2939
	if (!idle)
2940 2941
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2942
}
2943

2944 2945 2946 2947 2948
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2949
	struct drm_device *dev = dev_priv->dev;
2950 2951
	struct intel_engine_cs *ring;
	int i;
2952

2953 2954 2955
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2956 2957 2958 2959 2960 2961 2962 2963 2964

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2965

2966 2967
		mutex_unlock(&dev->struct_mutex);
	}
2968 2969
}

2970 2971 2972 2973 2974 2975 2976 2977
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2978 2979 2980 2981
	int ret, i;

	if (!obj->active)
		return 0;
2982

2983 2984
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct drm_i915_gem_request *req;
2985

2986 2987 2988 2989 2990 2991 2992 2993
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		ret = i915_gem_check_olr(req);
2994 2995 2996
		if (ret)
			return ret;

2997 2998 2999 3000 3001
		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3002 3003 3004 3005 3006
	}

	return 0;
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
3032
	struct drm_i915_private *dev_priv = dev->dev_private;
3033 3034
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3035
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3036
	unsigned reset_counter;
3037 3038
	int i, n = 0;
	int ret;
3039

3040 3041 3042
	if (args->flags != 0)
		return -EINVAL;

3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3053 3054
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3055 3056 3057
	if (ret)
		goto out;

3058
	if (!obj->active)
3059
		goto out;
3060 3061

	/* Do this after OLR check to make sure we make forward progress polling
3062
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3063
	 */
3064
	if (args->timeout_ns == 0) {
3065 3066 3067 3068 3069
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3070
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3071 3072 3073 3074 3075 3076 3077 3078

	for (i = 0; i < I915_NUM_RINGS; i++) {
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3079 3080
	mutex_unlock(&dev->struct_mutex);

3081 3082 3083 3084 3085 3086 3087
	for (i = 0; i < n; i++) {
		if (ret == 0)
			ret = __i915_wait_request(req[i], reset_counter, true,
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
						  file->driver_priv);
		i915_gem_request_unreference__unlocked(req[i]);
	}
3088
	return ret;
3089 3090 3091 3092 3093 3094 3095

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3096 3097 3098
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3099 3100
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3101 3102 3103 3104
{
	struct intel_engine_cs *from;
	int ret;

3105
	from = i915_gem_request_get_ring(from_req);
3106 3107 3108
	if (to == from)
		return 0;

3109
	if (i915_gem_request_completed(from_req, true))
3110 3111
		return 0;

3112
	ret = i915_gem_check_olr(from_req);
3113 3114 3115 3116
	if (ret)
		return ret;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3117
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3118
		ret = __i915_wait_request(from_req,
3119 3120 3121 3122
					  atomic_read(&i915->gpu_error.reset_counter),
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3123 3124 3125
		if (ret)
			return ret;

3126
		i915_gem_object_retire_request(obj, from_req);
3127 3128
	} else {
		int idx = intel_ring_sync_index(from, to);
3129 3130 3131
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3132 3133 3134 3135

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3136 3137 3138 3139 3140 3141 3142
		if (*to_req == NULL) {
			ret = i915_gem_request_alloc(to, to->default_context, to_req);
			if (ret)
				return ret;
		}

		trace_i915_gem_ring_sync_to(from, to, from_req);
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
		ret = to->semaphore.sync_to(to, from, seqno);
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3158 3159 3160 3161 3162
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3163 3164 3165
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3166 3167 3168
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3169
 * rather than a particular GPU ring. Conceptually we serialise writes
3170
 * between engines inside the GPU. We only allow one engine to write
3171 3172 3173 3174 3175 3176 3177 3178 3179
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3180
 *
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3191 3192
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3193 3194
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3195 3196
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3197
{
3198 3199 3200
	const bool readonly = obj->base.pending_write_domain == 0;
	struct drm_i915_gem_request *req[I915_NUM_RINGS];
	int ret, i, n;
3201

3202
	if (!obj->active)
3203 3204
		return 0;

3205 3206
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3207

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3218
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3219 3220 3221
		if (ret)
			return ret;
	}
3222

3223
	return 0;
3224 3225
}

3226 3227 3228 3229 3230 3231 3232
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3233 3234 3235
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3236 3237 3238
	/* Wait for any direct GTT access to complete */
	mb();

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3250
int i915_vma_unbind(struct i915_vma *vma)
3251
{
3252
	struct drm_i915_gem_object *obj = vma->obj;
3253
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3254
	int ret;
3255

3256
	if (list_empty(&vma->vma_link))
3257 3258
		return 0;

3259 3260 3261 3262
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3263

B
Ben Widawsky 已提交
3264
	if (vma->pin_count)
3265
		return -EBUSY;
3266

3267 3268
	BUG_ON(obj->pages == NULL);

3269
	ret = i915_gem_object_wait_rendering(obj, false);
3270
	if (ret)
3271 3272 3273 3274 3275 3276
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3277 3278
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3279
		i915_gem_object_finish_gtt(obj);
3280

3281 3282 3283 3284 3285
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3286

3287
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3288

3289
	vma->vm->unbind_vma(vma);
3290
	vma->bound = 0;
3291

3292
	list_del_init(&vma->mm_list);
3293 3294 3295 3296 3297 3298 3299 3300 3301
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3302

B
Ben Widawsky 已提交
3303 3304 3305 3306
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3307
	 * no more VMAs exist. */
3308 3309
	if (list_empty(&obj->vma_list)) {
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3310
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3311
	}
3312

3313 3314 3315 3316 3317 3318
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3319
	return 0;
3320 3321
}

3322
int i915_gpu_idle(struct drm_device *dev)
3323
{
3324
	struct drm_i915_private *dev_priv = dev->dev_private;
3325
	struct intel_engine_cs *ring;
3326
	int ret, i;
3327 3328

	/* Flush everything onto the inactive list. */
3329
	for_each_ring(ring, dev_priv, i) {
3330
		if (!i915.enable_execlists) {
3331 3332 3333
			struct drm_i915_gem_request *req;

			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3334 3335
			if (ret)
				return ret;
3336

3337
			ret = i915_switch_context(req);
3338 3339 3340 3341 3342
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3343
			i915_add_request_no_flush(req);
3344
		}
3345

3346 3347
		WARN_ON(ring->outstanding_lazy_request);

3348
		ret = intel_ring_idle(ring);
3349 3350 3351
		if (ret)
			return ret;
	}
3352

3353
	WARN_ON(i915_verify_lists(dev));
3354
	return 0;
3355 3356
}

3357 3358
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3359
{
3360
	struct drm_i915_private *dev_priv = dev->dev_private;
3361 3362
	int fence_reg;
	int fence_pitch_shift;
3363

3364 3365 3366 3367 3368 3369 3370 3371
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3386
	if (obj) {
3387
		u32 size = i915_gem_obj_ggtt_size(obj);
3388
		uint64_t val;
3389

3390 3391 3392 3393 3394 3395 3396
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3397
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3398
				 0xfffff000) << 32;
3399
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3400
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3401 3402 3403
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3404

3405 3406 3407 3408 3409 3410 3411 3412 3413
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3414 3415
}

3416 3417
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3418
{
3419
	struct drm_i915_private *dev_priv = dev->dev_private;
3420
	u32 val;
3421

3422
	if (obj) {
3423
		u32 size = i915_gem_obj_ggtt_size(obj);
3424 3425
		int pitch_val;
		int tile_width;
3426

3427
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3428
		     (size & -size) != size ||
3429 3430 3431
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3432

3433 3434 3435 3436 3437 3438 3439 3440 3441
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3442
		val = i915_gem_obj_ggtt_offset(obj);
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3458 3459
}

3460 3461
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3462
{
3463
	struct drm_i915_private *dev_priv = dev->dev_private;
3464 3465
	uint32_t val;

3466
	if (obj) {
3467
		u32 size = i915_gem_obj_ggtt_size(obj);
3468
		uint32_t pitch_val;
3469

3470
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3471
		     (size & -size) != size ||
3472 3473 3474
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3475

3476 3477
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3478

3479
		val = i915_gem_obj_ggtt_offset(obj);
3480 3481 3482 3483 3484 3485 3486
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3487

3488 3489 3490 3491
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3492 3493 3494 3495 3496
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3497 3498 3499
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3500 3501 3502 3503 3504 3505 3506 3507
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3508 3509 3510 3511
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3512 3513 3514 3515 3516 3517
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3518 3519 3520 3521 3522 3523

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3524 3525
}

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3536
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3537 3538 3539
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3540 3541

	if (enable) {
3542
		obj->fence_reg = reg;
3543 3544 3545 3546 3547 3548 3549
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3550
	obj->fence_dirty = false;
3551 3552
}

3553
static int
3554
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3555
{
3556
	if (obj->last_fenced_req) {
3557
		int ret = i915_wait_request(obj->last_fenced_req);
3558 3559
		if (ret)
			return ret;
3560

3561
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3562 3563 3564 3565 3566 3567 3568 3569
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3570
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3571
	struct drm_i915_fence_reg *fence;
3572 3573
	int ret;

3574
	ret = i915_gem_object_wait_fence(obj);
3575 3576 3577
	if (ret)
		return ret;

3578 3579
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3580

3581 3582
	fence = &dev_priv->fence_regs[obj->fence_reg];

3583 3584 3585
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3586
	i915_gem_object_fence_lost(obj);
3587
	i915_gem_object_update_fence(obj, fence, false);
3588 3589 3590 3591 3592

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3593
i915_find_fence_reg(struct drm_device *dev)
3594 3595
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3596
	struct drm_i915_fence_reg *reg, *avail;
3597
	int i;
3598 3599

	/* First try to find a free reg */
3600
	avail = NULL;
3601 3602 3603
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3604
			return reg;
3605

3606
		if (!reg->pin_count)
3607
			avail = reg;
3608 3609
	}

3610
	if (avail == NULL)
3611
		goto deadlock;
3612 3613

	/* None available, try to steal one or wait for a user to finish */
3614
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3615
		if (reg->pin_count)
3616 3617
			continue;

C
Chris Wilson 已提交
3618
		return reg;
3619 3620
	}

3621 3622 3623 3624 3625 3626
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3627 3628
}

3629
/**
3630
 * i915_gem_object_get_fence - set up fencing for an object
3631 3632 3633 3634 3635 3636 3637 3638 3639
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3640 3641
 *
 * For an untiled surface, this removes any existing fence.
3642
 */
3643
int
3644
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3645
{
3646
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3647
	struct drm_i915_private *dev_priv = dev->dev_private;
3648
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3649
	struct drm_i915_fence_reg *reg;
3650
	int ret;
3651

3652 3653 3654
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3655
	if (obj->fence_dirty) {
3656
		ret = i915_gem_object_wait_fence(obj);
3657 3658 3659
		if (ret)
			return ret;
	}
3660

3661
	/* Just update our place in the LRU if our fence is getting reused. */
3662 3663
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3664
		if (!obj->fence_dirty) {
3665 3666 3667 3668 3669
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3670 3671 3672
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3673
		reg = i915_find_fence_reg(dev);
3674 3675
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3676

3677 3678 3679
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3680
			ret = i915_gem_object_wait_fence(old);
3681 3682 3683
			if (ret)
				return ret;

3684
			i915_gem_object_fence_lost(old);
3685
		}
3686
	} else
3687 3688
		return 0;

3689 3690
	i915_gem_object_update_fence(obj, reg, enable);

3691
	return 0;
3692 3693
}

3694
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3695 3696
				     unsigned long cache_level)
{
3697
	struct drm_mm_node *gtt_space = &vma->node;
3698 3699
	struct drm_mm_node *other;

3700 3701 3702 3703 3704 3705
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3706
	 */
3707
	if (vma->vm->mm.color_adjust == NULL)
3708 3709
		return true;

3710
	if (!drm_mm_node_allocated(gtt_space))
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3727
/**
3728 3729
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3730
 */
3731
static struct i915_vma *
3732 3733
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3734
			   const struct i915_ggtt_view *ggtt_view,
3735
			   unsigned alignment,
3736
			   uint64_t flags)
3737
{
3738
	struct drm_device *dev = obj->base.dev;
3739
	struct drm_i915_private *dev_priv = dev->dev_private;
3740
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3741 3742 3743
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3744
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3745
	struct i915_vma *vma;
3746
	int ret;
3747

3748 3749 3750 3751 3752
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3753

3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3783

3784
	if (alignment == 0)
3785
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3786
						unfenced_alignment;
3787
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3788 3789 3790
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3791
		return ERR_PTR(-EINVAL);
3792 3793
	}

3794 3795 3796
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3797
	 */
3798 3799 3800 3801
	if (size > end) {
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3802
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3803
			  end);
3804
		return ERR_PTR(-E2BIG);
3805 3806
	}

3807
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3808
	if (ret)
3809
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3810

3811 3812
	i915_gem_object_pin_pages(obj);

3813 3814 3815
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3816
	if (IS_ERR(vma))
3817
		goto err_unpin;
B
Ben Widawsky 已提交
3818

3819
search_free:
3820
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3821
						  size, alignment,
3822 3823
						  obj->cache_level,
						  start, end,
3824 3825
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3826
	if (ret) {
3827
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3828 3829 3830
					       obj->cache_level,
					       start, end,
					       flags);
3831 3832
		if (ret == 0)
			goto search_free;
3833

3834
		goto err_free_vma;
3835
	}
3836
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3837
		ret = -EINVAL;
3838
		goto err_remove_node;
3839 3840
	}

3841
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3842
	if (ret)
3843
		goto err_remove_node;
3844

3845
	trace_i915_vma_bind(vma, flags);
3846
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3847 3848 3849
	if (ret)
		goto err_finish_gtt;

3850
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3851
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3852

3853
	return vma;
B
Ben Widawsky 已提交
3854

3855 3856
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3857
err_remove_node:
3858
	drm_mm_remove_node(&vma->node);
3859
err_free_vma:
B
Ben Widawsky 已提交
3860
	i915_gem_vma_destroy(vma);
3861
	vma = ERR_PTR(ret);
3862
err_unpin:
B
Ben Widawsky 已提交
3863
	i915_gem_object_unpin_pages(obj);
3864
	return vma;
3865 3866
}

3867
bool
3868 3869
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3870 3871 3872 3873 3874
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3875
	if (obj->pages == NULL)
3876
		return false;
3877

3878 3879 3880 3881
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3882
	if (obj->stolen || obj->phys_handle)
3883
		return false;
3884

3885 3886 3887 3888 3889 3890 3891 3892
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3893 3894
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3895
		return false;
3896
	}
3897

C
Chris Wilson 已提交
3898
	trace_i915_gem_object_clflush(obj);
3899
	drm_clflush_sg(obj->pages);
3900
	obj->cache_dirty = false;
3901 3902

	return true;
3903 3904 3905 3906
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3907
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3908
{
C
Chris Wilson 已提交
3909 3910
	uint32_t old_write_domain;

3911
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3912 3913
		return;

3914
	/* No actual flushing is required for the GTT write domain.  Writes
3915 3916
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3917 3918 3919 3920
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3921
	 */
3922 3923
	wmb();

3924 3925
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3926

3927 3928
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3929
	trace_i915_gem_object_change_domain(obj,
3930
					    obj->base.read_domains,
C
Chris Wilson 已提交
3931
					    old_write_domain);
3932 3933 3934 3935
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3936
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3937
{
C
Chris Wilson 已提交
3938
	uint32_t old_write_domain;
3939

3940
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3941 3942
		return;

3943
	if (i915_gem_clflush_object(obj, obj->pin_display))
3944 3945
		i915_gem_chipset_flush(obj->base.dev);

3946 3947
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3948

3949 3950
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3951
	trace_i915_gem_object_change_domain(obj,
3952
					    obj->base.read_domains,
C
Chris Wilson 已提交
3953
					    old_write_domain);
3954 3955
}

3956 3957 3958 3959 3960 3961
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3962
int
3963
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3964
{
C
Chris Wilson 已提交
3965
	uint32_t old_write_domain, old_read_domains;
3966
	struct i915_vma *vma;
3967
	int ret;
3968

3969 3970 3971
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3972
	ret = i915_gem_object_wait_rendering(obj, !write);
3973 3974 3975
	if (ret)
		return ret;

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3988
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3989

3990 3991 3992 3993 3994 3995 3996
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3997 3998
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3999

4000 4001 4002
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4003 4004
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4005
	if (write) {
4006 4007 4008
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
4009 4010
	}

4011
	if (write)
4012
		intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4013

C
Chris Wilson 已提交
4014 4015 4016 4017
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4018
	/* And bump the LRU for this access */
4019 4020
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4021
		list_move_tail(&vma->mm_list,
4022
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
4023

4024 4025 4026
	return 0;
}

4027 4028 4029
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
4030
	struct drm_device *dev = obj->base.dev;
4031
	struct i915_vma *vma, *next;
4032 4033 4034 4035 4036
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
4037
	if (i915_gem_obj_is_pinned(obj)) {
4038 4039 4040 4041
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

4042
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4043
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4044
			ret = i915_vma_unbind(vma);
4045 4046 4047
			if (ret)
				return ret;
		}
4048 4049
	}

4050
	if (i915_gem_obj_bound_any(obj)) {
4051
		ret = i915_gem_object_wait_rendering(obj, false);
4052 4053 4054 4055 4056 4057 4058 4059 4060
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
4061
		if (INTEL_INFO(dev)->gen < 6) {
4062 4063 4064 4065 4066
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

4067
		list_for_each_entry(vma, &obj->vma_list, vma_link)
4068 4069
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
4070
						    PIN_UPDATE);
4071 4072 4073
				if (ret)
					return ret;
			}
4074 4075
	}

4076 4077 4078 4079
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

4080 4081 4082 4083 4084
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
4085 4086 4087 4088 4089
	}

	return 0;
}

B
Ben Widawsky 已提交
4090 4091
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4092
{
B
Ben Widawsky 已提交
4093
	struct drm_i915_gem_caching *args = data;
4094 4095 4096
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4097 4098
	if (&obj->base == NULL)
		return -ENOENT;
4099

4100 4101 4102 4103 4104 4105
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

4106 4107 4108 4109
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

4110 4111 4112 4113
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
4114

4115 4116
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
4117 4118
}

B
Ben Widawsky 已提交
4119 4120
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
4121
{
B
Ben Widawsky 已提交
4122
	struct drm_i915_gem_caching *args = data;
4123 4124 4125 4126
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
4127 4128
	switch (args->caching) {
	case I915_CACHING_NONE:
4129 4130
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
4131
	case I915_CACHING_CACHED:
4132 4133
		level = I915_CACHE_LLC;
		break;
4134 4135 4136
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
4137 4138 4139 4140
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
4141 4142 4143 4144
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

4159
/*
4160 4161 4162
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4163 4164
 */
int
4165 4166
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4167
				     struct intel_engine_cs *pipelined,
4168
				     struct drm_i915_gem_request **pipelined_request,
4169
				     const struct i915_ggtt_view *view)
4170
{
4171
	u32 old_read_domains, old_write_domain;
4172 4173
	int ret;

4174
	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4175 4176
	if (ret)
		return ret;
4177

4178 4179 4180
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4181
	obj->pin_display++;
4182

4183 4184 4185 4186 4187 4188 4189 4190 4191
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4192 4193
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4194
	if (ret)
4195
		goto err_unpin_display;
4196

4197 4198 4199 4200
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4201 4202 4203
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4204
	if (ret)
4205
		goto err_unpin_display;
4206

4207
	i915_gem_object_flush_cpu_write_domain(obj);
4208

4209
	old_write_domain = obj->base.write_domain;
4210
	old_read_domains = obj->base.read_domains;
4211 4212 4213 4214

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4215
	obj->base.write_domain = 0;
4216
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4217 4218 4219

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4220
					    old_write_domain);
4221 4222

	return 0;
4223 4224

err_unpin_display:
4225
	obj->pin_display--;
4226 4227 4228 4229
	return ret;
}

void
4230 4231
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4232
{
4233 4234 4235
	if (WARN_ON(obj->pin_display == 0))
		return;

4236 4237
	i915_gem_object_ggtt_unpin_view(obj, view);

4238
	obj->pin_display--;
4239 4240
}

4241 4242 4243 4244 4245 4246
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4247
int
4248
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4249
{
C
Chris Wilson 已提交
4250
	uint32_t old_write_domain, old_read_domains;
4251 4252
	int ret;

4253 4254 4255
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4256
	ret = i915_gem_object_wait_rendering(obj, !write);
4257 4258 4259
	if (ret)
		return ret;

4260
	i915_gem_object_flush_gtt_write_domain(obj);
4261

4262 4263
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4264

4265
	/* Flush the CPU cache if it's still invalid. */
4266
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4267
		i915_gem_clflush_object(obj, false);
4268

4269
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4270 4271 4272 4273 4274
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4275
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4276 4277 4278 4279 4280

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4281 4282
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4283
	}
4284

4285
	if (write)
4286
		intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4287

C
Chris Wilson 已提交
4288 4289 4290 4291
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4292 4293 4294
	return 0;
}

4295 4296 4297
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4298 4299 4300 4301
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4302 4303 4304
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4305
static int
4306
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4307
{
4308 4309
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4310
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4311
	struct drm_i915_gem_request *request, *target = NULL;
4312
	unsigned reset_counter;
4313
	int ret;
4314

4315 4316 4317 4318 4319 4320 4321
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4322

4323
	spin_lock(&file_priv->mm.lock);
4324
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4325 4326
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4327

4328
		target = request;
4329
	}
4330
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4331 4332
	if (target)
		i915_gem_request_reference(target);
4333
	spin_unlock(&file_priv->mm.lock);
4334

4335
	if (target == NULL)
4336
		return 0;
4337

4338
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4339 4340
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4341

4342
	i915_gem_request_unreference__unlocked(target);
4343

4344 4345 4346
	return ret;
}

4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4366 4367 4368 4369 4370 4371
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4372
{
4373
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4374
	struct i915_vma *vma;
4375
	unsigned bound;
4376 4377
	int ret;

4378 4379 4380
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4381
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4382
		return -EINVAL;
4383

4384 4385 4386
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4387 4388 4389 4390 4391 4392 4393 4394 4395
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4396
	if (vma) {
B
Ben Widawsky 已提交
4397 4398 4399
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4400
		if (i915_vma_misplaced(vma, alignment, flags)) {
4401
			unsigned long offset;
4402
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4403
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4404
			WARN(vma->pin_count,
4405
			     "bo is already pinned in %s with incorrect alignment:"
4406
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4407
			     " obj->map_and_fenceable=%d\n",
4408 4409
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4410
			     alignment,
4411
			     !!(flags & PIN_MAPPABLE),
4412
			     obj->map_and_fenceable);
4413
			ret = i915_vma_unbind(vma);
4414 4415
			if (ret)
				return ret;
4416 4417

			vma = NULL;
4418 4419 4420
		}
	}

4421
	bound = vma ? vma->bound : 0;
4422
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4423 4424
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4425 4426
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4427 4428
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4429 4430 4431
		if (ret)
			return ret;
	}
4432

4433 4434
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4449
		mappable = (vma->node.start + fence_size <=
4450 4451 4452 4453
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4454 4455
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4456

4457
	vma->pin_count++;
4458 4459 4460
	return 0;
}

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4482
				      alignment, flags | PIN_GLOBAL);
4483 4484
}

4485
void
4486 4487
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4488
{
4489
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4490

B
Ben Widawsky 已提交
4491
	BUG_ON(!vma);
4492
	WARN_ON(vma->pin_count == 0);
4493
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4494

4495
	--vma->pin_count;
4496 4497
}

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4524 4525
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4526
		    struct drm_file *file)
4527 4528
{
	struct drm_i915_gem_busy *args = data;
4529
	struct drm_i915_gem_object *obj;
4530 4531
	int ret;

4532
	ret = i915_mutex_lock_interruptible(dev);
4533
	if (ret)
4534
		return ret;
4535

4536
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4537
	if (&obj->base == NULL) {
4538 4539
		ret = -ENOENT;
		goto unlock;
4540
	}
4541

4542 4543 4544 4545
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4546
	 */
4547
	ret = i915_gem_object_flush_active(obj);
4548 4549
	if (ret)
		goto unref;
4550

4551 4552 4553 4554
	BUILD_BUG_ON(I915_NUM_RINGS > 16);
	args->busy = obj->active << 16;
	if (obj->last_write_req)
		args->busy |= obj->last_write_req->ring->id;
4555

4556
unref:
4557
	drm_gem_object_unreference(&obj->base);
4558
unlock:
4559
	mutex_unlock(&dev->struct_mutex);
4560
	return ret;
4561 4562 4563 4564 4565 4566
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4567
	return i915_gem_ring_throttle(dev, file_priv);
4568 4569
}

4570 4571 4572 4573
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4574
	struct drm_i915_private *dev_priv = dev->dev_private;
4575
	struct drm_i915_gem_madvise *args = data;
4576
	struct drm_i915_gem_object *obj;
4577
	int ret;
4578 4579 4580 4581 4582 4583 4584 4585 4586

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4587 4588 4589 4590
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4591
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4592
	if (&obj->base == NULL) {
4593 4594
		ret = -ENOENT;
		goto unlock;
4595 4596
	}

B
Ben Widawsky 已提交
4597
	if (i915_gem_obj_is_pinned(obj)) {
4598 4599
		ret = -EINVAL;
		goto out;
4600 4601
	}

4602 4603 4604 4605 4606 4607 4608 4609 4610
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4611 4612
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4613

C
Chris Wilson 已提交
4614
	/* if the object is no longer attached, discard its backing storage */
4615
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4616 4617
		i915_gem_object_truncate(obj);

4618
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4619

4620
out:
4621
	drm_gem_object_unreference(&obj->base);
4622
unlock:
4623
	mutex_unlock(&dev->struct_mutex);
4624
	return ret;
4625 4626
}

4627 4628
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4629
{
4630 4631
	int i;

4632
	INIT_LIST_HEAD(&obj->global_list);
4633 4634
	for (i = 0; i < I915_NUM_RINGS; i++)
		INIT_LIST_HEAD(&obj->ring_list[i]);
4635
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4636
	INIT_LIST_HEAD(&obj->vma_list);
4637
	INIT_LIST_HEAD(&obj->batch_pool_link);
4638

4639 4640
	obj->ops = ops;

4641 4642 4643 4644 4645 4646
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4647 4648 4649 4650 4651
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4652 4653
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4654
{
4655
	struct drm_i915_gem_object *obj;
4656
	struct address_space *mapping;
D
Daniel Vetter 已提交
4657
	gfp_t mask;
4658

4659
	obj = i915_gem_object_alloc(dev);
4660 4661
	if (obj == NULL)
		return NULL;
4662

4663
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4664
		i915_gem_object_free(obj);
4665 4666
		return NULL;
	}
4667

4668 4669 4670 4671 4672 4673 4674
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4675
	mapping = file_inode(obj->base.filp)->i_mapping;
4676
	mapping_set_gfp_mask(mapping, mask);
4677

4678
	i915_gem_object_init(obj, &i915_gem_object_ops);
4679

4680 4681
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4682

4683 4684
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4700 4701
	trace_i915_gem_object_create(obj);

4702
	return obj;
4703 4704
}

4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4729
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4730
{
4731
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4732
	struct drm_device *dev = obj->base.dev;
4733
	struct drm_i915_private *dev_priv = dev->dev_private;
4734
	struct i915_vma *vma, *next;
4735

4736 4737
	intel_runtime_pm_get(dev_priv);

4738 4739
	trace_i915_gem_object_destroy(obj);

4740
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4741 4742 4743 4744
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4745 4746
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4747

4748 4749
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4750

4751
			WARN_ON(i915_vma_unbind(vma));
4752

4753 4754
			dev_priv->mm.interruptible = was_interruptible;
		}
4755 4756
	}

B
Ben Widawsky 已提交
4757 4758 4759 4760 4761
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4762 4763
	WARN_ON(obj->frontbuffer_bits);

4764 4765 4766 4767 4768
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4769 4770
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4771
	if (discard_backing_storage(obj))
4772
		obj->madv = I915_MADV_DONTNEED;
4773
	i915_gem_object_put_pages(obj);
4774
	i915_gem_object_free_mmap_offset(obj);
4775

4776 4777
	BUG_ON(obj->pages);

4778 4779
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4780

4781 4782 4783
	if (obj->ops->release)
		obj->ops->release(obj);

4784 4785
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4786

4787
	kfree(obj->bit_17);
4788
	i915_gem_object_free(obj);
4789 4790

	intel_runtime_pm_put(dev_priv);
4791 4792
}

4793 4794
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4795 4796
{
	struct i915_vma *vma;
4797 4798 4799 4800 4801
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4802
			return vma;
4803 4804 4805 4806 4807 4808 4809 4810 4811
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4812

4813 4814 4815 4816
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4817 4818
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4819
			return vma;
4820 4821 4822
	return NULL;
}

B
Ben Widawsky 已提交
4823 4824
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4825
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4826
	WARN_ON(vma->node.allocated);
4827 4828 4829 4830 4831

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4832 4833
	vm = vma->vm;

4834 4835
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4836

4837
	list_del(&vma->vma_link);
4838

4839
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4840 4841
}

4842 4843 4844 4845
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4846
	struct intel_engine_cs *ring;
4847 4848 4849
	int i;

	for_each_ring(ring, dev_priv, i)
4850
		dev_priv->gt.stop_ring(ring);
4851 4852
}

4853
int
4854
i915_gem_suspend(struct drm_device *dev)
4855
{
4856
	struct drm_i915_private *dev_priv = dev->dev_private;
4857
	int ret = 0;
4858

4859
	mutex_lock(&dev->struct_mutex);
4860
	ret = i915_gpu_idle(dev);
4861
	if (ret)
4862
		goto err;
4863

4864
	i915_gem_retire_requests(dev);
4865

4866
	i915_gem_stop_ringbuffers(dev);
4867 4868
	mutex_unlock(&dev->struct_mutex);

4869
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4870
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4871
	flush_delayed_work(&dev_priv->mm.idle_work);
4872

4873 4874 4875 4876 4877
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4878
	return 0;
4879 4880 4881 4882

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4883 4884
}

4885
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4886
{
4887
	struct drm_device *dev = ring->dev;
4888
	struct drm_i915_private *dev_priv = dev->dev_private;
4889 4890
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4891
	int i, ret;
B
Ben Widawsky 已提交
4892

4893
	if (!HAS_L3_DPF(dev) || !remap_info)
4894
		return 0;
B
Ben Widawsky 已提交
4895

4896 4897 4898
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4899

4900 4901 4902 4903 4904
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4905
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4906 4907 4908
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4909 4910
	}

4911
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4912

4913
	return ret;
B
Ben Widawsky 已提交
4914 4915
}

4916 4917
void i915_gem_init_swizzling(struct drm_device *dev)
{
4918
	struct drm_i915_private *dev_priv = dev->dev_private;
4919

4920
	if (INTEL_INFO(dev)->gen < 5 ||
4921 4922 4923 4924 4925 4926
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4927 4928 4929
	if (IS_GEN5(dev))
		return;

4930 4931
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4932
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4933
	else if (IS_GEN7(dev))
4934
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4935 4936
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4937 4938
	else
		BUG();
4939
}
D
Daniel Vetter 已提交
4940

4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4984
int i915_gem_init_rings(struct drm_device *dev)
4985
{
4986
	struct drm_i915_private *dev_priv = dev->dev_private;
4987
	int ret;
4988

4989
	ret = intel_init_render_ring_buffer(dev);
4990
	if (ret)
4991
		return ret;
4992 4993

	if (HAS_BSD(dev)) {
4994
		ret = intel_init_bsd_ring_buffer(dev);
4995 4996
		if (ret)
			goto cleanup_render_ring;
4997
	}
4998

4999
	if (intel_enable_blt(dev)) {
5000 5001 5002 5003 5004
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
5005 5006 5007 5008 5009 5010
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

5011 5012 5013 5014 5015
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
5016

5017
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5018
	if (ret)
5019
		goto cleanup_bsd2_ring;
5020 5021 5022

	return 0;

5023 5024
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
5025 5026
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
5040
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
5041
	struct intel_engine_cs *ring;
5042
	int ret, i, j;
5043 5044 5045 5046

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

5047 5048 5049
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
5050
	if (dev_priv->ellc_size)
5051
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5052

5053 5054 5055
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5056

5057
	if (HAS_PCH_NOP(dev)) {
5058 5059 5060 5061 5062 5063 5064 5065 5066
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
5067 5068
	}

5069 5070
	i915_gem_init_swizzling(dev);

5071 5072 5073 5074 5075 5076 5077 5078
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

5079 5080
	BUG_ON(!dev_priv->ring[RCS].default_context);

5081 5082 5083 5084 5085 5086 5087
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
D
Daniel Vetter 已提交
5088 5089 5090
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
5091
			goto out;
D
Daniel Vetter 已提交
5092
	}
5093

5094 5095
	/* Now it is safe to go back round and do everything else: */
	for_each_ring(ring, dev_priv, i) {
5096 5097
		struct drm_i915_gem_request *req;

5098 5099
		WARN_ON(!ring->default_context);

5100 5101 5102 5103 5104 5105
		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
		if (ret) {
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}

5106 5107 5108 5109
		if (ring->id == RCS) {
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
				i915_gem_l3_remap(ring, j);
		}
5110

5111
		ret = i915_ppgtt_init_ring(req);
5112 5113
		if (ret && ret != -EIO) {
			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5114
			i915_gem_request_cancel(req);
5115 5116 5117
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
5118

5119
		ret = i915_gem_context_enable(req);
5120 5121
		if (ret && ret != -EIO) {
			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5122
			i915_gem_request_cancel(req);
5123 5124 5125
			i915_gem_cleanup_ringbuffer(dev);
			goto out;
		}
5126

5127
		i915_add_request_no_flush(req);
5128
	}
D
Daniel Vetter 已提交
5129

5130 5131
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5132
	return ret;
5133 5134
}

5135 5136 5137 5138 5139
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

5140 5141 5142
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

5143
	mutex_lock(&dev->struct_mutex);
5144 5145 5146

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5147 5148 5149
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
5150 5151 5152
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

5153
	if (!i915.enable_execlists) {
5154
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5155 5156 5157
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5158
	} else {
5159
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
5160 5161 5162
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5163 5164
	}

5165 5166 5167 5168 5169 5170 5171 5172
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5173
	ret = i915_gem_init_userptr(dev);
5174 5175
	if (ret)
		goto out_unlock;
5176

5177
	i915_gem_init_global_gtt(dev);
5178

5179
	ret = i915_gem_context_init(dev);
5180 5181
	if (ret)
		goto out_unlock;
5182

D
Daniel Vetter 已提交
5183 5184
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
5185
		goto out_unlock;
5186

5187
	ret = i915_gem_init_hw(dev);
5188 5189 5190 5191 5192 5193 5194 5195
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
5196
	}
5197 5198

out_unlock:
5199
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5200
	mutex_unlock(&dev->struct_mutex);
5201

5202
	return ret;
5203 5204
}

5205 5206 5207
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
5208
	struct drm_i915_private *dev_priv = dev->dev_private;
5209
	struct intel_engine_cs *ring;
5210
	int i;
5211

5212
	for_each_ring(ring, dev_priv, i)
5213
		dev_priv->gt.cleanup_ring(ring);
5214 5215
}

5216
static void
5217
init_ring_lists(struct intel_engine_cs *ring)
5218 5219 5220 5221 5222
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

5223 5224
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
5225
{
5226 5227
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5228 5229 5230 5231
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5232
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5233 5234
}

5235 5236 5237
void
i915_gem_load(struct drm_device *dev)
{
5238
	struct drm_i915_private *dev_priv = dev->dev_private;
5239 5240
	int i;

5241
	dev_priv->objects =
5242 5243 5244 5245
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5246 5247 5248 5249 5250
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5251 5252 5253 5254 5255
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5256

B
Ben Widawsky 已提交
5257 5258 5259
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5260
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5261 5262
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5263
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5264 5265
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5266
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5267
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5268 5269
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5270 5271
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5272
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5273

5274 5275
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5276 5277 5278
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5279 5280 5281 5282
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5283 5284 5285 5286
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5287
	/* Initialize fence registers to zero */
5288 5289
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5290

5291
	i915_gem_detect_bit_6_swizzle(dev);
5292
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5293

5294 5295
	dev_priv->mm.interruptible = true;

5296
	i915_gem_shrinker_init(dev_priv);
5297 5298

	mutex_init(&dev_priv->fb_tracking.lock);
5299
}
5300

5301
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5302
{
5303
	struct drm_i915_file_private *file_priv = file->driver_priv;
5304 5305 5306 5307 5308

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5309
	spin_lock(&file_priv->mm.lock);
5310 5311 5312 5313 5314 5315 5316 5317 5318
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5319
	spin_unlock(&file_priv->mm.lock);
5320

5321
	if (!list_empty(&file_priv->rps.link)) {
5322
		spin_lock(&to_i915(dev)->rps.client_lock);
5323
		list_del(&file_priv->rps.link);
5324
		spin_unlock(&to_i915(dev)->rps.client_lock);
5325
	}
5326 5327 5328 5329 5330
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5331
	int ret;
5332 5333 5334 5335 5336 5337 5338 5339 5340

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5341
	file_priv->file = file;
5342
	INIT_LIST_HEAD(&file_priv->rps.link);
5343 5344 5345 5346

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5347 5348 5349
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5350

5351
	return ret;
5352 5353
}

5354 5355 5356 5357 5358 5359 5360 5361 5362
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5380
/* All the new VM stuff */
5381 5382 5383
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5384 5385 5386 5387
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5388
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5389 5390

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5391 5392 5393 5394
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5395 5396
			return vma->node.start;
	}
5397

5398 5399
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5400 5401 5402
	return -1;
}

5403 5404
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5405
			      const struct i915_ggtt_view *view)
5406
{
5407
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5408 5409 5410
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5411 5412
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5413 5414
			return vma->node.start;

5415
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5436
				  const struct i915_ggtt_view *view)
5437 5438 5439 5440 5441 5442
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5443
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5444
		    drm_mm_node_allocated(&vma->node))
5445 5446 5447 5448 5449 5450 5451
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5452
	struct i915_vma *vma;
5453

5454 5455
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5467
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5468 5469 5470

	BUG_ON(list_empty(&o->vma_list));

5471 5472 5473 5474
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5475 5476
		if (vma->vm == vm)
			return vma->node.size;
5477
	}
5478 5479 5480
	return 0;
}

5481
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5482 5483
{
	struct i915_vma *vma;
5484
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5485 5486
		if (vma->pin_count > 0)
			return true;
5487

5488
	return false;
5489
}
5490