i915_gem.c 138.0 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43
static void
44 45 46
i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
static void
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55 56 57 58 59 60 61
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

62 63 64 65
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
66
	spin_lock(&dev_priv->mm.object_stat_lock);
67 68
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
69
	spin_unlock(&dev_priv->mm.object_stat_lock);
70 71 72 73 74
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
75
	spin_lock(&dev_priv->mm.object_stat_lock);
76 77
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
78
	spin_unlock(&dev_priv->mm.object_stat_lock);
79 80
}

81
static int
82
i915_gem_wait_for_error(struct i915_gpu_error *error)
83 84 85
{
	int ret;

86
	if (!i915_reset_in_progress(error))
87 88
		return 0;

89 90 91 92 93
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
94
	ret = wait_event_interruptible_timeout(error->reset_queue,
95
					       !i915_reset_in_progress(error),
96
					       10*HZ);
97 98 99 100
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
101
		return ret;
102 103
	} else {
		return 0;
104
	}
105 106
}

107
int i915_mutex_lock_interruptible(struct drm_device *dev)
108
{
109
	struct drm_i915_private *dev_priv = dev->dev_private;
110 111
	int ret;

112
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
113 114 115 116 117 118 119
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

120
	WARN_ON(i915_verify_lists(dev));
121 122
	return 0;
}
123

124 125
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
126
			    struct drm_file *file)
127
{
128
	struct drm_i915_private *dev_priv = to_i915(dev);
129
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
130
	struct drm_i915_gem_get_aperture *args = data;
131
	struct i915_vma *vma;
132
	size_t pinned;
133

134
	pinned = 0;
135
	mutex_lock(&dev->struct_mutex);
136
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
137 138
		if (vma->pin_count)
			pinned += vma->node.size;
139
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
140 141
		if (vma->pin_count)
			pinned += vma->node.size;
142
	mutex_unlock(&dev->struct_mutex);
143

144
	args->aper_size = ggtt->base.total;
145
	args->aper_available_size = args->aper_size - pinned;
146

147 148 149
	return 0;
}

150 151
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
152
{
153 154 155 156 157
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

175
		put_page(page);
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
193

194 195 196 197 198 199 200 201 202 203 204 205 206
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
207

208
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
209
	if (WARN_ON(ret)) {
210 211 212 213 214 215 216 217 218 219
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
220
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221
		char *vaddr = obj->phys_handle->vaddr;
222 223 224
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 226 227 228 229 230 231 232 233 234 235 236 237 238
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
239
				mark_page_accessed(page);
240
			put_page(page);
241 242
			vaddr += PAGE_SIZE;
		}
243
		obj->dirty = 0;
244 245
	}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
269
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
270 271 272 273 274 275 276
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
277 278 279 280 281 282 283
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
284
	int ret;
285 286 287 288 289 290 291 292 293 294 295 296 297 298

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

299 300 301 302
	ret = drop_pages(obj);
	if (ret)
		return ret;

303 304 305 306 307 308
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
309 310 311
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
312 313 314 315 316 317 318 319 320 321
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
322
	int ret = 0;
323 324 325 326 327 328 329

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
330

331
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
332 333 334 335 336 337 338 339 340 341
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
342 343 344 345
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
346 347
	}

348
	drm_clflush_virt_range(vaddr, args->size);
349
	i915_gem_chipset_flush(dev);
350 351

out:
352
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
353
	return ret;
354 355
}

356 357 358
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
359
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
360 361 362 363 364
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
365
	kmem_cache_free(dev_priv->objects, obj);
366 367
}

368 369 370 371 372
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
373
{
374
	struct drm_i915_gem_object *obj;
375 376
	int ret;
	u32 handle;
377

378
	size = roundup(size, PAGE_SIZE);
379 380
	if (size == 0)
		return -EINVAL;
381 382

	/* Allocate the new object */
383
	obj = i915_gem_alloc_object(dev, size);
384 385 386
	if (obj == NULL)
		return -ENOMEM;

387
	ret = drm_gem_handle_create(file, &obj->base, &handle);
388
	/* drop reference from allocate - handle holds it now */
389 390 391
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
392

393
	*handle_p = handle;
394 395 396
	return 0;
}

397 398 399 400 401 402
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
403
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
404 405
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
406
			       args->size, &args->handle);
407 408 409 410 411 412 413 414 415 416
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
417

418
	return i915_gem_create(file, dev,
419
			       args->size, &args->handle);
420 421
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

448
static inline int
449 450
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

474 475 476 477 478 479 480 481 482 483 484 485
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

486
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

510 511 512
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
513
static int
514 515 516 517 518 519 520
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

521
	if (unlikely(page_do_bit17_swizzling))
522 523 524 525 526 527 528 529 530 531 532
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

533
	return ret ? -EFAULT : 0;
534 535
}

536 537 538 539
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
540
	if (unlikely(swizzled)) {
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

558 559 560 561 562 563 564 565 566 567 568 569
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
570 571 572
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
573 574 575 576 577 578 579 580 581 582 583

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

584
	return ret ? - EFAULT : 0;
585 586
}

587
static int
588 589 590 591
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
592
{
593
	char __user *user_data;
594
	ssize_t remain;
595
	loff_t offset;
596
	int shmem_page_offset, page_length, ret = 0;
597
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
598
	int prefaulted = 0;
599
	int needs_clflush = 0;
600
	struct sg_page_iter sg_iter;
601

V
Ville Syrjälä 已提交
602
	user_data = to_user_ptr(args->data_ptr);
603 604
	remain = args->size;

605
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
606

607
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
608 609 610
	if (ret)
		return ret;

611
	offset = args->offset;
612

613 614
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
615
		struct page *page = sg_page_iter_page(&sg_iter);
616 617 618 619

		if (remain <= 0)
			break;

620 621 622 623 624
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
625
		shmem_page_offset = offset_in_page(offset);
626 627 628 629
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

630 631 632
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

633 634 635 636 637
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
638 639 640

		mutex_unlock(&dev->struct_mutex);

641
		if (likely(!i915.prefault_disable) && !prefaulted) {
642
			ret = fault_in_multipages_writeable(user_data, remain);
643 644 645 646 647 648 649
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
650

651 652 653
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
654

655
		mutex_lock(&dev->struct_mutex);
656 657

		if (ret)
658 659
			goto out;

660
next_page:
661
		remain -= page_length;
662
		user_data += page_length;
663 664 665
		offset += page_length;
	}

666
out:
667 668
	i915_gem_object_unpin_pages(obj);

669 670 671
	return ret;
}

672 673 674 675 676 677 678
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
679
		     struct drm_file *file)
680 681
{
	struct drm_i915_gem_pread *args = data;
682
	struct drm_i915_gem_object *obj;
683
	int ret = 0;
684

685 686 687 688
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
689
		       to_user_ptr(args->data_ptr),
690 691 692
		       args->size))
		return -EFAULT;

693
	ret = i915_mutex_lock_interruptible(dev);
694
	if (ret)
695
		return ret;
696

697
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
698
	if (&obj->base == NULL) {
699 700
		ret = -ENOENT;
		goto unlock;
701
	}
702

703
	/* Bounds check source.  */
704 705
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
706
		ret = -EINVAL;
707
		goto out;
C
Chris Wilson 已提交
708 709
	}

710 711 712 713 714 715 716 717
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
718 719
	trace_i915_gem_object_pread(obj, args->offset, args->size);

720
	ret = i915_gem_shmem_pread(dev, obj, args, file);
721

722
out:
723
	drm_gem_object_unreference(&obj->base);
724
unlock:
725
	mutex_unlock(&dev->struct_mutex);
726
	return ret;
727 728
}

729 730
/* This is the fast write path which cannot handle
 * page faults in the source data
731
 */
732 733 734 735 736 737

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
738
{
739 740
	void __iomem *vaddr_atomic;
	void *vaddr;
741
	unsigned long unwritten;
742

P
Peter Zijlstra 已提交
743
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
744 745 746
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
747
						      user_data, length);
P
Peter Zijlstra 已提交
748
	io_mapping_unmap_atomic(vaddr_atomic);
749
	return unwritten;
750 751
}

752 753 754 755
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
756
static int
757 758
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
759
			 struct drm_i915_gem_pwrite *args,
760
			 struct drm_file *file)
761
{
762 763
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
764
	ssize_t remain;
765
	loff_t offset, page_base;
766
	char __user *user_data;
D
Daniel Vetter 已提交
767 768
	int page_offset, page_length, ret;

769
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
770 771 772 773 774 775 776 777 778 779
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
780

V
Ville Syrjälä 已提交
781
	user_data = to_user_ptr(args->data_ptr);
782 783
	remain = args->size;

784
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
785

786
	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
787

788 789 790
	while (remain > 0) {
		/* Operation in this page
		 *
791 792 793
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
794
		 */
795 796
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
797 798 799 800 801
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
802 803
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
804
		 */
805
		if (fast_user_write(ggtt->mappable, page_base,
D
Daniel Vetter 已提交
806 807
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
808
			goto out_flush;
D
Daniel Vetter 已提交
809
		}
810

811 812 813
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
814 815
	}

816
out_flush:
817
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
D
Daniel Vetter 已提交
818
out_unpin:
B
Ben Widawsky 已提交
819
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
820
out:
821
	return ret;
822 823
}

824 825 826 827
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
828
static int
829 830 831 832 833
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
834
{
835
	char *vaddr;
836
	int ret;
837

838
	if (unlikely(page_do_bit17_swizzling))
839
		return -EINVAL;
840

841 842 843 844
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
845 846
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
847 848 849 850
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
851

852
	return ret ? -EFAULT : 0;
853 854
}

855 856
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
857
static int
858 859 860 861 862
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
863
{
864 865
	char *vaddr;
	int ret;
866

867
	vaddr = kmap(page);
868
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
869 870 871
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
872 873
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
874 875
						user_data,
						page_length);
876 877 878 879 880
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
881 882 883
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
884
	kunmap(page);
885

886
	return ret ? -EFAULT : 0;
887 888 889
}

static int
890 891 892 893
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
894 895
{
	ssize_t remain;
896 897
	loff_t offset;
	char __user *user_data;
898
	int shmem_page_offset, page_length, ret = 0;
899
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
900
	int hit_slowpath = 0;
901 902
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
903
	struct sg_page_iter sg_iter;
904

V
Ville Syrjälä 已提交
905
	user_data = to_user_ptr(args->data_ptr);
906 907
	remain = args->size;

908
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
909

910 911 912 913 914
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
915
		needs_clflush_after = cpu_write_needs_clflush(obj);
916 917 918
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
919
	}
920 921 922 923 924
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
925

926 927 928 929
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

930
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
931

932 933
	i915_gem_object_pin_pages(obj);

934
	offset = args->offset;
935
	obj->dirty = 1;
936

937 938
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
939
		struct page *page = sg_page_iter_page(&sg_iter);
940
		int partial_cacheline_write;
941

942 943 944
		if (remain <= 0)
			break;

945 946 947 948 949
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
950
		shmem_page_offset = offset_in_page(offset);
951 952 953 954 955

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

956 957 958 959 960 961 962
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

963 964 965
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

966 967 968 969 970 971
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
972 973 974

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
975 976 977 978
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
979

980
		mutex_lock(&dev->struct_mutex);
981 982

		if (ret)
983 984
			goto out;

985
next_page:
986
		remain -= page_length;
987
		user_data += page_length;
988
		offset += page_length;
989 990
	}

991
out:
992 993
	i915_gem_object_unpin_pages(obj);

994
	if (hit_slowpath) {
995 996 997 998 999 1000 1001
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1002
			if (i915_gem_clflush_object(obj, obj->pin_display))
1003
				needs_clflush_after = true;
1004
		}
1005
	}
1006

1007
	if (needs_clflush_after)
1008
		i915_gem_chipset_flush(dev);
1009 1010
	else
		obj->cache_dirty = true;
1011

1012
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1013
	return ret;
1014 1015 1016 1017 1018 1019 1020 1021 1022
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1023
		      struct drm_file *file)
1024
{
1025
	struct drm_i915_private *dev_priv = dev->dev_private;
1026
	struct drm_i915_gem_pwrite *args = data;
1027
	struct drm_i915_gem_object *obj;
1028 1029 1030 1031 1032 1033
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1034
		       to_user_ptr(args->data_ptr),
1035 1036 1037
		       args->size))
		return -EFAULT;

1038
	if (likely(!i915.prefault_disable)) {
1039 1040 1041 1042 1043
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1044

1045 1046
	intel_runtime_pm_get(dev_priv);

1047
	ret = i915_mutex_lock_interruptible(dev);
1048
	if (ret)
1049
		goto put_rpm;
1050

1051
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1052
	if (&obj->base == NULL) {
1053 1054
		ret = -ENOENT;
		goto unlock;
1055
	}
1056

1057
	/* Bounds check destination. */
1058 1059
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1060
		ret = -EINVAL;
1061
		goto out;
C
Chris Wilson 已提交
1062 1063
	}

1064 1065 1066 1067 1068 1069 1070 1071
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1072 1073
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1074
	ret = -EFAULT;
1075 1076 1077 1078 1079 1080
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1081 1082 1083
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1084
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1085 1086 1087
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1088
	}
1089

1090 1091 1092 1093 1094 1095
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1096

1097
out:
1098
	drm_gem_object_unreference(&obj->base);
1099
unlock:
1100
	mutex_unlock(&dev->struct_mutex);
1101 1102 1103
put_rpm:
	intel_runtime_pm_put(dev_priv);

1104 1105 1106
	return ret;
}

1107 1108
static int
i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1109
{
1110 1111
	if (__i915_terminally_wedged(reset_counter))
		return -EIO;
1112

1113
	if (__i915_reset_in_progress(reset_counter)) {
1114 1115 1116 1117 1118
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1119
		return -EAGAIN;
1120 1121 1122 1123 1124
	}

	return 0;
}

1125 1126 1127 1128 1129 1130
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1131
		       struct intel_engine_cs *engine)
1132
{
1133
	return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1134 1135
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static unsigned long local_clock_us(unsigned *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned cpu)
{
	unsigned this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1168
static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1169
{
1170
	unsigned long timeout;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	unsigned cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */
1182

1183
	if (req->engine->irq_refcount)
1184 1185
		return -EBUSY;

1186 1187 1188 1189
	/* Only spin if we know the GPU is processing this request */
	if (!i915_gem_request_started(req, true))
		return -EAGAIN;

1190
	timeout = local_clock_us(&cpu) + 5;
1191
	while (!need_resched()) {
D
Daniel Vetter 已提交
1192
		if (i915_gem_request_completed(req, true))
1193 1194
			return 0;

1195 1196 1197
		if (signal_pending_state(state, current))
			break;

1198
		if (busywait_stop(timeout, cpu))
1199
			break;
1200

1201 1202
		cpu_relax_lowlatency();
	}
1203

D
Daniel Vetter 已提交
1204
	if (i915_gem_request_completed(req, false))
1205 1206 1207
		return 0;

	return -EAGAIN;
1208 1209
}

1210
/**
1211 1212
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
1213 1214 1215
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1216 1217 1218 1219 1220 1221 1222
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1223
 * Returns 0 if the request was found within the alloted time. Else returns the
1224 1225
 * errno with remaining time filled in timeout argument.
 */
1226
int __i915_wait_request(struct drm_i915_gem_request *req,
1227
			bool interruptible,
1228
			s64 *timeout,
1229
			struct intel_rps_client *rps)
1230
{
1231
	struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1232
	struct drm_device *dev = engine->dev;
1233
	struct drm_i915_private *dev_priv = dev->dev_private;
1234
	const bool irq_test_in_progress =
1235
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1236
	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1237
	DEFINE_WAIT(wait);
1238
	unsigned long timeout_expire;
1239
	s64 before = 0; /* Only to silence a compiler warning. */
1240 1241
	int ret;

1242
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1243

1244 1245 1246
	if (list_empty(&req->list))
		return 0;

1247
	if (i915_gem_request_completed(req, true))
1248 1249
		return 0;

1250 1251 1252 1253 1254 1255 1256 1257 1258
	timeout_expire = 0;
	if (timeout) {
		if (WARN_ON(*timeout < 0))
			return -EINVAL;

		if (*timeout == 0)
			return -ETIME;

		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1259 1260 1261 1262 1263

		/*
		 * Record current time in case interrupted by signal, or wedged.
		 */
		before = ktime_get_raw_ns();
1264
	}
1265

1266
	if (INTEL_INFO(dev_priv)->gen >= 6)
1267
		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1268

1269
	trace_i915_gem_request_wait_begin(req);
1270 1271

	/* Optimistic spin for the next jiffie before touching IRQs */
1272
	ret = __i915_spin_request(req, state);
1273 1274 1275
	if (ret == 0)
		goto out;

1276
	if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1277 1278 1279 1280
		ret = -ENODEV;
		goto out;
	}

1281 1282
	for (;;) {
		struct timer_list timer;
1283

1284
		prepare_to_wait(&engine->irq_queue, &wait, state);
1285

1286
		/* We need to check whether any gpu reset happened in between
1287 1288 1289 1290 1291 1292
		 * the request being submitted and now. If a reset has occurred,
		 * the request is effectively complete (we either are in the
		 * process of or have discarded the rendering and completely
		 * reset the GPU. The results of the request are lost and we
		 * are free to continue on with the original operation.
		 */
1293
		if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1294
			ret = 0;
1295 1296
			break;
		}
1297

1298
		if (i915_gem_request_completed(req, false)) {
1299 1300 1301
			ret = 0;
			break;
		}
1302

1303
		if (signal_pending_state(state, current)) {
1304 1305 1306 1307
			ret = -ERESTARTSYS;
			break;
		}

1308
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1309 1310 1311 1312 1313
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
1314
		if (timeout || missed_irq(dev_priv, engine)) {
1315 1316
			unsigned long expire;

1317
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1318
			expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1319 1320 1321
			mod_timer(&timer, expire);
		}

1322
		io_schedule();
1323 1324 1325 1326 1327 1328

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1329
	if (!irq_test_in_progress)
1330
		engine->irq_put(engine);
1331

1332
	finish_wait(&engine->irq_queue, &wait);
1333

1334 1335 1336
out:
	trace_i915_gem_request_wait_end(req);

1337
	if (timeout) {
1338
		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1339 1340

		*timeout = tres < 0 ? 0 : tres;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1351 1352
	}

1353
	return ret;
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	req->pid = get_pid(task_pid(current));

	return 0;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1393 1394 1395

	put_pid(request->pid);
	request->pid = NULL;
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
}

static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
	trace_i915_gem_request_retire(request);

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
	request->ringbuf->last_retired_head = request->postfix;

	list_del_init(&request->list);
	i915_gem_request_remove_from_client(request);

	i915_gem_request_unreference(request);
}

static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
{
1421
	struct intel_engine_cs *engine = req->engine;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&engine->dev->struct_mutex);

	if (list_empty(&req->list))
		return;

	do {
		tmp = list_first_entry(&engine->request_list,
				       typeof(*tmp), list);

		i915_gem_request_retire(tmp);
	} while (tmp != req);

	WARN_ON(i915_verify_lists(engine->dev));
}

1439
/**
1440
 * Waits for a request to be signaled, and cleans up the
1441 1442 1443
 * request and object lists appropriately for that event.
 */
int
1444
i915_wait_request(struct drm_i915_gem_request *req)
1445
{
1446 1447 1448
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1449 1450
	int ret;

1451 1452
	BUG_ON(req == NULL);

1453
	dev = req->engine->dev;
1454 1455 1456
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1457 1458
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1459
	ret = __i915_wait_request(req, interruptible, NULL, NULL);
1460 1461
	if (ret)
		return ret;
1462

1463
	__i915_gem_request_retire__upto(req);
1464 1465 1466
	return 0;
}

1467 1468 1469 1470
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1471
int
1472 1473 1474
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1475
	int ret, i;
1476

1477
	if (!obj->active)
1478 1479
		return 0;

1480 1481 1482 1483 1484
	if (readonly) {
		if (obj->last_write_req != NULL) {
			ret = i915_wait_request(obj->last_write_req);
			if (ret)
				return ret;
1485

1486
			i = obj->last_write_req->engine->id;
1487 1488 1489 1490 1491 1492
			if (obj->last_read_req[i] == obj->last_write_req)
				i915_gem_object_retire__read(obj, i);
			else
				i915_gem_object_retire__write(obj);
		}
	} else {
1493
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1494 1495 1496 1497 1498 1499 1500 1501 1502
			if (obj->last_read_req[i] == NULL)
				continue;

			ret = i915_wait_request(obj->last_read_req[i]);
			if (ret)
				return ret;

			i915_gem_object_retire__read(obj, i);
		}
1503
		GEM_BUG_ON(obj->active);
1504 1505 1506 1507 1508 1509 1510 1511 1512
	}

	return 0;
}

static void
i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
			       struct drm_i915_gem_request *req)
{
1513
	int ring = req->engine->id;
1514 1515 1516 1517 1518 1519 1520

	if (obj->last_read_req[ring] == req)
		i915_gem_object_retire__read(obj, ring);
	else if (obj->last_write_req == req)
		i915_gem_object_retire__write(obj);

	__i915_gem_request_retire__upto(req);
1521 1522
}

1523 1524 1525 1526 1527
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1528
					    struct intel_rps_client *rps,
1529 1530 1531 1532
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1533
	struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1534
	int ret, i, n = 0;
1535 1536 1537 1538

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1539
	if (!obj->active)
1540 1541
		return 0;

1542 1543 1544 1545 1546 1547 1548 1549 1550
	if (readonly) {
		struct drm_i915_gem_request *req;

		req = obj->last_write_req;
		if (req == NULL)
			return 0;

		requests[n++] = i915_gem_request_reference(req);
	} else {
1551
		for (i = 0; i < I915_NUM_ENGINES; i++) {
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req == NULL)
				continue;

			requests[n++] = i915_gem_request_reference(req);
		}
	}

1562
	mutex_unlock(&dev->struct_mutex);
1563
	ret = 0;
1564
	for (i = 0; ret == 0 && i < n; i++)
1565
		ret = __i915_wait_request(requests[i], true, NULL, rps);
1566 1567
	mutex_lock(&dev->struct_mutex);

1568 1569 1570 1571 1572 1573 1574
	for (i = 0; i < n; i++) {
		if (ret == 0)
			i915_gem_object_retire_request(obj, requests[i]);
		i915_gem_request_unreference(requests[i]);
	}

	return ret;
1575 1576
}

1577 1578 1579 1580 1581 1582
static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;
	return &fpriv->rps;
}

1583
/**
1584 1585
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1586 1587 1588
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1589
			  struct drm_file *file)
1590 1591
{
	struct drm_i915_gem_set_domain *args = data;
1592
	struct drm_i915_gem_object *obj;
1593 1594
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1595 1596
	int ret;

1597
	/* Only handle setting domains to types used by the CPU. */
1598
	if (write_domain & I915_GEM_GPU_DOMAINS)
1599 1600
		return -EINVAL;

1601
	if (read_domains & I915_GEM_GPU_DOMAINS)
1602 1603 1604 1605 1606 1607 1608 1609
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1610
	ret = i915_mutex_lock_interruptible(dev);
1611
	if (ret)
1612
		return ret;
1613

1614
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1615
	if (&obj->base == NULL) {
1616 1617
		ret = -ENOENT;
		goto unlock;
1618
	}
1619

1620 1621 1622 1623
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1624
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1625
							  to_rps_client(file),
1626
							  !write_domain);
1627 1628 1629
	if (ret)
		goto unref;

1630
	if (read_domains & I915_GEM_DOMAIN_GTT)
1631
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1632
	else
1633
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1634

1635 1636 1637 1638 1639
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj,
					write_domain == I915_GEM_DOMAIN_GTT ?
					ORIGIN_GTT : ORIGIN_CPU);

1640
unref:
1641
	drm_gem_object_unreference(&obj->base);
1642
unlock:
1643 1644 1645 1646 1647 1648 1649 1650 1651
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1652
			 struct drm_file *file)
1653 1654
{
	struct drm_i915_gem_sw_finish *args = data;
1655
	struct drm_i915_gem_object *obj;
1656 1657
	int ret = 0;

1658
	ret = i915_mutex_lock_interruptible(dev);
1659
	if (ret)
1660
		return ret;
1661

1662
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1663
	if (&obj->base == NULL) {
1664 1665
		ret = -ENOENT;
		goto unlock;
1666 1667 1668
	}

	/* Pinned buffers may be scanout, so flush the cache */
1669
	if (obj->pin_display)
1670
		i915_gem_object_flush_cpu_write_domain(obj);
1671

1672
	drm_gem_object_unreference(&obj->base);
1673
unlock:
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1694 1695 1696
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1697
		    struct drm_file *file)
1698 1699 1700 1701 1702
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1703 1704 1705 1706 1707 1708
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1709
	obj = drm_gem_object_lookup(dev, file, args->handle);
1710
	if (obj == NULL)
1711
		return -ENOENT;
1712

1713 1714 1715 1716 1717 1718 1719 1720
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1721
	addr = vm_mmap(obj->filp, 0, args->size,
1722 1723
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1737
	drm_gem_object_unreference_unlocked(obj);
1738 1739 1740 1741 1742 1743 1744 1745
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1746 1747
/**
 * i915_gem_fault - fault a page into the GTT
1748 1749
 * @vma: VMA in question
 * @vmf: fault info
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1764 1765
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1766 1767
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1768
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1769 1770 1771
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1772
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1773

1774 1775
	intel_runtime_pm_get(dev_priv);

1776 1777 1778 1779
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1780 1781 1782
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1783

C
Chris Wilson 已提交
1784 1785
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1786 1787 1788 1789 1790 1791 1792 1793 1794
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1795 1796
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1797
		ret = -EFAULT;
1798 1799 1800
		goto unlock;
	}

1801
	/* Use a partial view if the object is bigger than the aperture. */
1802
	if (obj->base.size >= ggtt->mappable_end &&
1803
	    obj->tiling_mode == I915_TILING_NONE) {
1804
		static const unsigned int chunk_size = 256; // 1 MiB
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1818 1819
	if (ret)
		goto unlock;
1820

1821 1822 1823
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1824

1825
	ret = i915_gem_object_get_fence(obj);
1826
	if (ret)
1827
		goto unpin;
1828

1829
	/* Finally, remap it using the new GTT offset */
1830
	pfn = ggtt->mappable_base +
1831
		i915_gem_obj_ggtt_offset_view(obj, &view);
1832
	pfn >>= PAGE_SHIFT;
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1843

1844 1845
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1846 1847 1848 1849 1850
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1872
unpin:
1873
	i915_gem_object_ggtt_unpin_view(obj, &view);
1874
unlock:
1875
	mutex_unlock(&dev->struct_mutex);
1876
out:
1877
	switch (ret) {
1878
	case -EIO:
1879 1880 1881 1882 1883 1884 1885
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1886 1887 1888
			ret = VM_FAULT_SIGBUS;
			break;
		}
1889
	case -EAGAIN:
D
Daniel Vetter 已提交
1890 1891 1892 1893
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1894
		 */
1895 1896
	case 0:
	case -ERESTARTSYS:
1897
	case -EINTR:
1898 1899 1900 1901 1902
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1903 1904
		ret = VM_FAULT_NOPAGE;
		break;
1905
	case -ENOMEM:
1906 1907
		ret = VM_FAULT_OOM;
		break;
1908
	case -ENOSPC:
1909
	case -EFAULT:
1910 1911
		ret = VM_FAULT_SIGBUS;
		break;
1912
	default:
1913
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1914 1915
		ret = VM_FAULT_SIGBUS;
		break;
1916
	}
1917 1918 1919

	intel_runtime_pm_put(dev_priv);
	return ret;
1920 1921
}

1922 1923 1924 1925
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1926
 * Preserve the reservation of the mmapping with the DRM core code, but
1927 1928 1929 1930 1931 1932 1933 1934 1935
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1936
void
1937
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1938
{
1939 1940
	if (!obj->fault_mappable)
		return;
1941

1942 1943
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1944
	obj->fault_mappable = false;
1945 1946
}

1947 1948 1949 1950 1951 1952 1953 1954 1955
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1956
uint32_t
1957
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1958
{
1959
	uint32_t gtt_size;
1960 1961

	if (INTEL_INFO(dev)->gen >= 4 ||
1962 1963
	    tiling_mode == I915_TILING_NONE)
		return size;
1964 1965 1966

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1967
		gtt_size = 1024*1024;
1968
	else
1969
		gtt_size = 512*1024;
1970

1971 1972
	while (gtt_size < size)
		gtt_size <<= 1;
1973

1974
	return gtt_size;
1975 1976
}

1977 1978 1979 1980 1981
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1982
 * potential fence register mapping.
1983
 */
1984 1985 1986
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1987 1988 1989 1990 1991
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1992
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1993
	    tiling_mode == I915_TILING_NONE)
1994 1995
		return 4096;

1996 1997 1998 1999
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2000
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2001 2002
}

2003 2004 2005 2006 2007
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

2008
	if (drm_vma_node_has_offset(&obj->base.vma_node))
2009 2010
		return 0;

2011 2012
	dev_priv->mm.shrinker_no_lock_stealing = true;

2013 2014
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2015
		goto out;
2016 2017 2018 2019 2020 2021 2022 2023

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
2024 2025 2026 2027 2028
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
2029 2030
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
2031
		goto out;
2032 2033

	i915_gem_shrink_all(dev_priv);
2034 2035 2036 2037 2038
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
2039 2040 2041 2042 2043 2044 2045
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2046
int
2047 2048
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2049
		  uint32_t handle,
2050
		  uint64_t *offset)
2051
{
2052
	struct drm_i915_gem_object *obj;
2053 2054
	int ret;

2055
	ret = i915_mutex_lock_interruptible(dev);
2056
	if (ret)
2057
		return ret;
2058

2059
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2060
	if (&obj->base == NULL) {
2061 2062 2063
		ret = -ENOENT;
		goto unlock;
	}
2064

2065
	if (obj->madv != I915_MADV_WILLNEED) {
2066
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2067
		ret = -EFAULT;
2068
		goto out;
2069 2070
	}

2071 2072 2073
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
2074

2075
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2076

2077
out:
2078
	drm_gem_object_unreference(&obj->base);
2079
unlock:
2080
	mutex_unlock(&dev->struct_mutex);
2081
	return ret;
2082 2083
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2105
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2106 2107
}

D
Daniel Vetter 已提交
2108 2109 2110
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2111
{
2112
	i915_gem_object_free_mmap_offset(obj);
2113

2114 2115
	if (obj->base.filp == NULL)
		return;
2116

D
Daniel Vetter 已提交
2117 2118 2119 2120 2121
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2122
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2123 2124
	obj->madv = __I915_MADV_PURGED;
}
2125

2126 2127 2128
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2129
{
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2144 2145
}

2146
static void
2147
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2148
{
2149 2150
	struct sg_page_iter sg_iter;
	int ret;
2151

2152
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2153

C
Chris Wilson 已提交
2154
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2155
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2156 2157 2158
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2159
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2160 2161 2162
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2163 2164
	i915_gem_gtt_finish_object(obj);

2165
	if (i915_gem_object_needs_bit17_swizzle(obj))
2166 2167
		i915_gem_object_save_bit_17_swizzle(obj);

2168 2169
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2170

2171
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2172
		struct page *page = sg_page_iter_page(&sg_iter);
2173

2174
		if (obj->dirty)
2175
			set_page_dirty(page);
2176

2177
		if (obj->madv == I915_MADV_WILLNEED)
2178
			mark_page_accessed(page);
2179

2180
		put_page(page);
2181
	}
2182
	obj->dirty = 0;
2183

2184 2185
	sg_free_table(obj->pages);
	kfree(obj->pages);
2186
}
C
Chris Wilson 已提交
2187

2188
int
2189 2190 2191 2192
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2193
	if (obj->pages == NULL)
2194 2195
		return 0;

2196 2197 2198
	if (obj->pages_pin_count)
		return -EBUSY;

2199
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2200

2201 2202 2203
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2204
	list_del(&obj->global_list);
2205

2206
	if (obj->mapping) {
2207 2208 2209 2210
		if (is_vmalloc_addr(obj->mapping))
			vunmap(obj->mapping);
		else
			kunmap(kmap_to_page(obj->mapping));
2211 2212 2213
		obj->mapping = NULL;
	}

2214
	ops->put_pages(obj);
2215
	obj->pages = NULL;
2216

2217
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2218 2219 2220 2221

	return 0;
}

2222
static int
C
Chris Wilson 已提交
2223
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2224
{
C
Chris Wilson 已提交
2225
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2226 2227
	int page_count, i;
	struct address_space *mapping;
2228 2229
	struct sg_table *st;
	struct scatterlist *sg;
2230
	struct sg_page_iter sg_iter;
2231
	struct page *page;
2232
	unsigned long last_pfn = 0;	/* suppress gcc warning */
I
Imre Deak 已提交
2233
	int ret;
C
Chris Wilson 已提交
2234
	gfp_t gfp;
2235

C
Chris Wilson 已提交
2236 2237 2238 2239 2240 2241 2242
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2243 2244 2245 2246
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2247
	page_count = obj->base.size / PAGE_SIZE;
2248 2249
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2250
		return -ENOMEM;
2251
	}
2252

2253 2254 2255 2256 2257
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2258
	mapping = file_inode(obj->base.filp)->i_mapping;
2259
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2260
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2261 2262 2263
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2264 2265
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2266 2267 2268 2269 2270
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2271 2272 2273 2274 2275 2276 2277 2278
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2279
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2280 2281
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2282
				goto err_pages;
I
Imre Deak 已提交
2283
			}
C
Chris Wilson 已提交
2284
		}
2285 2286 2287 2288 2289 2290 2291 2292
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2293 2294 2295 2296 2297 2298 2299 2300 2301
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2302 2303 2304

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2305
	}
2306 2307 2308 2309
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2310 2311
	obj->pages = st;

I
Imre Deak 已提交
2312 2313 2314 2315
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2316
	if (i915_gem_object_needs_bit17_swizzle(obj))
2317 2318
		i915_gem_object_do_bit_17_swizzle(obj);

2319 2320 2321 2322
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2323 2324 2325
	return 0;

err_pages:
2326 2327
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2328
		put_page(sg_page_iter_page(&sg_iter));
2329 2330
	sg_free_table(st);
	kfree(st);
2331 2332 2333 2334 2335 2336 2337 2338 2339

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2340 2341 2342 2343
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2344 2345
}

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2360
	if (obj->pages)
2361 2362
		return 0;

2363
	if (obj->madv != I915_MADV_WILLNEED) {
2364
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2365
		return -EFAULT;
2366 2367
	}

2368 2369
	BUG_ON(obj->pages_pin_count);

2370 2371 2372 2373
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2374
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2375 2376 2377 2378

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2379
	return 0;
2380 2381
}

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);

	if (obj->mapping == NULL) {
		struct page **pages;

2397 2398 2399 2400 2401 2402 2403
		pages = NULL;
		if (obj->base.size == PAGE_SIZE)
			obj->mapping = kmap(sg_page(obj->pages->sgl));
		else
			pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
					       sizeof(*pages),
					       GFP_TEMPORARY);
2404
		if (pages != NULL) {
2405 2406 2407
			struct sg_page_iter sg_iter;
			int n;

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
			n = 0;
			for_each_sg_page(obj->pages->sgl, &sg_iter,
					 obj->pages->nents, 0)
				pages[n++] = sg_page_iter_page(&sg_iter);

			obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
			drm_free_large(pages);
		}
		if (obj->mapping == NULL) {
			i915_gem_object_unpin_pages(obj);
			return ERR_PTR(-ENOMEM);
		}
	}

	return obj->mapping;
}

2425
void i915_vma_move_to_active(struct i915_vma *vma,
2426
			     struct drm_i915_gem_request *req)
2427
{
2428
	struct drm_i915_gem_object *obj = vma->obj;
2429
	struct intel_engine_cs *engine;
2430

2431
	engine = i915_gem_request_get_engine(req);
2432 2433

	/* Add a reference if we're newly entering the active list. */
2434
	if (obj->active == 0)
2435
		drm_gem_object_reference(&obj->base);
2436
	obj->active |= intel_engine_flag(engine);
2437

2438
	list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2439
	i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2440

2441
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2442 2443
}

2444 2445
static void
i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
B
Ben Widawsky 已提交
2446
{
2447 2448
	GEM_BUG_ON(obj->last_write_req == NULL);
	GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2449 2450

	i915_gem_request_assign(&obj->last_write_req, NULL);
2451
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2452 2453
}

2454
static void
2455
i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2456
{
2457
	struct i915_vma *vma;
2458

2459 2460
	GEM_BUG_ON(obj->last_read_req[ring] == NULL);
	GEM_BUG_ON(!(obj->active & (1 << ring)));
2461

2462
	list_del_init(&obj->engine_list[ring]);
2463 2464
	i915_gem_request_assign(&obj->last_read_req[ring], NULL);

2465
	if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2466 2467 2468 2469 2470
		i915_gem_object_retire__write(obj);

	obj->active &= ~(1 << ring);
	if (obj->active)
		return;
2471

2472 2473 2474 2475 2476 2477 2478
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
	list_move_tail(&obj->global_list,
		       &to_i915(obj->base.dev)->mm.bound_list);

2479 2480 2481
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!list_empty(&vma->vm_link))
			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2482
	}
2483

2484
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2485
	drm_gem_object_unreference(&obj->base);
2486 2487
}

2488
static int
2489
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2490
{
2491
	struct drm_i915_private *dev_priv = dev->dev_private;
2492
	struct intel_engine_cs *engine;
2493
	int ret;
2494

2495
	/* Carefully retire all requests without writing to the rings */
2496
	for_each_engine(engine, dev_priv) {
2497
		ret = intel_engine_idle(engine);
2498 2499
		if (ret)
			return ret;
2500 2501
	}
	i915_gem_retire_requests(dev);
2502 2503

	/* Finally reset hw state */
2504
	for_each_engine(engine, dev_priv)
2505
		intel_ring_init_seqno(engine, seqno);
2506

2507
	return 0;
2508 2509
}

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2536 2537
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2538
{
2539 2540 2541 2542
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2543
		int ret = i915_gem_init_seqno(dev, 0);
2544 2545
		if (ret)
			return ret;
2546

2547 2548
		dev_priv->next_seqno = 1;
	}
2549

2550
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2551
	return 0;
2552 2553
}

2554 2555 2556 2557 2558
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
2559
void __i915_add_request(struct drm_i915_gem_request *request,
2560 2561
			struct drm_i915_gem_object *obj,
			bool flush_caches)
2562
{
2563
	struct intel_engine_cs *engine;
2564
	struct drm_i915_private *dev_priv;
2565
	struct intel_ringbuffer *ringbuf;
2566
	u32 request_start;
2567 2568
	int ret;

2569
	if (WARN_ON(request == NULL))
2570
		return;
2571

2572
	engine = request->engine;
2573
	dev_priv = request->i915;
2574 2575
	ringbuf = request->ringbuf;

2576 2577 2578 2579 2580 2581 2582
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
	intel_ring_reserved_space_use(ringbuf);

2583
	request_start = intel_ring_get_tail(ringbuf);
2584 2585 2586 2587 2588 2589 2590
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2591 2592
	if (flush_caches) {
		if (i915.enable_execlists)
2593
			ret = logical_ring_flush_all_caches(request);
2594
		else
2595
			ret = intel_ring_flush_all_caches(request);
2596 2597 2598
		/* Not allowed to fail! */
		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
	}
2599

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	trace_i915_gem_request_add(request);

	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
	request->batch_obj = obj;

	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
	request->emitted_jiffies = jiffies;
	request->previous_seqno = engine->last_submitted_seqno;
	smp_store_mb(engine->last_submitted_seqno, request->seqno);
	list_add_tail(&request->list, &engine->request_list);

2622 2623 2624 2625 2626
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2627
	request->postfix = intel_ring_get_tail(ringbuf);
2628

2629
	if (i915.enable_execlists)
2630
		ret = engine->emit_request(request);
2631
	else {
2632
		ret = engine->add_request(request);
2633 2634

		request->tail = intel_ring_get_tail(ringbuf);
2635
	}
2636 2637
	/* Not allowed to fail! */
	WARN(ret, "emit|add_request failed: %d!\n", ret);
2638

2639
	i915_queue_hangcheck(engine->dev);
2640

2641 2642 2643 2644
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2645

2646 2647
	/* Sanity check that the reserved size was large enough. */
	intel_ring_reserved_space_end(ringbuf);
2648 2649
}

2650
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2651
				   const struct intel_context *ctx)
2652
{
2653
	unsigned long elapsed;
2654

2655 2656 2657
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2658 2659
		return true;

2660 2661
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2662
		if (!i915_gem_context_is_default(ctx)) {
2663
			DRM_DEBUG("context hanging too fast, banning!\n");
2664
			return true;
2665 2666 2667
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2668
			return true;
2669
		}
2670 2671 2672 2673 2674
	}

	return false;
}

2675
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2676
				  struct intel_context *ctx,
2677
				  const bool guilty)
2678
{
2679 2680 2681 2682
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2683

2684 2685 2686
	hs = &ctx->hang_stats;

	if (guilty) {
2687
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2688 2689 2690 2691
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2692 2693 2694
	}
}

2695 2696 2697 2698 2699 2700
void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2701 2702 2703
	if (req->file_priv)
		i915_gem_request_remove_from_client(req);

2704
	if (ctx) {
D
Dave Gordon 已提交
2705
		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2706
			intel_lr_context_unpin(ctx, req->engine);
2707

2708 2709
		i915_gem_context_unreference(ctx);
	}
2710

2711
	kmem_cache_free(req->i915->requests, req);
2712 2713
}

2714
static inline int
2715
__i915_gem_request_alloc(struct intel_engine_cs *engine,
2716 2717
			 struct intel_context *ctx,
			 struct drm_i915_gem_request **req_out)
2718
{
2719
	struct drm_i915_private *dev_priv = to_i915(engine->dev);
2720
	unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
D
Daniel Vetter 已提交
2721
	struct drm_i915_gem_request *req;
2722 2723
	int ret;

2724 2725 2726
	if (!req_out)
		return -EINVAL;

2727
	*req_out = NULL;
2728

2729 2730 2731 2732 2733
	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
	ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2734 2735 2736
	if (ret)
		return ret;

D
Daniel Vetter 已提交
2737 2738
	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (req == NULL)
2739 2740
		return -ENOMEM;

2741
	ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2742 2743
	if (ret)
		goto err;
2744

2745 2746
	kref_init(&req->ref);
	req->i915 = dev_priv;
2747
	req->engine = engine;
2748
	req->reset_counter = reset_counter;
2749 2750
	req->ctx  = ctx;
	i915_gem_context_reference(req->ctx);
2751 2752

	if (i915.enable_execlists)
2753
		ret = intel_logical_ring_alloc_request_extras(req);
2754
	else
D
Daniel Vetter 已提交
2755
		ret = intel_ring_alloc_request_extras(req);
2756 2757
	if (ret) {
		i915_gem_context_unreference(req->ctx);
2758
		goto err;
2759
	}
2760

2761 2762 2763 2764 2765 2766 2767
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	if (i915.enable_execlists)
		ret = intel_logical_ring_reserve_space(req);
	else
		ret = intel_ring_reserve_space(req);
	if (ret) {
		/*
		 * At this point, the request is fully allocated even if not
		 * fully prepared. Thus it can be cleaned up using the proper
		 * free code.
		 */
		i915_gem_request_cancel(req);
		return ret;
	}
2781

2782
	*req_out = req;
2783
	return 0;
2784 2785 2786 2787

err:
	kmem_cache_free(dev_priv->requests, req);
	return ret;
2788 2789
}

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct intel_context *ctx)
{
	struct drm_i915_gem_request *req;
	int err;

	if (ctx == NULL)
2810
		ctx = to_i915(engine->dev)->kernel_context;
2811 2812 2813 2814
	err = __i915_gem_request_alloc(engine, ctx, &req);
	return err ? ERR_PTR(err) : req;
}

2815 2816 2817 2818 2819 2820 2821
void i915_gem_request_cancel(struct drm_i915_gem_request *req)
{
	intel_ring_reserved_space_cancel(req->ringbuf);

	i915_gem_request_unreference(req);
}

2822
struct drm_i915_gem_request *
2823
i915_gem_find_active_request(struct intel_engine_cs *engine)
2824
{
2825 2826
	struct drm_i915_gem_request *request;

2827
	list_for_each_entry(request, &engine->request_list, list) {
2828
		if (i915_gem_request_completed(request, false))
2829
			continue;
2830

2831
		return request;
2832
	}
2833 2834 2835 2836

	return NULL;
}

2837
static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2838
				       struct intel_engine_cs *engine)
2839 2840 2841 2842
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2843
	request = i915_gem_find_active_request(engine);
2844 2845 2846 2847

	if (request == NULL)
		return;

2848
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2849

2850
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2851

2852
	list_for_each_entry_continue(request, &engine->request_list, list)
2853
		i915_set_reset_status(dev_priv, request->ctx, false);
2854
}
2855

2856
static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2857
					struct intel_engine_cs *engine)
2858
{
2859 2860
	struct intel_ringbuffer *buffer;

2861
	while (!list_empty(&engine->active_list)) {
2862
		struct drm_i915_gem_object *obj;
2863

2864
		obj = list_first_entry(&engine->active_list,
2865
				       struct drm_i915_gem_object,
2866
				       engine_list[engine->id]);
2867

2868
		i915_gem_object_retire__read(obj, engine->id);
2869
	}
2870

2871 2872 2873 2874 2875 2876
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2877
	if (i915.enable_execlists) {
2878 2879
		/* Ensure irq handler finishes or is cancelled. */
		tasklet_kill(&engine->irq_tasklet);
2880

2881
		spin_lock_bh(&engine->execlist_lock);
2882
		/* list_splice_tail_init checks for empty lists */
2883 2884
		list_splice_tail_init(&engine->execlist_queue,
				      &engine->execlist_retired_req_list);
2885
		spin_unlock_bh(&engine->execlist_lock);
2886

2887
		intel_execlists_retire_requests(engine);
2888 2889
	}

2890 2891 2892 2893 2894 2895 2896
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
2897
	while (!list_empty(&engine->request_list)) {
2898 2899
		struct drm_i915_gem_request *request;

2900
		request = list_first_entry(&engine->request_list,
2901 2902 2903
					   struct drm_i915_gem_request,
					   list);

2904
		i915_gem_request_retire(request);
2905
	}
2906 2907 2908 2909 2910 2911 2912 2913

	/* Having flushed all requests from all queues, we know that all
	 * ringbuffers must now be empty. However, since we do not reclaim
	 * all space when retiring the request (to prevent HEADs colliding
	 * with rapid ringbuffer wraparound) the amount of available space
	 * upon reset is less than when we start. Do one more pass over
	 * all the ringbuffers to reset last_retired_head.
	 */
2914
	list_for_each_entry(buffer, &engine->buffers, link) {
2915 2916 2917
		buffer->last_retired_head = buffer->tail;
		intel_ring_update_space(buffer);
	}
2918 2919

	intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2920 2921
}

2922
void i915_gem_reset(struct drm_device *dev)
2923
{
2924
	struct drm_i915_private *dev_priv = dev->dev_private;
2925
	struct intel_engine_cs *engine;
2926

2927 2928 2929 2930 2931
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
2932
	for_each_engine(engine, dev_priv)
2933
		i915_gem_reset_engine_status(dev_priv, engine);
2934

2935
	for_each_engine(engine, dev_priv)
2936
		i915_gem_reset_engine_cleanup(dev_priv, engine);
2937

2938 2939
	i915_gem_context_reset(dev);

2940
	i915_gem_restore_fences(dev);
2941 2942

	WARN_ON(i915_verify_lists(dev));
2943 2944 2945 2946 2947
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2948
void
2949
i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2950
{
2951
	WARN_ON(i915_verify_lists(engine->dev));
2952

2953 2954 2955 2956
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2957
	 */
2958
	while (!list_empty(&engine->request_list)) {
2959 2960
		struct drm_i915_gem_request *request;

2961
		request = list_first_entry(&engine->request_list,
2962 2963 2964
					   struct drm_i915_gem_request,
					   list);

2965
		if (!i915_gem_request_completed(request, true))
2966 2967
			break;

2968
		i915_gem_request_retire(request);
2969
	}
2970

2971 2972 2973 2974
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
2975
	while (!list_empty(&engine->active_list)) {
2976 2977
		struct drm_i915_gem_object *obj;

2978 2979
		obj = list_first_entry(&engine->active_list,
				       struct drm_i915_gem_object,
2980
				       engine_list[engine->id]);
2981

2982
		if (!list_empty(&obj->last_read_req[engine->id]->list))
2983 2984
			break;

2985
		i915_gem_object_retire__read(obj, engine->id);
2986 2987
	}

2988 2989 2990 2991
	if (unlikely(engine->trace_irq_req &&
		     i915_gem_request_completed(engine->trace_irq_req, true))) {
		engine->irq_put(engine);
		i915_gem_request_assign(&engine->trace_irq_req, NULL);
2992
	}
2993

2994
	WARN_ON(i915_verify_lists(engine->dev));
2995 2996
}

2997
bool
2998 2999
i915_gem_retire_requests(struct drm_device *dev)
{
3000
	struct drm_i915_private *dev_priv = dev->dev_private;
3001
	struct intel_engine_cs *engine;
3002
	bool idle = true;
3003

3004
	for_each_engine(engine, dev_priv) {
3005 3006
		i915_gem_retire_requests_ring(engine);
		idle &= list_empty(&engine->request_list);
3007
		if (i915.enable_execlists) {
3008
			spin_lock_bh(&engine->execlist_lock);
3009
			idle &= list_empty(&engine->execlist_queue);
3010
			spin_unlock_bh(&engine->execlist_lock);
3011

3012
			intel_execlists_retire_requests(engine);
3013
		}
3014 3015 3016 3017 3018 3019 3020 3021
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
3022 3023
}

3024
static void
3025 3026
i915_gem_retire_work_handler(struct work_struct *work)
{
3027 3028 3029
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
3030
	bool idle;
3031

3032
	/* Come back later if the device is busy... */
3033 3034 3035 3036
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
3037
	}
3038
	if (!idle)
3039 3040
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
3041
}
3042

3043 3044 3045 3046 3047
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3048
	struct drm_device *dev = dev_priv->dev;
3049
	struct intel_engine_cs *engine;
3050

3051 3052
	for_each_engine(engine, dev_priv)
		if (!list_empty(&engine->request_list))
3053
			return;
3054

3055
	/* we probably should sync with hangcheck here, using cancel_work_sync.
3056
	 * Also locking seems to be fubar here, engine->request_list is protected
3057 3058
	 * by dev->struct_mutex. */

3059 3060 3061
	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
3062
		for_each_engine(engine, dev_priv)
3063
			i915_gem_batch_pool_fini(&engine->batch_pool);
3064

3065 3066
		mutex_unlock(&dev->struct_mutex);
	}
3067 3068
}

3069 3070 3071 3072 3073 3074 3075 3076
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
3077
	int i;
3078 3079 3080

	if (!obj->active)
		return 0;
3081

3082
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3083
		struct drm_i915_gem_request *req;
3084

3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
		req = obj->last_read_req[i];
		if (req == NULL)
			continue;

		if (list_empty(&req->list))
			goto retire;

		if (i915_gem_request_completed(req, true)) {
			__i915_gem_request_retire__upto(req);
retire:
			i915_gem_object_retire__read(obj, i);
		}
3097 3098 3099 3100 3101
	}

	return 0;
}

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3129
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3130 3131
	int i, n = 0;
	int ret;
3132

3133 3134 3135
	if (args->flags != 0)
		return -EINVAL;

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

3146 3147
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
3148 3149 3150
	if (ret)
		goto out;

3151
	if (!obj->active)
3152
		goto out;
3153 3154

	/* Do this after OLR check to make sure we make forward progress polling
3155
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3156
	 */
3157
	if (args->timeout_ns == 0) {
3158 3159 3160 3161 3162
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
3163

3164
	for (i = 0; i < I915_NUM_ENGINES; i++) {
3165 3166 3167 3168 3169 3170
		if (obj->last_read_req[i] == NULL)
			continue;

		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
	}

3171 3172
	mutex_unlock(&dev->struct_mutex);

3173 3174
	for (i = 0; i < n; i++) {
		if (ret == 0)
3175
			ret = __i915_wait_request(req[i], true,
3176
						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3177
						  to_rps_client(file));
3178 3179
		i915_gem_request_unreference__unlocked(req[i]);
	}
3180
	return ret;
3181 3182 3183 3184 3185 3186 3187

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3188 3189 3190
static int
__i915_gem_object_sync(struct drm_i915_gem_object *obj,
		       struct intel_engine_cs *to,
3191 3192
		       struct drm_i915_gem_request *from_req,
		       struct drm_i915_gem_request **to_req)
3193 3194 3195 3196
{
	struct intel_engine_cs *from;
	int ret;

3197
	from = i915_gem_request_get_engine(from_req);
3198 3199 3200
	if (to == from)
		return 0;

3201
	if (i915_gem_request_completed(from_req, true))
3202 3203 3204
		return 0;

	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3205
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3206
		ret = __i915_wait_request(from_req,
3207 3208 3209
					  i915->mm.interruptible,
					  NULL,
					  &i915->rps.semaphores);
3210 3211 3212
		if (ret)
			return ret;

3213
		i915_gem_object_retire_request(obj, from_req);
3214 3215
	} else {
		int idx = intel_ring_sync_index(from, to);
3216 3217 3218
		u32 seqno = i915_gem_request_get_seqno(from_req);

		WARN_ON(!to_req);
3219 3220 3221 3222

		if (seqno <= from->semaphore.sync_seqno[idx])
			return 0;

3223
		if (*to_req == NULL) {
3224 3225 3226 3227 3228 3229 3230
			struct drm_i915_gem_request *req;

			req = i915_gem_request_alloc(to, NULL);
			if (IS_ERR(req))
				return PTR_ERR(req);

			*to_req = req;
3231 3232
		}

3233 3234
		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
		ret = to->semaphore.sync_to(*to_req, from, seqno);
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
		if (ret)
			return ret;

		/* We use last_read_req because sync_to()
		 * might have just caused seqno wrap under
		 * the radar.
		 */
		from->semaphore.sync_seqno[idx] =
			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
	}

	return 0;
}

3249 3250 3251 3252 3253
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
3254 3255 3256
 * @to_req: request we wish to use the object for. See below.
 *          This will be allocated and returned if a request is
 *          required but not passed in.
3257 3258 3259
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
3260
 * rather than a particular GPU ring. Conceptually we serialise writes
3261
 * between engines inside the GPU. We only allow one engine to write
3262 3263 3264 3265 3266 3267 3268 3269 3270
 * into a buffer at any time, but multiple readers. To ensure each has
 * a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
3271
 *
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
 * For CPU synchronisation (NULL to) no request is required. For syncing with
 * rings to_req must be non-NULL. However, a request does not have to be
 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
 * request will be allocated automatically and returned through *to_req. Note
 * that it is not guaranteed that commands will be emitted (because the system
 * might already be idle). Hence there is no need to create a request that
 * might never have any work submitted. Note further that if a request is
 * returned in *to_req, it is the responsibility of the caller to submit
 * that request (after potentially adding more work to it).
 *
3282 3283
 * Returns 0 if successful, else propagates up the lower layer error.
 */
3284 3285
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
3286 3287
		     struct intel_engine_cs *to,
		     struct drm_i915_gem_request **to_req)
3288
{
3289
	const bool readonly = obj->base.pending_write_domain == 0;
3290
	struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3291
	int ret, i, n;
3292

3293
	if (!obj->active)
3294 3295
		return 0;

3296 3297
	if (to == NULL)
		return i915_gem_object_wait_rendering(obj, readonly);
3298

3299 3300 3301 3302 3303
	n = 0;
	if (readonly) {
		if (obj->last_write_req)
			req[n++] = obj->last_write_req;
	} else {
3304
		for (i = 0; i < I915_NUM_ENGINES; i++)
3305 3306 3307 3308
			if (obj->last_read_req[i])
				req[n++] = obj->last_read_req[i];
	}
	for (i = 0; i < n; i++) {
3309
		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3310 3311 3312
		if (ret)
			return ret;
	}
3313

3314
	return 0;
3315 3316
}

3317 3318 3319 3320 3321 3322 3323
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3324 3325 3326
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3327 3328 3329
	/* Wait for any direct GTT access to complete */
	mb();

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3341
static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3342
{
3343
	struct drm_i915_gem_object *obj = vma->obj;
3344
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3345
	int ret;
3346

3347
	if (list_empty(&vma->obj_link))
3348 3349
		return 0;

3350 3351 3352 3353
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3354

B
Ben Widawsky 已提交
3355
	if (vma->pin_count)
3356
		return -EBUSY;
3357

3358 3359
	BUG_ON(obj->pages == NULL);

3360 3361 3362 3363 3364
	if (wait) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}
3365

3366
	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3367
		i915_gem_object_finish_gtt(obj);
3368

3369 3370 3371 3372 3373
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3374

3375
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3376

3377
	vma->vm->unbind_vma(vma);
3378
	vma->bound = 0;
3379

3380
	list_del_init(&vma->vm_link);
3381
	if (vma->is_ggtt) {
3382 3383 3384 3385 3386 3387
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
		}
3388
		vma->ggtt_view.pages = NULL;
3389
	}
3390

B
Ben Widawsky 已提交
3391 3392 3393 3394
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3395
	 * no more VMAs exist. */
I
Imre Deak 已提交
3396
	if (list_empty(&obj->vma_list))
B
Ben Widawsky 已提交
3397
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3398

3399 3400 3401 3402 3403 3404
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3405
	return 0;
3406 3407
}

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
int i915_vma_unbind(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, true);
}

int __i915_vma_unbind_no_wait(struct i915_vma *vma)
{
	return __i915_vma_unbind(vma, false);
}

3418
int i915_gpu_idle(struct drm_device *dev)
3419
{
3420
	struct drm_i915_private *dev_priv = dev->dev_private;
3421
	struct intel_engine_cs *engine;
3422
	int ret;
3423 3424

	/* Flush everything onto the inactive list. */
3425
	for_each_engine(engine, dev_priv) {
3426
		if (!i915.enable_execlists) {
3427 3428
			struct drm_i915_gem_request *req;

3429
			req = i915_gem_request_alloc(engine, NULL);
3430 3431
			if (IS_ERR(req))
				return PTR_ERR(req);
3432

3433
			ret = i915_switch_context(req);
3434 3435 3436 3437 3438
			if (ret) {
				i915_gem_request_cancel(req);
				return ret;
			}

3439
			i915_add_request_no_flush(req);
3440
		}
3441

3442
		ret = intel_engine_idle(engine);
3443 3444 3445
		if (ret)
			return ret;
	}
3446

3447
	WARN_ON(i915_verify_lists(dev));
3448
	return 0;
3449 3450
}

3451
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3452 3453
				     unsigned long cache_level)
{
3454
	struct drm_mm_node *gtt_space = &vma->node;
3455 3456
	struct drm_mm_node *other;

3457 3458 3459 3460 3461 3462
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3463
	 */
3464
	if (vma->vm->mm.color_adjust == NULL)
3465 3466
		return true;

3467
	if (!drm_mm_node_allocated(gtt_space))
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3484
/**
3485 3486
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3487
 */
3488
static struct i915_vma *
3489 3490
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3491
			   const struct i915_ggtt_view *ggtt_view,
3492
			   unsigned alignment,
3493
			   uint64_t flags)
3494
{
3495
	struct drm_device *dev = obj->base.dev;
3496 3497
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3498
	u32 fence_alignment, unfenced_alignment;
3499 3500
	u32 search_flag, alloc_flag;
	u64 start, end;
3501
	u64 size, fence_size;
B
Ben Widawsky 已提交
3502
	struct i915_vma *vma;
3503
	int ret;
3504

3505 3506 3507 3508 3509
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3510

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3540

3541 3542 3543
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	end = vm->total;
	if (flags & PIN_MAPPABLE)
3544
		end = min_t(u64, end, ggtt->mappable_end);
3545
	if (flags & PIN_ZONE_4G)
3546
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3547

3548
	if (alignment == 0)
3549
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3550
						unfenced_alignment;
3551
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3552 3553 3554
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3555
		return ERR_PTR(-EINVAL);
3556 3557
	}

3558 3559 3560
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3561
	 */
3562
	if (size > end) {
3563
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3564 3565
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3566
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3567
			  end);
3568
		return ERR_PTR(-E2BIG);
3569 3570
	}

3571
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3572
	if (ret)
3573
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3574

3575 3576
	i915_gem_object_pin_pages(obj);

3577 3578 3579
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3580
	if (IS_ERR(vma))
3581
		goto err_unpin;
B
Ben Widawsky 已提交
3582

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	if (flags & PIN_OFFSET_FIXED) {
		uint64_t offset = flags & PIN_OFFSET_MASK;

		if (offset & (alignment - 1) || offset + size > end) {
			ret = -EINVAL;
			goto err_free_vma;
		}
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
		}
		if (ret)
			goto err_free_vma;
3601
	} else {
3602 3603 3604 3605 3606 3607 3608
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3609

3610
search_free:
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
			ret = i915_gem_evict_something(dev, vm, size, alignment,
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3624

3625 3626
			goto err_free_vma;
		}
3627
	}
3628
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3629
		ret = -EINVAL;
3630
		goto err_remove_node;
3631 3632
	}

3633
	trace_i915_vma_bind(vma, flags);
3634
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3635
	if (ret)
I
Imre Deak 已提交
3636
		goto err_remove_node;
3637

3638
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3639
	list_add_tail(&vma->vm_link, &vm->inactive_list);
3640

3641
	return vma;
B
Ben Widawsky 已提交
3642

3643
err_remove_node:
3644
	drm_mm_remove_node(&vma->node);
3645
err_free_vma:
B
Ben Widawsky 已提交
3646
	i915_gem_vma_destroy(vma);
3647
	vma = ERR_PTR(ret);
3648
err_unpin:
B
Ben Widawsky 已提交
3649
	i915_gem_object_unpin_pages(obj);
3650
	return vma;
3651 3652
}

3653
bool
3654 3655
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3656 3657 3658 3659 3660
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3661
	if (obj->pages == NULL)
3662
		return false;
3663

3664 3665 3666 3667
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3668
	if (obj->stolen || obj->phys_handle)
3669
		return false;
3670

3671 3672 3673 3674 3675 3676 3677 3678
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3679 3680
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3681
		return false;
3682
	}
3683

C
Chris Wilson 已提交
3684
	trace_i915_gem_object_clflush(obj);
3685
	drm_clflush_sg(obj->pages);
3686
	obj->cache_dirty = false;
3687 3688

	return true;
3689 3690 3691 3692
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3693
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3694
{
C
Chris Wilson 已提交
3695 3696
	uint32_t old_write_domain;

3697
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3698 3699
		return;

3700
	/* No actual flushing is required for the GTT write domain.  Writes
3701 3702
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3703 3704 3705 3706
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3707
	 */
3708 3709
	wmb();

3710 3711
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3712

3713
	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3714

C
Chris Wilson 已提交
3715
	trace_i915_gem_object_change_domain(obj,
3716
					    obj->base.read_domains,
C
Chris Wilson 已提交
3717
					    old_write_domain);
3718 3719 3720 3721
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3722
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3723
{
C
Chris Wilson 已提交
3724
	uint32_t old_write_domain;
3725

3726
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3727 3728
		return;

3729
	if (i915_gem_clflush_object(obj, obj->pin_display))
3730 3731
		i915_gem_chipset_flush(obj->base.dev);

3732 3733
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3734

3735
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3736

C
Chris Wilson 已提交
3737
	trace_i915_gem_object_change_domain(obj,
3738
					    obj->base.read_domains,
C
Chris Wilson 已提交
3739
					    old_write_domain);
3740 3741
}

3742 3743 3744 3745 3746 3747
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3748
int
3749
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3750
{
3751 3752 3753
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
3754
	uint32_t old_write_domain, old_read_domains;
3755
	struct i915_vma *vma;
3756
	int ret;
3757

3758 3759 3760
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3761
	ret = i915_gem_object_wait_rendering(obj, !write);
3762 3763 3764
	if (ret)
		return ret;

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3777
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3778

3779 3780 3781 3782 3783 3784 3785
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3786 3787
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3788

3789 3790 3791
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3792 3793
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3794
	if (write) {
3795 3796 3797
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3798 3799
	}

C
Chris Wilson 已提交
3800 3801 3802 3803
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3804
	/* And bump the LRU for this access */
3805 3806
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3807
		list_move_tail(&vma->vm_link,
3808
			       &ggtt->base.inactive_list);
3809

3810 3811 3812
	return 0;
}

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
/**
 * Changes the cache-level of an object across all VMA.
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3826 3827 3828
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3829
	struct drm_device *dev = obj->base.dev;
3830
	struct i915_vma *vma, *next;
3831
	bool bound = false;
3832
	int ret = 0;
3833 3834

	if (obj->cache_level == cache_level)
3835
		goto out;
3836

3837 3838 3839 3840 3841
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3842
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3843 3844 3845 3846 3847 3848 3849 3850
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		if (vma->pin_count) {
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3851
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3852
			ret = i915_vma_unbind(vma);
3853 3854
			if (ret)
				return ret;
3855 3856
		} else
			bound = true;
3857 3858
	}

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
	if (bound) {
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3871
		ret = i915_gem_object_wait_rendering(obj, false);
3872 3873 3874
		if (ret)
			return ret;

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3892 3893 3894
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
3895 3896 3897 3898 3899 3900 3901 3902
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3903 3904
		}

3905
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3906 3907 3908 3909 3910 3911 3912
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3913 3914
	}

3915
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3916 3917 3918
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3919
out:
3920 3921 3922 3923
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3924 3925 3926 3927 3928
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3929 3930 3931 3932 3933
	}

	return 0;
}

B
Ben Widawsky 已提交
3934 3935
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3936
{
B
Ben Widawsky 已提交
3937
	struct drm_i915_gem_caching *args = data;
3938 3939 3940
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3941 3942
	if (&obj->base == NULL)
		return -ENOENT;
3943

3944 3945 3946 3947 3948 3949
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3950 3951 3952 3953
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3954 3955 3956 3957
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3958

3959 3960
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3961 3962
}

B
Ben Widawsky 已提交
3963 3964
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3965
{
3966
	struct drm_i915_private *dev_priv = dev->dev_private;
B
Ben Widawsky 已提交
3967
	struct drm_i915_gem_caching *args = data;
3968 3969 3970 3971
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3972 3973
	switch (args->caching) {
	case I915_CACHING_NONE:
3974 3975
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3976
	case I915_CACHING_CACHED:
3977 3978 3979 3980 3981 3982
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3983
		if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3984 3985
			return -ENODEV;

3986 3987
		level = I915_CACHE_LLC;
		break;
3988 3989 3990
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3991 3992 3993 3994
	default:
		return -EINVAL;
	}

3995 3996
	intel_runtime_pm_get(dev_priv);

B
Ben Widawsky 已提交
3997 3998
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3999
		goto rpm_put;
B
Ben Widawsky 已提交
4000

4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
4012 4013 4014
rpm_put:
	intel_runtime_pm_put(dev_priv);

4015 4016 4017
	return ret;
}

4018
/*
4019 4020 4021
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
4022 4023
 */
int
4024 4025
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
4026
				     const struct i915_ggtt_view *view)
4027
{
4028
	u32 old_read_domains, old_write_domain;
4029 4030
	int ret;

4031 4032 4033
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
4034
	obj->pin_display++;
4035

4036 4037 4038 4039 4040 4041 4042 4043 4044
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
4045 4046
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4047
	if (ret)
4048
		goto err_unpin_display;
4049

4050 4051 4052 4053
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4054 4055 4056
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4057
	if (ret)
4058
		goto err_unpin_display;
4059

4060
	i915_gem_object_flush_cpu_write_domain(obj);
4061

4062
	old_write_domain = obj->base.write_domain;
4063
	old_read_domains = obj->base.read_domains;
4064 4065 4066 4067

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4068
	obj->base.write_domain = 0;
4069
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4070 4071 4072

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4073
					    old_write_domain);
4074 4075

	return 0;
4076 4077

err_unpin_display:
4078
	obj->pin_display--;
4079 4080 4081 4082
	return ret;
}

void
4083 4084
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4085
{
4086 4087 4088
	if (WARN_ON(obj->pin_display == 0))
		return;

4089 4090
	i915_gem_object_ggtt_unpin_view(obj, view);

4091
	obj->pin_display--;
4092 4093
}

4094 4095 4096 4097 4098 4099
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4100
int
4101
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4102
{
C
Chris Wilson 已提交
4103
	uint32_t old_write_domain, old_read_domains;
4104 4105
	int ret;

4106 4107 4108
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4109
	ret = i915_gem_object_wait_rendering(obj, !write);
4110 4111 4112
	if (ret)
		return ret;

4113
	i915_gem_object_flush_gtt_write_domain(obj);
4114

4115 4116
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4117

4118
	/* Flush the CPU cache if it's still invalid. */
4119
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4120
		i915_gem_clflush_object(obj, false);
4121

4122
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4123 4124 4125 4126 4127
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4128
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4129 4130 4131 4132 4133

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4134 4135
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4136
	}
4137

C
Chris Wilson 已提交
4138 4139 4140 4141
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4142 4143 4144
	return 0;
}

4145 4146 4147
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4148 4149 4150 4151
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4152 4153 4154
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4155
static int
4156
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4157
{
4158 4159
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4160
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4161
	struct drm_i915_gem_request *request, *target = NULL;
4162
	int ret;
4163

4164 4165 4166 4167
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

4168 4169 4170
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
4171

4172
	spin_lock(&file_priv->mm.lock);
4173
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4174 4175
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4176

4177 4178 4179 4180 4181 4182 4183
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

4184
		target = request;
4185
	}
4186 4187
	if (target)
		i915_gem_request_reference(target);
4188
	spin_unlock(&file_priv->mm.lock);
4189

4190
	if (target == NULL)
4191
		return 0;
4192

4193
	ret = __i915_wait_request(target, true, NULL, NULL);
4194 4195
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4196

4197
	i915_gem_request_unreference__unlocked(target);
4198

4199 4200 4201
	return ret;
}

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

4218 4219 4220 4221
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

4222 4223 4224
	return false;
}

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

	fence_size = i915_gem_get_gtt_size(obj->base.dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
						     obj->base.size,
						     obj->tiling_mode,
						     true);

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
4243
		    to_i915(obj->base.dev)->ggtt.mappable_end);
4244 4245 4246 4247

	obj->map_and_fenceable = mappable && fenceable;
}

4248 4249 4250 4251 4252 4253
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4254
{
4255
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4256
	struct i915_vma *vma;
4257
	unsigned bound;
4258 4259
	int ret;

4260 4261 4262
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4263
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4264
		return -EINVAL;
4265

4266 4267 4268
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4269 4270 4271 4272 4273 4274
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

4275
	if (vma) {
B
Ben Widawsky 已提交
4276 4277 4278
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4279
		if (i915_vma_misplaced(vma, alignment, flags)) {
B
Ben Widawsky 已提交
4280
			WARN(vma->pin_count,
4281
			     "bo is already pinned in %s with incorrect alignment:"
4282
			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4283
			     " obj->map_and_fenceable=%d\n",
4284
			     ggtt_view ? "ggtt" : "ppgtt",
4285 4286
			     upper_32_bits(vma->node.start),
			     lower_32_bits(vma->node.start),
4287
			     alignment,
4288
			     !!(flags & PIN_MAPPABLE),
4289
			     obj->map_and_fenceable);
4290
			ret = i915_vma_unbind(vma);
4291 4292
			if (ret)
				return ret;
4293 4294

			vma = NULL;
4295 4296 4297
		}
	}

4298
	bound = vma ? vma->bound : 0;
4299
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4300 4301
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4302 4303
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4304 4305
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4306 4307 4308
		if (ret)
			return ret;
	}
4309

4310 4311
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4312
		__i915_vma_set_map_and_fenceable(vma);
4313 4314
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4315

4316
	vma->pin_count++;
4317 4318 4319
	return 0;
}

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
4337 4338 4339 4340
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;

4341
	BUG_ON(!view);
4342

4343
	return i915_gem_object_do_pin(obj, &ggtt->base, view,
4344
				      alignment, flags | PIN_GLOBAL);
4345 4346
}

4347
void
4348 4349
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4350
{
4351
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4352

B
Ben Widawsky 已提交
4353
	BUG_ON(!vma);
4354
	WARN_ON(vma->pin_count == 0);
4355
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4356

4357
	--vma->pin_count;
4358 4359 4360 4361
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4362
		    struct drm_file *file)
4363 4364
{
	struct drm_i915_gem_busy *args = data;
4365
	struct drm_i915_gem_object *obj;
4366 4367
	int ret;

4368
	ret = i915_mutex_lock_interruptible(dev);
4369
	if (ret)
4370
		return ret;
4371

4372
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4373
	if (&obj->base == NULL) {
4374 4375
		ret = -ENOENT;
		goto unlock;
4376
	}
4377

4378 4379 4380 4381
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4382
	 */
4383
	ret = i915_gem_object_flush_active(obj);
4384 4385
	if (ret)
		goto unref;
4386

4387 4388 4389 4390
	args->busy = 0;
	if (obj->active) {
		int i;

4391
		for (i = 0; i < I915_NUM_ENGINES; i++) {
4392 4393 4394 4395
			struct drm_i915_gem_request *req;

			req = obj->last_read_req[i];
			if (req)
4396
				args->busy |= 1 << (16 + req->engine->exec_id);
4397 4398
		}
		if (obj->last_write_req)
4399
			args->busy |= obj->last_write_req->engine->exec_id;
4400
	}
4401

4402
unref:
4403
	drm_gem_object_unreference(&obj->base);
4404
unlock:
4405
	mutex_unlock(&dev->struct_mutex);
4406
	return ret;
4407 4408 4409 4410 4411 4412
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4413
	return i915_gem_ring_throttle(dev, file_priv);
4414 4415
}

4416 4417 4418 4419
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4420
	struct drm_i915_private *dev_priv = dev->dev_private;
4421
	struct drm_i915_gem_madvise *args = data;
4422
	struct drm_i915_gem_object *obj;
4423
	int ret;
4424 4425 4426 4427 4428 4429 4430 4431 4432

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4433 4434 4435 4436
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4437
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4438
	if (&obj->base == NULL) {
4439 4440
		ret = -ENOENT;
		goto unlock;
4441 4442
	}

B
Ben Widawsky 已提交
4443
	if (i915_gem_obj_is_pinned(obj)) {
4444 4445
		ret = -EINVAL;
		goto out;
4446 4447
	}

4448 4449 4450 4451 4452 4453 4454 4455 4456
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4457 4458
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4459

C
Chris Wilson 已提交
4460
	/* if the object is no longer attached, discard its backing storage */
4461
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4462 4463
		i915_gem_object_truncate(obj);

4464
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4465

4466
out:
4467
	drm_gem_object_unreference(&obj->base);
4468
unlock:
4469
	mutex_unlock(&dev->struct_mutex);
4470
	return ret;
4471 4472
}

4473 4474
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4475
{
4476 4477
	int i;

4478
	INIT_LIST_HEAD(&obj->global_list);
4479
	for (i = 0; i < I915_NUM_ENGINES; i++)
4480
		INIT_LIST_HEAD(&obj->engine_list[i]);
4481
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4482
	INIT_LIST_HEAD(&obj->vma_list);
4483
	INIT_LIST_HEAD(&obj->batch_pool_link);
4484

4485 4486
	obj->ops = ops;

4487 4488 4489 4490 4491 4492
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4493
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4494
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4495 4496 4497 4498
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4499 4500
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4501
{
4502
	struct drm_i915_gem_object *obj;
4503
	struct address_space *mapping;
D
Daniel Vetter 已提交
4504
	gfp_t mask;
4505

4506
	obj = i915_gem_object_alloc(dev);
4507 4508
	if (obj == NULL)
		return NULL;
4509

4510
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4511
		i915_gem_object_free(obj);
4512 4513
		return NULL;
	}
4514

4515 4516 4517 4518 4519 4520 4521
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4522
	mapping = file_inode(obj->base.filp)->i_mapping;
4523
	mapping_set_gfp_mask(mapping, mask);
4524

4525
	i915_gem_object_init(obj, &i915_gem_object_ops);
4526

4527 4528
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4529

4530 4531
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4547 4548
	trace_i915_gem_object_create(obj);

4549
	return obj;
4550 4551
}

4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4576
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4577
{
4578
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4579
	struct drm_device *dev = obj->base.dev;
4580
	struct drm_i915_private *dev_priv = dev->dev_private;
4581
	struct i915_vma *vma, *next;
4582

4583 4584
	intel_runtime_pm_get(dev_priv);

4585 4586
	trace_i915_gem_object_destroy(obj);

4587
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
B
Ben Widawsky 已提交
4588 4589 4590 4591
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4592 4593
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4594

4595 4596
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4597

4598
			WARN_ON(i915_vma_unbind(vma));
4599

4600 4601
			dev_priv->mm.interruptible = was_interruptible;
		}
4602 4603
	}

B
Ben Widawsky 已提交
4604 4605 4606 4607 4608
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4609 4610
	WARN_ON(obj->frontbuffer_bits);

4611 4612 4613 4614 4615
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4616 4617
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4618
	if (discard_backing_storage(obj))
4619
		obj->madv = I915_MADV_DONTNEED;
4620
	i915_gem_object_put_pages(obj);
4621
	i915_gem_object_free_mmap_offset(obj);
4622

4623 4624
	BUG_ON(obj->pages);

4625 4626
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4627

4628 4629 4630
	if (obj->ops->release)
		obj->ops->release(obj);

4631 4632
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4633

4634
	kfree(obj->bit_17);
4635
	i915_gem_object_free(obj);
4636 4637

	intel_runtime_pm_put(dev_priv);
4638 4639
}

4640 4641
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4642 4643
{
	struct i915_vma *vma;
4644
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4645 4646
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
		    vma->vm == vm)
4647
			return vma;
4648 4649 4650 4651 4652 4653 4654
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
4655 4656 4657
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4658
	struct i915_vma *vma;
4659

4660
	BUG_ON(!view);
4661

4662
	list_for_each_entry(vma, &obj->vma_list, obj_link)
4663
		if (vma->vm == &ggtt->base &&
4664
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4665
			return vma;
4666 4667 4668
	return NULL;
}

B
Ben Widawsky 已提交
4669 4670 4671
void i915_gem_vma_destroy(struct i915_vma *vma)
{
	WARN_ON(vma->node.allocated);
4672 4673 4674 4675 4676

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4677 4678
	if (!vma->is_ggtt)
		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4679

4680
	list_del(&vma->obj_link);
4681

4682
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4683 4684
}

4685
static void
4686
i915_gem_stop_engines(struct drm_device *dev)
4687 4688
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4689
	struct intel_engine_cs *engine;
4690

4691
	for_each_engine(engine, dev_priv)
4692
		dev_priv->gt.stop_engine(engine);
4693 4694
}

4695
int
4696
i915_gem_suspend(struct drm_device *dev)
4697
{
4698
	struct drm_i915_private *dev_priv = dev->dev_private;
4699
	int ret = 0;
4700

4701
	mutex_lock(&dev->struct_mutex);
4702
	ret = i915_gpu_idle(dev);
4703
	if (ret)
4704
		goto err;
4705

4706
	i915_gem_retire_requests(dev);
4707

4708
	i915_gem_stop_engines(dev);
4709 4710
	mutex_unlock(&dev->struct_mutex);

4711
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4712
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4713
	flush_delayed_work(&dev_priv->mm.idle_work);
4714

4715 4716 4717 4718 4719
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4720
	return 0;
4721 4722 4723 4724

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4725 4726
}

4727
int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
B
Ben Widawsky 已提交
4728
{
4729
	struct intel_engine_cs *engine = req->engine;
4730
	struct drm_device *dev = engine->dev;
4731
	struct drm_i915_private *dev_priv = dev->dev_private;
4732
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4733
	int i, ret;
B
Ben Widawsky 已提交
4734

4735
	if (!HAS_L3_DPF(dev) || !remap_info)
4736
		return 0;
B
Ben Widawsky 已提交
4737

4738
	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4739 4740
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4741

4742 4743 4744 4745 4746
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
4747
	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4748 4749 4750
		intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
		intel_ring_emit(engine, remap_info[i]);
B
Ben Widawsky 已提交
4751 4752
	}

4753
	intel_ring_advance(engine);
B
Ben Widawsky 已提交
4754

4755
	return ret;
B
Ben Widawsky 已提交
4756 4757
}

4758 4759
void i915_gem_init_swizzling(struct drm_device *dev)
{
4760
	struct drm_i915_private *dev_priv = dev->dev_private;
4761

4762
	if (INTEL_INFO(dev)->gen < 5 ||
4763 4764 4765 4766 4767 4768
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4769 4770 4771
	if (IS_GEN5(dev))
		return;

4772 4773
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4774
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4775
	else if (IS_GEN7(dev))
4776
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4777 4778
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4779 4780
	else
		BUG();
4781
}
D
Daniel Vetter 已提交
4782

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4810
int i915_gem_init_engines(struct drm_device *dev)
4811
{
4812
	struct drm_i915_private *dev_priv = dev->dev_private;
4813
	int ret;
4814

4815
	ret = intel_init_render_ring_buffer(dev);
4816
	if (ret)
4817
		return ret;
4818 4819

	if (HAS_BSD(dev)) {
4820
		ret = intel_init_bsd_ring_buffer(dev);
4821 4822
		if (ret)
			goto cleanup_render_ring;
4823
	}
4824

4825
	if (HAS_BLT(dev)) {
4826 4827 4828 4829 4830
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4831 4832 4833 4834 4835 4836
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4837 4838 4839 4840 4841
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4842

4843 4844
	return 0;

B
Ben Widawsky 已提交
4845
cleanup_vebox_ring:
4846
	intel_cleanup_engine(&dev_priv->engine[VECS]);
4847
cleanup_blt_ring:
4848
	intel_cleanup_engine(&dev_priv->engine[BCS]);
4849
cleanup_bsd_ring:
4850
	intel_cleanup_engine(&dev_priv->engine[VCS]);
4851
cleanup_render_ring:
4852
	intel_cleanup_engine(&dev_priv->engine[RCS]);
4853 4854 4855 4856 4857 4858 4859

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4860
	struct drm_i915_private *dev_priv = dev->dev_private;
4861
	struct intel_engine_cs *engine;
4862
	int ret, j;
4863 4864 4865 4866

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4867 4868 4869
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4870
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4871
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4872

4873 4874 4875
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4876

4877
	if (HAS_PCH_NOP(dev)) {
4878 4879 4880 4881 4882 4883 4884 4885 4886
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4887 4888
	}

4889 4890
	i915_gem_init_swizzling(dev);

4891 4892 4893 4894 4895 4896 4897 4898
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

4899
	BUG_ON(!dev_priv->kernel_context);
4900

4901 4902 4903 4904 4905 4906 4907
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4908
	for_each_engine(engine, dev_priv) {
4909
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4910
		if (ret)
4911
			goto out;
D
Daniel Vetter 已提交
4912
	}
4913

4914
	/* We can't enable contexts until all firmware is loaded */
4915 4916 4917
	if (HAS_GUC_UCODE(dev)) {
		ret = intel_guc_ucode_load(dev);
		if (ret) {
4918 4919 4920
			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
			ret = -EIO;
			goto out;
4921
		}
4922 4923
	}

4924 4925 4926 4927 4928 4929 4930 4931
	/*
	 * Increment the next seqno by 0x100 so we have a visible break
	 * on re-initialisation
	 */
	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
	if (ret)
		goto out;

4932
	/* Now it is safe to go back round and do everything else: */
4933
	for_each_engine(engine, dev_priv) {
4934 4935
		struct drm_i915_gem_request *req;

4936
		req = i915_gem_request_alloc(engine, NULL);
4937 4938
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
4939
			i915_gem_cleanup_engines(dev);
4940 4941 4942
			goto out;
		}

4943
		if (engine->id == RCS) {
4944
			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4945
				i915_gem_l3_remap(req, j);
4946
		}
4947

4948
		ret = i915_ppgtt_init_ring(req);
4949
		if (ret && ret != -EIO) {
4950 4951
			DRM_ERROR("PPGTT enable %s failed %d\n",
				  engine->name, ret);
4952
			i915_gem_request_cancel(req);
4953
			i915_gem_cleanup_engines(dev);
4954 4955
			goto out;
		}
4956

4957
		ret = i915_gem_context_enable(req);
4958
		if (ret && ret != -EIO) {
4959 4960
			DRM_ERROR("Context enable %s failed %d\n",
				  engine->name, ret);
4961
			i915_gem_request_cancel(req);
4962
			i915_gem_cleanup_engines(dev);
4963 4964
			goto out;
		}
4965

4966
		i915_add_request_no_flush(req);
4967
	}
D
Daniel Vetter 已提交
4968

4969 4970
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4971
	return ret;
4972 4973
}

4974 4975 4976 4977 4978
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4979 4980 4981
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4982
	mutex_lock(&dev->struct_mutex);
4983

4984
	if (!i915.enable_execlists) {
4985
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4986 4987 4988
		dev_priv->gt.init_engines = i915_gem_init_engines;
		dev_priv->gt.cleanup_engine = intel_cleanup_engine;
		dev_priv->gt.stop_engine = intel_stop_engine;
4989
	} else {
4990
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4991 4992 4993
		dev_priv->gt.init_engines = intel_logical_rings_init;
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
		dev_priv->gt.stop_engine = intel_logical_ring_stop;
4994 4995
	}

4996 4997 4998 4999 5000 5001 5002 5003
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5004
	ret = i915_gem_init_userptr(dev);
5005 5006
	if (ret)
		goto out_unlock;
5007

5008
	i915_gem_init_ggtt(dev);
5009

5010
	ret = i915_gem_context_init(dev);
5011 5012
	if (ret)
		goto out_unlock;
5013

5014
	ret = dev_priv->gt.init_engines(dev);
D
Daniel Vetter 已提交
5015
	if (ret)
5016
		goto out_unlock;
5017

5018
	ret = i915_gem_init_hw(dev);
5019 5020 5021 5022 5023 5024
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5025
		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5026
		ret = 0;
5027
	}
5028 5029

out_unlock:
5030
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5031
	mutex_unlock(&dev->struct_mutex);
5032

5033
	return ret;
5034 5035
}

5036
void
5037
i915_gem_cleanup_engines(struct drm_device *dev)
5038
{
5039
	struct drm_i915_private *dev_priv = dev->dev_private;
5040
	struct intel_engine_cs *engine;
5041

5042
	for_each_engine(engine, dev_priv)
5043
		dev_priv->gt.cleanup_engine(engine);
5044

5045 5046 5047 5048 5049 5050 5051
	if (i915.enable_execlists)
		/*
		 * Neither the BIOS, ourselves or any other kernel
		 * expects the system to be in execlists mode on startup,
		 * so we need to reset the GPU back to legacy mode.
		 */
		intel_gpu_reset(dev, ALL_ENGINES);
5052 5053
}

5054
static void
5055
init_engine_lists(struct intel_engine_cs *engine)
5056
{
5057 5058
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
5059 5060
}

5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

5085
void
5086
i915_gem_load_init(struct drm_device *dev)
5087
{
5088
	struct drm_i915_private *dev_priv = dev->dev_private;
5089 5090
	int i;

5091
	dev_priv->objects =
5092 5093 5094 5095
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5096 5097 5098 5099 5100
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5101 5102 5103 5104 5105
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5106

B
Ben Widawsky 已提交
5107
	INIT_LIST_HEAD(&dev_priv->vm_list);
5108
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5109 5110
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5111
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5112 5113
	for (i = 0; i < I915_NUM_ENGINES; i++)
		init_engine_lists(&dev_priv->engine[i]);
5114
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5115
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5116 5117
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5118 5119
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5120
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5121

5122 5123
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5124 5125 5126 5127 5128 5129 5130 5131
	/*
	 * Set initial sequence number for requests.
	 * Using this number allows the wraparound to happen early,
	 * catching any obvious problems.
	 */
	dev_priv->next_seqno = ((u32)~0 - 0x1100);
	dev_priv->last_seqno = ((u32)~0 - 0x1101);

5132
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5133

5134
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5135

5136 5137
	dev_priv->mm.interruptible = true;

5138
	mutex_init(&dev_priv->fb_tracking.lock);
5139
}
5140

5141 5142 5143 5144 5145 5146 5147 5148 5149
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
}

5150
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5151
{
5152
	struct drm_i915_file_private *file_priv = file->driver_priv;
5153 5154 5155 5156 5157

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5158
	spin_lock(&file_priv->mm.lock);
5159 5160 5161 5162 5163 5164 5165 5166 5167
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5168
	spin_unlock(&file_priv->mm.lock);
5169

5170
	if (!list_empty(&file_priv->rps.link)) {
5171
		spin_lock(&to_i915(dev)->rps.client_lock);
5172
		list_del(&file_priv->rps.link);
5173
		spin_unlock(&to_i915(dev)->rps.client_lock);
5174
	}
5175 5176 5177 5178 5179
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5180
	int ret;
5181 5182 5183 5184 5185 5186 5187 5188 5189

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5190
	file_priv->file = file;
5191
	INIT_LIST_HEAD(&file_priv->rps.link);
5192 5193 5194 5195

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5196 5197
	file_priv->bsd_ring = -1;

5198 5199 5200
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5201

5202
	return ret;
5203 5204
}

5205 5206
/**
 * i915_gem_track_fb - update frontbuffer tracking
5207 5208 5209
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5210 5211 5212 5213
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5231
/* All the new VM stuff */
5232 5233
u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
5234 5235 5236 5237
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5238
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5239

5240
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5241
		if (vma->is_ggtt &&
5242 5243 5244
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5245 5246
			return vma->node.start;
	}
5247

5248 5249
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5250 5251 5252
	return -1;
}

5253 5254
u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
				  const struct i915_ggtt_view *view)
5255
{
5256 5257
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5258 5259
	struct i915_vma *vma;

5260
	list_for_each_entry(vma, &o->vma_list, obj_link)
5261
		if (vma->vm == &ggtt->base &&
5262
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5263 5264
			return vma->node.start;

5265
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5266 5267 5268 5269 5270 5271 5272 5273
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

5274
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5275
		if (vma->is_ggtt &&
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5286
				  const struct i915_ggtt_view *view)
5287
{
5288 5289
	struct drm_i915_private *dev_priv = to_i915(o->base.dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5290 5291
	struct i915_vma *vma;

5292
	list_for_each_entry(vma, &o->vma_list, obj_link)
5293
		if (vma->vm == &ggtt->base &&
5294
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5295
		    drm_mm_node_allocated(&vma->node))
5296 5297 5298 5299 5300 5301 5302
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5303
	struct i915_vma *vma;
5304

5305
	list_for_each_entry(vma, &o->vma_list, obj_link)
5306
		if (drm_mm_node_allocated(&vma->node))
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5318
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5319 5320 5321

	BUG_ON(list_empty(&o->vma_list));

5322
	list_for_each_entry(vma, &o->vma_list, obj_link) {
5323
		if (vma->is_ggtt &&
5324 5325
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5326 5327
		if (vma->vm == vm)
			return vma->node.size;
5328
	}
5329 5330 5331
	return 0;
}

5332
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5333 5334
{
	struct i915_vma *vma;
5335
	list_for_each_entry(vma, &obj->vma_list, obj_link)
5336 5337
		if (vma->pin_count > 0)
			return true;
5338

5339
	return false;
5340
}
5341

5342 5343 5344 5345 5346 5347 5348
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5349
	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5350 5351 5352 5353 5354 5355 5356
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
	if (IS_ERR_OR_NULL(obj))
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5382
	obj->dirty = 1;		/* Backing store is now out of date */
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
	drm_gem_object_unreference(&obj->base);
	return ERR_PTR(ret);
}