vmalloc.c 111.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6
/*
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
7
 *  Numa awareness, Christoph Lameter, SGI, June 2005
8
 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
L
Linus Torvalds 已提交
9 10
 */

N
Nick Piggin 已提交
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
15
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
16 17 18
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
19
#include <linux/proc_fs.h>
20
#include <linux/seq_file.h>
21
#include <linux/set_memory.h>
22
#include <linux/debugobjects.h>
23
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
24
#include <linux/list.h>
25
#include <linux/notifier.h>
N
Nick Piggin 已提交
26
#include <linux/rbtree.h>
27
#include <linux/xarray.h>
28
#include <linux/io.h>
N
Nick Piggin 已提交
29
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
S
Shakeel Butt 已提交
34
#include <linux/memcontrol.h>
35
#include <linux/llist.h>
36
#include <linux/bitops.h>
37
#include <linux/rbtree_augmented.h>
38
#include <linux/overflow.h>
39
#include <linux/pgtable.h>
40
#include <linux/uaccess.h>
41
#include <linux/hugetlb.h>
42
#include <linux/sched/mm.h>
L
Linus Torvalds 已提交
43
#include <asm/tlbflush.h>
44
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
45

46 47 48
#define CREATE_TRACE_POINTS
#include <trace/events/vmalloc.h>

49
#include "internal.h"
50
#include "pgalloc-track.h"
51

52 53 54 55 56 57 58 59 60 61 62 63 64
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;

static int __init set_nohugeiomap(char *str)
{
	ioremap_max_page_shift = PAGE_SHIFT;
	return 0;
}
early_param("nohugeiomap", set_nohugeiomap);
#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */

65 66 67 68 69 70 71 72 73 74 75 76 77
#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
static bool __ro_after_init vmap_allow_huge = true;

static int __init set_nohugevmalloc(char *str)
{
	vmap_allow_huge = false;
	return 0;
}
early_param("nohugevmalloc", set_nohugevmalloc);
#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
static const bool vmap_allow_huge = false;
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */

78 79
bool is_vmalloc_addr(const void *x)
{
80
	unsigned long addr = (unsigned long)kasan_reset_tag(x);
81 82 83 84 85

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

86 87 88 89 90 91
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

N
Nick Piggin 已提交
92
/*** Page table manipulation functions ***/
93 94
static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
			phys_addr_t phys_addr, pgprot_t prot,
95
			unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 97 98
{
	pte_t *pte;
	u64 pfn;
99
	unsigned long size = PAGE_SIZE;
100 101 102 103 104 105 106

	pfn = phys_addr >> PAGE_SHIFT;
	pte = pte_alloc_kernel_track(pmd, addr, mask);
	if (!pte)
		return -ENOMEM;
	do {
		BUG_ON(!pte_none(*pte));
107 108 109 110 111 112 113 114 115 116 117 118

#ifdef CONFIG_HUGETLB_PAGE
		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
		if (size != PAGE_SIZE) {
			pte_t entry = pfn_pte(pfn, prot);

			entry = arch_make_huge_pte(entry, ilog2(size), 0);
			set_huge_pte_at(&init_mm, addr, pte, entry);
			pfn += PFN_DOWN(size);
			continue;
		}
#endif
119 120
		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
		pfn++;
121
	} while (pte += PFN_DOWN(size), addr += size, addr != end);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
	*mask |= PGTBL_PTE_MODIFIED;
	return 0;
}

static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
			phys_addr_t phys_addr, pgprot_t prot,
			unsigned int max_page_shift)
{
	if (max_page_shift < PMD_SHIFT)
		return 0;

	if (!arch_vmap_pmd_supported(prot))
		return 0;

	if ((end - addr) != PMD_SIZE)
		return 0;

	if (!IS_ALIGNED(addr, PMD_SIZE))
		return 0;

	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
		return 0;

	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
		return 0;

	return pmd_set_huge(pmd, phys_addr, prot);
}

static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
			phys_addr_t phys_addr, pgprot_t prot,
			unsigned int max_page_shift, pgtbl_mod_mask *mask)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);

		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
					max_page_shift)) {
			*mask |= PGTBL_PMD_MODIFIED;
			continue;
		}

170
		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
			return -ENOMEM;
	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
	return 0;
}

static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
			phys_addr_t phys_addr, pgprot_t prot,
			unsigned int max_page_shift)
{
	if (max_page_shift < PUD_SHIFT)
		return 0;

	if (!arch_vmap_pud_supported(prot))
		return 0;

	if ((end - addr) != PUD_SIZE)
		return 0;

	if (!IS_ALIGNED(addr, PUD_SIZE))
		return 0;

	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
		return 0;

	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
		return 0;

	return pud_set_huge(pud, phys_addr, prot);
}

static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
			phys_addr_t phys_addr, pgprot_t prot,
			unsigned int max_page_shift, pgtbl_mod_mask *mask)
{
	pud_t *pud;
	unsigned long next;

	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);

		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
					max_page_shift)) {
			*mask |= PGTBL_PUD_MODIFIED;
			continue;
		}

		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
					max_page_shift, mask))
			return -ENOMEM;
	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
	return 0;
}

static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
			phys_addr_t phys_addr, pgprot_t prot,
			unsigned int max_page_shift)
{
	if (max_page_shift < P4D_SHIFT)
		return 0;

	if (!arch_vmap_p4d_supported(prot))
		return 0;

	if ((end - addr) != P4D_SIZE)
		return 0;

	if (!IS_ALIGNED(addr, P4D_SIZE))
		return 0;

	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
		return 0;

	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
		return 0;

	return p4d_set_huge(p4d, phys_addr, prot);
}

static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
			phys_addr_t phys_addr, pgprot_t prot,
			unsigned int max_page_shift, pgtbl_mod_mask *mask)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);

		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
					max_page_shift)) {
			*mask |= PGTBL_P4D_MODIFIED;
			continue;
		}

		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
					max_page_shift, mask))
			return -ENOMEM;
	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
	return 0;
}

278
static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
			phys_addr_t phys_addr, pgprot_t prot,
			unsigned int max_page_shift)
{
	pgd_t *pgd;
	unsigned long start;
	unsigned long next;
	int err;
	pgtbl_mod_mask mask = 0;

	might_sleep();
	BUG_ON(addr >= end);

	start = addr;
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
					max_page_shift, &mask);
		if (err)
			break;
	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);

	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);

	return err;
}
A
Adrian Bunk 已提交
306

307 308
int ioremap_page_range(unsigned long addr, unsigned long end,
		phys_addr_t phys_addr, pgprot_t prot)
309 310 311
{
	int err;

312
	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313
				 ioremap_max_page_shift);
314
	flush_cache_vmap(addr, end);
315 316 317
	if (!err)
		kmsan_ioremap_page_range(addr, end, phys_addr, prot,
					 ioremap_max_page_shift);
318 319 320
	return err;
}

321 322
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
323 324 325 326 327 328 329 330
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
331
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
332 333
}

334 335
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
336 337 338
{
	pmd_t *pmd;
	unsigned long next;
339
	int cleared;
L
Linus Torvalds 已提交
340 341 342 343

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
344 345 346 347 348 349

		cleared = pmd_clear_huge(pmd);
		if (cleared || pmd_bad(*pmd))
			*mask |= PGTBL_PMD_MODIFIED;

		if (cleared)
350
			continue;
L
Linus Torvalds 已提交
351 352
		if (pmd_none_or_clear_bad(pmd))
			continue;
353
		vunmap_pte_range(pmd, addr, next, mask);
354 355

		cond_resched();
L
Linus Torvalds 已提交
356 357 358
	} while (pmd++, addr = next, addr != end);
}

359 360
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
361 362 363
{
	pud_t *pud;
	unsigned long next;
364
	int cleared;
L
Linus Torvalds 已提交
365

366
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
367 368
	do {
		next = pud_addr_end(addr, end);
369 370 371 372 373 374

		cleared = pud_clear_huge(pud);
		if (cleared || pud_bad(*pud))
			*mask |= PGTBL_PUD_MODIFIED;

		if (cleared)
375
			continue;
L
Linus Torvalds 已提交
376 377
		if (pud_none_or_clear_bad(pud))
			continue;
378
		vunmap_pmd_range(pud, addr, next, mask);
L
Linus Torvalds 已提交
379 380 381
	} while (pud++, addr = next, addr != end);
}

382 383
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
384 385 386 387 388 389 390
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
391

392 393
		p4d_clear_huge(p4d);
		if (p4d_bad(*p4d))
394 395
			*mask |= PGTBL_P4D_MODIFIED;

396 397
		if (p4d_none_or_clear_bad(p4d))
			continue;
398
		vunmap_pud_range(p4d, addr, next, mask);
399 400 401
	} while (p4d++, addr = next, addr != end);
}

402 403 404
/*
 * vunmap_range_noflush is similar to vunmap_range, but does not
 * flush caches or TLBs.
405
 *
406 407 408 409 410
 * The caller is responsible for calling flush_cache_vmap() before calling
 * this function, and flush_tlb_kernel_range after it has returned
 * successfully (and before the addresses are expected to cause a page fault
 * or be re-mapped for something else, if TLB flushes are being delayed or
 * coalesced).
411
 *
412
 * This is an internal function only. Do not use outside mm/.
413
 */
414
void __vunmap_range_noflush(unsigned long start, unsigned long end)
L
Linus Torvalds 已提交
415 416
{
	unsigned long next;
417
	pgd_t *pgd;
418 419
	unsigned long addr = start;
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
420 421 422 423 424

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
425 426
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
L
Linus Torvalds 已提交
427 428
		if (pgd_none_or_clear_bad(pgd))
			continue;
429
		vunmap_p4d_range(pgd, addr, next, &mask);
L
Linus Torvalds 已提交
430
	} while (pgd++, addr = next, addr != end);
431 432 433

	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);
L
Linus Torvalds 已提交
434 435
}

436 437 438 439 440 441
void vunmap_range_noflush(unsigned long start, unsigned long end)
{
	kmsan_vunmap_range_noflush(start, end);
	__vunmap_range_noflush(start, end);
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
/**
 * vunmap_range - unmap kernel virtual addresses
 * @addr: start of the VM area to unmap
 * @end: end of the VM area to unmap (non-inclusive)
 *
 * Clears any present PTEs in the virtual address range, flushes TLBs and
 * caches. Any subsequent access to the address before it has been re-mapped
 * is a kernel bug.
 */
void vunmap_range(unsigned long addr, unsigned long end)
{
	flush_cache_vunmap(addr, end);
	vunmap_range_noflush(addr, end);
	flush_tlb_kernel_range(addr, end);
}

458
static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
459 460
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
461 462 463
{
	pte_t *pte;

N
Nick Piggin 已提交
464 465 466 467 468
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

469
	pte = pte_alloc_kernel_track(pmd, addr, mask);
L
Linus Torvalds 已提交
470 471 472
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
473 474 475 476 477
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
478
			return -ENOMEM;
Y
Yury Norov 已提交
479 480 481
		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
			return -EINVAL;

L
Linus Torvalds 已提交
482
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
483
		(*nr)++;
L
Linus Torvalds 已提交
484
	} while (pte++, addr += PAGE_SIZE, addr != end);
485
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
486 487 488
	return 0;
}

489
static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
490 491
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
492 493 494 495
{
	pmd_t *pmd;
	unsigned long next;

496
	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
L
Linus Torvalds 已提交
497 498 499 500
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
501
		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
502 503 504 505 506
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

507
static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
508 509
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
510 511 512 513
{
	pud_t *pud;
	unsigned long next;

514
	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
L
Linus Torvalds 已提交
515 516 517 518
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
519
		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
520 521 522 523 524
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

525
static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
526 527
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
528 529 530 531
{
	p4d_t *p4d;
	unsigned long next;

532
	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
533 534 535 536
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
537
		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
538 539 540 541 542
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

543 544
static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
		pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
545
{
546
	unsigned long start = addr;
547
	pgd_t *pgd;
548
	unsigned long next;
N
Nick Piggin 已提交
549 550
	int err = 0;
	int nr = 0;
551
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
552 553 554 555 556

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
557 558
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
559
		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
L
Linus Torvalds 已提交
560
		if (err)
561
			return err;
L
Linus Torvalds 已提交
562
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
563

564 565 566
	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);

567
	return 0;
L
Linus Torvalds 已提交
568 569
}

570 571 572 573 574 575 576 577 578
/*
 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
 * flush caches.
 *
 * The caller is responsible for calling flush_cache_vmap() after this
 * function returns successfully and before the addresses are accessed.
 *
 * This is an internal function only. Do not use outside mm/.
 */
579
int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
580 581 582 583 584 585 586 587 588 589 590 591 592 593
		pgprot_t prot, struct page **pages, unsigned int page_shift)
{
	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;

	WARN_ON(page_shift < PAGE_SHIFT);

	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
			page_shift == PAGE_SHIFT)
		return vmap_small_pages_range_noflush(addr, end, prot, pages);

	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
		int err;

		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
594
					page_to_phys(pages[i]), prot,
595 596 597 598 599 600 601 602 603
					page_shift);
		if (err)
			return err;

		addr += 1UL << page_shift;
	}

	return 0;
}
604 605 606 607 608 609 610

int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
		pgprot_t prot, struct page **pages, unsigned int page_shift)
{
	kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
}
611 612

/**
613
 * vmap_pages_range - map pages to a kernel virtual address
614
 * @addr: start of the VM area to map
615
 * @end: end of the VM area to map (non-inclusive)
616
 * @prot: page protection flags to use
617 618 619
 * @pages: pages to map (always PAGE_SIZE pages)
 * @page_shift: maximum shift that the pages may be mapped with, @pages must
 * be aligned and contiguous up to at least this shift.
620 621 622 623
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
624 625
static int vmap_pages_range(unsigned long addr, unsigned long end,
		pgprot_t prot, struct page **pages, unsigned int page_shift)
626
{
627
	int err;
628

629 630 631
	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
	flush_cache_vmap(addr, end);
	return err;
632 633
}

634
int is_vmalloc_or_module_addr(const void *x)
635 636
{
	/*
637
	 * ARM, x86-64 and sparc64 put modules in a special place,
638 639 640 641
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
642
	unsigned long addr = (unsigned long)kasan_reset_tag(x);
643 644 645 646 647
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}
648
EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
649

650
/*
651 652 653
 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
 * return the tail page that corresponds to the base page address, which
 * matches small vmap mappings.
654
 */
655
struct page *vmalloc_to_page(const void *vmalloc_addr)
656 657
{
	unsigned long addr = (unsigned long) vmalloc_addr;
658
	struct page *page = NULL;
659
	pgd_t *pgd = pgd_offset_k(addr);
660 661 662 663
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
664

665 666 667 668
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
669
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
670

671 672
	if (pgd_none(*pgd))
		return NULL;
673 674 675 676 677
	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
		return NULL; /* XXX: no allowance for huge pgd */
	if (WARN_ON_ONCE(pgd_bad(*pgd)))
		return NULL;

678 679 680
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
681 682 683 684
	if (p4d_leaf(*p4d))
		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
	if (WARN_ON_ONCE(p4d_bad(*p4d)))
		return NULL;
685

686 687 688 689 690 691
	pud = pud_offset(p4d, addr);
	if (pud_none(*pud))
		return NULL;
	if (pud_leaf(*pud))
		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
	if (WARN_ON_ONCE(pud_bad(*pud)))
692
		return NULL;
693

694
	pmd = pmd_offset(pud, addr);
695 696 697 698 699
	if (pmd_none(*pmd))
		return NULL;
	if (pmd_leaf(*pmd))
		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
	if (WARN_ON_ONCE(pmd_bad(*pmd)))
700 701 702 703 704 705 706
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
707

708
	return page;
709
}
710
EXPORT_SYMBOL(vmalloc_to_page);
711 712

/*
713
 * Map a vmalloc()-space virtual address to the physical page frame number.
714
 */
715
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
716
{
717
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
718
}
719
EXPORT_SYMBOL(vmalloc_to_pfn);
720

N
Nick Piggin 已提交
721 722 723

/*** Global kva allocator ***/

724
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
725
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
726

N
Nick Piggin 已提交
727 728

static DEFINE_SPINLOCK(vmap_area_lock);
729
static DEFINE_SPINLOCK(free_vmap_area_lock);
730 731
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
N
Nick Piggin 已提交
732
static struct rb_root vmap_area_root = RB_ROOT;
733
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
734

735 736 737 738
static struct rb_root purge_vmap_area_root = RB_ROOT;
static LIST_HEAD(purge_vmap_area_list);
static DEFINE_SPINLOCK(purge_vmap_area_lock);

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

765 766 767 768 769 770 771
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

772 773 774 775 776 777 778 779 780 781 782 783 784 785
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
786

787 788
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
789 790 791

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
792 793
static void drain_vmap_area_work(struct work_struct *work);
static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
N
Nick Piggin 已提交
794

795 796 797 798 799 800 801
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

802
/* Look up the first VA which satisfies addr < va_end, NULL if none. */
803 804 805 806 807
static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
{
	struct vmap_area *va = NULL;
	struct rb_node *n = vmap_area_root.rb_node;

808 809
	addr = (unsigned long)kasan_reset_tag((void *)addr);

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	while (n) {
		struct vmap_area *tmp;

		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_end > addr) {
			va = tmp;
			if (tmp->va_start <= addr)
				break;

			n = n->rb_left;
		} else
			n = n->rb_right;
	}

	return va;
}

827
static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
L
Linus Torvalds 已提交
828
{
829
	struct rb_node *n = root->rb_node;
N
Nick Piggin 已提交
830

831 832
	addr = (unsigned long)kasan_reset_tag((void *)addr);

N
Nick Piggin 已提交
833 834 835 836 837 838
	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
839
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
840 841 842 843 844 845 846 847
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

848 849 850
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
851 852 853 854
 *
 * Otherwise NULL is returned. In that case all further
 * steps regarding inserting of conflicting overlap range
 * have to be declined and actually considered as a bug.
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
873

874 875 876 877 878 879 880
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
881

882 883 884 885 886
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
887
		if (va->va_end <= tmp_va->va_start)
888
			link = &(*link)->rb_left;
889
		else if (va->va_start >= tmp_va->va_end)
890
			link = &(*link)->rb_right;
891 892 893 894 895 896
		else {
			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);

			return NULL;
		}
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
922 923 924
__link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link,
	struct list_head *head, bool augment)
925 926 927 928 929 930 931 932 933
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
934 935
	}

936 937
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
938
	if (augment) {
939 940 941 942
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
943
		 * It is because we populate the tree from the bottom
944 945 946 947 948 949 950 951 952 953 954 955
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
956

957 958
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
959 960
}

961
static __always_inline void
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link,
	struct list_head *head)
{
	__link_va(va, root, parent, link, head, false);
}

static __always_inline void
link_va_augment(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link,
	struct list_head *head)
{
	__link_va(va, root, parent, link, head, true);
}

static __always_inline void
__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
979
{
980 981
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
982

983
	if (augment)
984 985 986 987 988
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

989
	list_del_init(&va->list);
990
	RB_CLEAR_NODE(&va->rb_node);
991 992
}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
	__unlink_va(va, root, false);
}

static __always_inline void
unlink_va_augment(struct vmap_area *va, struct rb_root *root)
{
	__unlink_va(va, root, true);
}

1005
#if DEBUG_AUGMENT_PROPAGATE_CHECK
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

1017
static void
1018
augment_tree_propagate_check(void)
1019 1020
{
	struct vmap_area *va;
1021
	unsigned long computed_size;
1022

1023 1024 1025 1026 1027
	list_for_each_entry(va, &free_vmap_area_list, list) {
		computed_size = compute_subtree_max_size(va);
		if (computed_size != va->subtree_max_size)
			pr_emerg("tree is corrupted: %lu, %lu\n",
				va_size(va), va->subtree_max_size);
1028 1029 1030 1031
	}
}
#endif

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
1062 1063 1064 1065 1066 1067
	/*
	 * Populate the tree from bottom towards the root until
	 * the calculated maximum available size of checked node
	 * is equal to its current one.
	 */
	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1068 1069

#if DEBUG_AUGMENT_PROPAGATE_CHECK
1070
	augment_tree_propagate_check();
1071
#endif
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
1082 1083
	if (link)
		link_va(va, root, parent, link, head);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

1099
	if (link) {
1100
		link_va_augment(va, root, parent, link, head);
1101 1102
		augment_tree_propagate_from(va);
	}
1103 1104 1105 1106 1107 1108 1109
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
1110 1111 1112 1113 1114
 *
 * Please note, it can return NULL in case of overlap
 * ranges, followed by WARN() report. Despite it is a
 * buggy behaviour, a system can be alive and keep
 * ongoing.
1115
 */
1116
static __always_inline struct vmap_area *
1117 1118
__merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head, bool augment)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);
1131 1132
	if (!link)
		return NULL;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
1172 1173 1174 1175 1176 1177 1178
			/*
			 * If both neighbors are coalesced, it is important
			 * to unlink the "next" node first, followed by merging
			 * with "previous" one. Otherwise the tree might not be
			 * fully populated if a sibling's augmented value is
			 * "normalized" because of rotation operations.
			 */
1179
			if (merged)
1180
				__unlink_va(va, root, augment);
1181

1182 1183
			sibling->va_end = va->va_end;

1184 1185
			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
1186 1187 1188 1189

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
1190 1191 1192 1193
		}
	}

insert:
1194
	if (!merged)
1195
		__link_va(va, root, parent, link, head, augment);
1196

1197 1198 1199
	return va;
}

1200 1201 1202 1203 1204 1205 1206
static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	return __merge_or_add_vmap_area(va, root, head, false);
}

1207 1208 1209 1210
static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
1211
	va = __merge_or_add_vmap_area(va, root, head, true);
1212 1213 1214
	if (va)
		augment_tree_propagate_from(va);

1215
	return va;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
1240 1241 1242
 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
 * a search length is adjusted to account for worst case alignment
 * overhead.
1243 1244
 */
static __always_inline struct vmap_area *
1245 1246
find_vmap_lowest_match(struct rb_root *root, unsigned long size,
	unsigned long align, unsigned long vstart, bool adjust_search_size)
1247 1248 1249
{
	struct vmap_area *va;
	struct rb_node *node;
1250
	unsigned long length;
1251 1252

	/* Start from the root. */
1253
	node = root->rb_node;
1254

1255 1256 1257
	/* Adjust the search size for alignment overhead. */
	length = adjust_search_size ? size + align - 1 : size;

1258 1259 1260
	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

1261
		if (get_subtree_max_size(node->rb_left) >= length &&
1262 1263 1264 1265 1266 1267 1268 1269 1270
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
1271
			 * equal or bigger to the requested search length.
1272
			 */
1273
			if (get_subtree_max_size(node->rb_right) >= length) {
1274 1275 1276 1277 1278
				node = node->rb_right;
				continue;
			}

			/*
1279
			 * OK. We roll back and find the first right sub-tree,
1280
			 * that will satisfy the search criteria. It can happen
1281 1282
			 * due to "vstart" restriction or an alignment overhead
			 * that is bigger then PAGE_SIZE.
1283 1284 1285 1286 1287 1288
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

1289
				if (get_subtree_max_size(node->rb_right) >= length &&
1290
						vstart <= va->va_start) {
1291 1292 1293 1294 1295 1296 1297
					/*
					 * Shift the vstart forward. Please note, we update it with
					 * parent's start address adding "1" because we do not want
					 * to enter same sub-tree after it has already been checked
					 * and no suitable free block found there.
					 */
					vstart = va->va_start + 1;
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

1308 1309 1310 1311
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
1312
find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1313 1314 1315 1316
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

1317
	list_for_each_entry(va, head, list) {
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
1328 1329
find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
			     unsigned long size, unsigned long align)
1330 1331 1332 1333 1334 1335 1336 1337
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

1338 1339
	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1340 1341 1342 1343 1344 1345 1346

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
1382 1383 1384
adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
		      struct vmap_area *va, unsigned long nva_start_addr,
		      unsigned long size)
1385
{
1386
	struct vmap_area *lva = NULL;
1387
	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1388 1389 1390 1391 1392 1393 1394 1395 1396

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
1397
		unlink_va_augment(va, root);
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
1451 1452 1453 1454 1455
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1474
		if (lva)	/* type == NE_FIT_TYPE */
1475
			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
1486 1487
__alloc_vmap_area(struct rb_root *root, struct list_head *head,
	unsigned long size, unsigned long align,
1488
	unsigned long vstart, unsigned long vend)
1489
{
1490
	bool adjust_search_size = true;
1491 1492 1493 1494
	unsigned long nva_start_addr;
	struct vmap_area *va;
	int ret;

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	/*
	 * Do not adjust when:
	 *   a) align <= PAGE_SIZE, because it does not make any sense.
	 *      All blocks(their start addresses) are at least PAGE_SIZE
	 *      aligned anyway;
	 *   b) a short range where a requested size corresponds to exactly
	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
	 *      With adjusted search length an allocation would not succeed.
	 */
	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
		adjust_search_size = false;

1507
	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Update the free vmap_area. */
1521
	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1522
	if (WARN_ON_ONCE(ret))
1523 1524
		return vend;

1525
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1526
	find_vmap_lowest_match_check(root, head, size, align);
1527 1528
#endif

1529 1530
	return nva_start_addr;
}
1531

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
1548
	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1549 1550 1551
	spin_unlock(&free_vmap_area_lock);
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
static inline void
preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
{
	struct vmap_area *va = NULL;

	/*
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
	 * a CPU that does an allocation is preloaded.
	 *
	 * We do it in non-atomic context, thus it allows us to use more
	 * permissive allocation masks to be more stable under low memory
	 * condition and high memory pressure.
	 */
	if (!this_cpu_read(ne_fit_preload_node))
		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);

	spin_lock(lock);

	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
		kmem_cache_free(vmap_area_cachep, va);
}

N
Nick Piggin 已提交
1575 1576 1577 1578 1579 1580 1581
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
1582 1583
				int node, gfp_t gfp_mask,
				unsigned long va_flags)
N
Nick Piggin 已提交
1584
{
1585
	struct vmap_area *va;
1586
	unsigned long freed;
L
Linus Torvalds 已提交
1587
	unsigned long addr;
N
Nick Piggin 已提交
1588
	int purged = 0;
1589
	int ret;
N
Nick Piggin 已提交
1590

1591 1592
	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
		return ERR_PTR(-EINVAL);
N
Nick Piggin 已提交
1593

1594 1595 1596
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1597
	might_sleep();
1598
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1599

1600
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1601 1602 1603
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1604 1605 1606 1607
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1608
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1609

N
Nick Piggin 已提交
1610
retry:
1611
	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1612 1613
	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
		size, align, vstart, vend);
1614
	spin_unlock(&free_vmap_area_lock);
N
Nick Piggin 已提交
1615

1616 1617
	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);

1618
	/*
1619 1620
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1621
	 */
1622
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1623
		goto overflow;
N
Nick Piggin 已提交
1624 1625 1626

	va->va_start = addr;
	va->va_end = addr + size;
1627
	va->vm = NULL;
1628
	va->flags = va_flags;
1629

1630 1631
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1632 1633
	spin_unlock(&vmap_area_lock);

1634
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1635 1636 1637
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1638 1639 1640 1641 1642 1643
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1644
	return va;
N
Nick Piggin 已提交
1645 1646 1647 1648 1649 1650 1651

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1652

1653 1654 1655 1656 1657 1658
	freed = 0;
	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);

	if (freed > 0) {
		purged = 0;
		goto retry;
1659 1660
	}

1661
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1662 1663
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1664 1665

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1666
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1667 1668
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1706
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1707

1708
/*
I
Ingo Molnar 已提交
1709
 * Serialize vmap purging.  There is no actual critical section protected
1710
 * by this lock, but we want to avoid concurrent calls for performance
1711 1712
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1713
static DEFINE_MUTEX(vmap_purge_lock);
1714

1715 1716 1717
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

N
Nick Piggin 已提交
1718 1719 1720
/*
 * Purges all lazily-freed vmap areas.
 */
1721
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1722
{
1723
	unsigned long resched_threshold;
1724
	unsigned int num_purged_areas = 0;
1725
	struct list_head local_purge_list;
1726
	struct vmap_area *va, *n_va;
N
Nick Piggin 已提交
1727

1728
	lockdep_assert_held(&vmap_purge_lock);
1729

1730 1731
	spin_lock(&purge_vmap_area_lock);
	purge_vmap_area_root = RB_ROOT;
1732
	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1733 1734
	spin_unlock(&purge_vmap_area_lock);

1735
	if (unlikely(list_empty(&local_purge_list)))
1736
		goto out;
1737

1738
	start = min(start,
1739
		list_first_entry(&local_purge_list,
1740 1741 1742
			struct vmap_area, list)->va_start);

	end = max(end,
1743
		list_last_entry(&local_purge_list,
1744
			struct vmap_area, list)->va_end);
N
Nick Piggin 已提交
1745

1746
	flush_tlb_kernel_range(start, end);
1747
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1748

1749
	spin_lock(&free_vmap_area_lock);
1750
	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1751
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1752 1753
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1754

1755 1756 1757 1758 1759
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1760 1761
		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
				&free_vmap_area_list);
1762

1763 1764 1765
		if (!va)
			continue;

1766 1767 1768
		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1769

1770
		atomic_long_sub(nr, &vmap_lazy_nr);
1771
		num_purged_areas++;
1772

1773
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1774
			cond_resched_lock(&free_vmap_area_lock);
1775
	}
1776
	spin_unlock(&free_vmap_area_lock);
1777 1778 1779 1780

out:
	trace_purge_vmap_area_lazy(start, end, num_purged_areas);
	return num_purged_areas > 0;
N
Nick Piggin 已提交
1781 1782 1783 1784 1785 1786 1787
}

/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1788
	mutex_lock(&vmap_purge_lock);
1789 1790
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1791
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1792 1793
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
static void drain_vmap_area_work(struct work_struct *work)
{
	unsigned long nr_lazy;

	do {
		mutex_lock(&vmap_purge_lock);
		__purge_vmap_area_lazy(ULONG_MAX, 0);
		mutex_unlock(&vmap_purge_lock);

		/* Recheck if further work is required. */
		nr_lazy = atomic_long_read(&vmap_lazy_nr);
	} while (nr_lazy > lazy_max_pages());
}

N
Nick Piggin 已提交
1808
/*
1809 1810 1811
 * Free a vmap area, caller ensuring that the area has been unmapped,
 * unlinked and flush_cache_vunmap had been called for the correct
 * range previously.
N
Nick Piggin 已提交
1812
 */
1813
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1814
{
1815 1816
	unsigned long nr_lazy_max = lazy_max_pages();
	unsigned long va_start = va->va_start;
1817
	unsigned long nr_lazy;
1818

1819 1820
	if (WARN_ON_ONCE(!list_empty(&va->list)))
		return;
1821

1822 1823
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1824

1825 1826 1827 1828 1829 1830 1831
	/*
	 * Merge or place it to the purge tree/list.
	 */
	spin_lock(&purge_vmap_area_lock);
	merge_or_add_vmap_area(va,
		&purge_vmap_area_root, &purge_vmap_area_list);
	spin_unlock(&purge_vmap_area_lock);
1832

1833 1834
	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);

1835
	/* After this point, we may free va at any time */
1836
	if (unlikely(nr_lazy > nr_lazy_max))
1837
		schedule_work(&drain_vmap_work);
N
Nick Piggin 已提交
1838 1839
}

1840 1841 1842 1843 1844 1845
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1846
	vunmap_range_noflush(va->va_start, va->va_end);
1847
	if (debug_pagealloc_enabled_static())
1848 1849
		flush_tlb_kernel_range(va->va_start, va->va_end);

1850
	free_vmap_area_noflush(va);
1851 1852
}

1853
struct vmap_area *find_vmap_area(unsigned long addr)
N
Nick Piggin 已提交
1854 1855 1856 1857
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
1858
	va = __find_vmap_area(addr, &vmap_area_root);
N
Nick Piggin 已提交
1859 1860 1861 1862 1863
	spin_unlock(&vmap_area_lock);

	return va;
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr, &vmap_area_root);
	if (va)
		unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	return va;
}

N
Nick Piggin 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1900 1901 1902 1903
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1904 1905 1906

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

1907 1908 1909 1910
#define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
#define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
#define VMAP_FLAGS_MASK		0x3

N
Nick Piggin 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919
struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1920
	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1921
	unsigned long dirty_min, dirty_max; /*< dirty range */
1922 1923
	struct list_head free_list;
	struct rcu_head rcu_head;
1924
	struct list_head purge;
N
Nick Piggin 已提交
1925 1926 1927 1928 1929 1930
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
1931
 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
N
Nick Piggin 已提交
1932 1933 1934
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
1935
static DEFINE_XARRAY(vmap_blocks);
N
Nick Piggin 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1966
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1967 1968
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1969 1970 1971 1972 1973 1974
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1975
	void *vaddr;
N
Nick Piggin 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
1986 1987
					node, gfp_mask,
					VMAP_RAM|VMAP_BLOCK);
1988
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1989
		kfree(vb);
J
Julia Lawall 已提交
1990
		return ERR_CAST(va);
N
Nick Piggin 已提交
1991 1992
	}

1993
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1994 1995
	spin_lock_init(&vb->lock);
	vb->va = va;
1996 1997
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1998
	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
1999
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
2000
	vb->dirty = 0;
2001 2002
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
2003
	bitmap_set(vb->used_map, 0, (1UL << order));
N
Nick Piggin 已提交
2004 2005 2006
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
2007 2008 2009 2010 2011 2012
	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
	if (err) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}
N
Nick Piggin 已提交
2013

2014
	vbq = raw_cpu_ptr(&vmap_block_queue);
N
Nick Piggin 已提交
2015
	spin_lock(&vbq->lock);
2016
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
2017 2018
	spin_unlock(&vbq->lock);

2019
	return vaddr;
N
Nick Piggin 已提交
2020 2021 2022 2023 2024 2025
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;

2026
	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
N
Nick Piggin 已提交
2027 2028
	BUG_ON(tmp != vb);

2029 2030 2031 2032
	spin_lock(&vmap_area_lock);
	unlink_va(vb->va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

2033
	free_vmap_area_noflush(vb->va);
2034
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
2035 2036
}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
2054 2055
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
2080 2081 2082 2083
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
2084
	void *vaddr = NULL;
N
Nick Piggin 已提交
2085 2086
	unsigned int order;

2087
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
2088
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
2089 2090 2091 2092 2093 2094 2095 2096
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
2097 2098 2099
	order = get_order(size);

	rcu_read_lock();
2100
	vbq = raw_cpu_ptr(&vmap_block_queue);
N
Nick Piggin 已提交
2101
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2102
		unsigned long pages_off;
N
Nick Piggin 已提交
2103 2104

		spin_lock(&vb->lock);
2105 2106 2107 2108
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
2109

2110 2111
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2112
		vb->free -= 1UL << order;
2113
		bitmap_set(vb->used_map, pages_off, (1UL << order));
2114 2115 2116 2117 2118
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
2119

2120 2121
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
2122
	}
2123

N
Nick Piggin 已提交
2124 2125
	rcu_read_unlock();

2126 2127 2128
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
2129

2130
	return vaddr;
N
Nick Piggin 已提交
2131 2132
}

2133
static void vb_free(unsigned long addr, unsigned long size)
N
Nick Piggin 已提交
2134 2135 2136 2137 2138
{
	unsigned long offset;
	unsigned int order;
	struct vmap_block *vb;

2139
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
2140
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2141

2142
	flush_cache_vunmap(addr, addr + size);
2143

N
Nick Piggin 已提交
2144
	order = get_order(size);
2145
	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2146
	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2147 2148 2149
	spin_lock(&vb->lock);
	bitmap_clear(vb->used_map, offset, (1UL << order));
	spin_unlock(&vb->lock);
N
Nick Piggin 已提交
2150

2151
	vunmap_range_noflush(addr, addr + size);
2152

2153
	if (debug_pagealloc_enabled_static())
2154
		flush_tlb_kernel_range(addr, addr + size);
2155

N
Nick Piggin 已提交
2156
	spin_lock(&vb->lock);
2157 2158 2159 2160

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2161

N
Nick Piggin 已提交
2162 2163
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
2164
		BUG_ON(vb->free);
N
Nick Piggin 已提交
2165 2166 2167 2168 2169 2170
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

2171
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
2172 2173 2174
{
	int cpu;

2175 2176 2177
	if (unlikely(!vmap_initialized))
		return;

2178 2179
	might_sleep();

N
Nick Piggin 已提交
2180 2181 2182 2183 2184 2185 2186
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
2187
			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2188
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
2189
				unsigned long s, e;
2190

2191 2192
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
2193

2194 2195
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
2196

2197
				flush = 1;
N
Nick Piggin 已提交
2198 2199 2200 2201 2202 2203
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

2204
	mutex_lock(&vmap_purge_lock);
2205 2206 2207
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
2208
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
2209
}
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
2240
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2241
	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2242
	struct vmap_area *va;
N
Nick Piggin 已提交
2243

2244
	might_sleep();
N
Nick Piggin 已提交
2245 2246 2247
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
2248
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
2249

2250 2251
	kasan_poison_vmalloc(mem, size);

2252
	if (likely(count <= VMAP_MAX_ALLOC)) {
2253
		debug_check_no_locks_freed(mem, size);
2254
		vb_free(addr, size);
2255 2256 2257
		return;
	}

2258
	va = find_unlink_vmap_area(addr);
2259 2260 2261
	if (WARN_ON_ONCE(!va))
		return;

2262 2263
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
2264
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
2265 2266 2267 2268 2269 2270 2271 2272
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
2273
 *
2274 2275 2276 2277 2278 2279
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
2280
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
2281
 */
2282
void *vm_map_ram(struct page **pages, unsigned int count, int node)
N
Nick Piggin 已提交
2283
{
2284
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
2296 2297
				VMALLOC_START, VMALLOC_END,
				node, GFP_KERNEL, VMAP_RAM);
N
Nick Piggin 已提交
2298 2299 2300 2301 2302 2303
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
2304

2305 2306
	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
				pages, PAGE_SHIFT) < 0) {
N
Nick Piggin 已提交
2307 2308 2309
		vm_unmap_ram(mem, count);
		return NULL;
	}
2310

2311 2312 2313 2314 2315
	/*
	 * Mark the pages as accessible, now that they are mapped.
	 * With hardware tag-based KASAN, marking is skipped for
	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
	 */
2316
	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2317

N
Nick Piggin 已提交
2318 2319 2320 2321
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

2322
static struct vm_struct *vmlist __initdata;
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
static inline unsigned int vm_area_page_order(struct vm_struct *vm)
{
#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
	return vm->page_order;
#else
	return 0;
#endif
}

static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
{
#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
	vm->page_order = order;
#else
	BUG_ON(order != 0);
#endif
}

N
Nicolas Pitre 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

2368 2369 2370
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
2371
 * @align: requested alignment
2372 2373 2374 2375 2376 2377 2378 2379
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
2380
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2381
{
2382 2383
	unsigned long addr = ALIGN(VMALLOC_START, align);
	struct vm_struct *cur, **p;
2384

2385
	BUG_ON(vmap_initialized);
2386

2387 2388 2389 2390 2391
	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
		if ((unsigned long)cur->addr - addr >= vm->size)
			break;
		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
	}
2392

2393 2394 2395 2396
	BUG_ON(addr > VMALLOC_END - vm->size);
	vm->addr = (void *)addr;
	vm->next = *p;
	*p = vm;
2397
	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2398 2399
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

2441 2442
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2443 2444 2445 2446 2447
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2448
	va->vm = vm;
2449 2450 2451 2452 2453 2454 2455
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2456
	spin_unlock(&vmap_area_lock);
2457
}
2458

2459
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2460
{
2461
	/*
2462
	 * Before removing VM_UNINITIALIZED,
2463 2464 2465 2466
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2467
	vm->flags &= ~VM_UNINITIALIZED;
2468 2469
}

N
Nick Piggin 已提交
2470
static struct vm_struct *__get_vm_area_node(unsigned long size,
2471 2472 2473
		unsigned long align, unsigned long shift, unsigned long flags,
		unsigned long start, unsigned long end, int node,
		gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2474
{
2475
	struct vmap_area *va;
N
Nick Piggin 已提交
2476
	struct vm_struct *area;
2477
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2478

2479
	BUG_ON(in_interrupt());
2480
	size = ALIGN(size, 1ul << shift);
2481 2482
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2483

2484 2485 2486 2487
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2488
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2489 2490 2491
	if (unlikely(!area))
		return NULL;

2492 2493
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2494

2495
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
N
Nick Piggin 已提交
2496 2497 2498
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2499 2500
	}

2501
	setup_vmalloc_vm(area, va, flags, caller);
2502

2503 2504 2505 2506 2507
	/*
	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
	 * best-effort approach, as they can be mapped outside of vmalloc code.
	 * For VM_ALLOC mappings, the pages are marked as accessible after
	 * getting mapped in __vmalloc_node_range().
2508 2509
	 * With hardware tag-based KASAN, marking is skipped for
	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2510 2511
	 */
	if (!(flags & VM_ALLOC))
2512
		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2513
						    KASAN_VMALLOC_PROT_NORMAL);
2514

L
Linus Torvalds 已提交
2515 2516 2517
	return area;
}

2518 2519
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2520
				       const void *caller)
2521
{
2522 2523
	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
				  NUMA_NO_NODE, GFP_KERNEL, caller);
2524 2525
}

L
Linus Torvalds 已提交
2526
/**
2527 2528 2529
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2530
 *
2531 2532 2533
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2534 2535
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2536 2537 2538
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2539 2540
	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
				  VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2541 2542
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2543 2544 2545
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2546
				const void *caller)
2547
{
2548 2549
	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
				  VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2550
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2551 2552
}

2553
/**
2554 2555
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2556
 *
2557 2558 2559
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2560
 *
2561
 * Return: the area descriptor on success or %NULL on failure.
2562 2563
 */
struct vm_struct *find_vm_area(const void *addr)
2564
{
N
Nick Piggin 已提交
2565
	struct vmap_area *va;
2566

N
Nick Piggin 已提交
2567
	va = find_vmap_area((unsigned long)addr);
2568 2569
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2570

2571
	return va->vm;
L
Linus Torvalds 已提交
2572 2573
}

2574
/**
2575 2576
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2577
 *
2578 2579 2580
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2581
 *
2582
 * Return: the area descriptor on success or %NULL on failure.
2583
 */
2584
struct vm_struct *remove_vm_area(const void *addr)
2585
{
N
Nick Piggin 已提交
2586
	struct vmap_area *va;
2587
	struct vm_struct *vm;
N
Nick Piggin 已提交
2588

2589 2590
	might_sleep();

2591 2592 2593
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
			addr))
		return NULL;
2594

2595 2596 2597 2598
	va = find_unlink_vmap_area((unsigned long)addr);
	if (!va || !va->vm)
		return NULL;
	vm = va->vm;
2599

2600 2601
	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2602
	kasan_free_module_shadow(vm);
2603
	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2604

2605 2606
	free_unmap_vmap_area(va);
	return vm;
2607 2608
}

2609 2610 2611 2612 2613
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

2614
	/* HUGE_VMALLOC passes small pages to set_direct_map */
2615 2616 2617 2618 2619
	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

2620 2621 2622 2623
/*
 * Flush the vm mapping and reset the direct map.
 */
static void vm_reset_perms(struct vm_struct *area)
2624 2625
{
	unsigned long start = ULONG_MAX, end = 0;
2626
	unsigned int page_order = vm_area_page_order(area);
2627
	int flush_dmap = 0;
2628 2629 2630
	int i;

	/*
2631
	 * Find the start and end range of the direct mappings to make sure that
2632 2633
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
2634
	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2635
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2636

2637
		if (addr) {
2638 2639 2640
			unsigned long page_size;

			page_size = PAGE_SIZE << page_order;
2641
			start = min(addr, start);
2642
			end = max(addr + page_size, end);
2643
			flush_dmap = 1;
2644 2645 2646 2647 2648 2649 2650 2651 2652
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2653
	_vm_unmap_aliases(start, end, flush_dmap);
2654 2655 2656
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2657
static void delayed_vfree_work(struct work_struct *w)
L
Linus Torvalds 已提交
2658
{
2659 2660
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
	struct llist_node *t, *llnode;
A
Andrey Ryabinin 已提交
2661

2662
	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2663
		vfree(llnode);
A
Andrey Ryabinin 已提交
2664 2665 2666
}

/**
2667 2668
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2669
 *
2670 2671
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2672 2673 2674
 */
void vfree_atomic(const void *addr)
{
C
Christoph Hellwig 已提交
2675
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
A
Andrey Ryabinin 已提交
2676

C
Christoph Hellwig 已提交
2677
	BUG_ON(in_nmi());
A
Andrey Ryabinin 已提交
2678 2679
	kmemleak_free(addr);

C
Christoph Hellwig 已提交
2680 2681 2682 2683 2684 2685 2686 2687
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * another cpu's list. schedule_work() should be fine with this too.
	 */
	if (addr && llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
2688 2689
}

L
Linus Torvalds 已提交
2690
/**
2691 2692
 * vfree - Release memory allocated by vmalloc()
 * @addr:  Memory base address
L
Linus Torvalds 已提交
2693
 *
2694 2695 2696 2697
 * Free the virtually continuous memory area starting at @addr, as obtained
 * from one of the vmalloc() family of APIs.  This will usually also free the
 * physical memory underlying the virtual allocation, but that memory is
 * reference counted, so it will not be freed until the last user goes away.
L
Linus Torvalds 已提交
2698
 *
2699
 * If @addr is NULL, no operation is performed.
A
Andrew Morton 已提交
2700
 *
2701
 * Context:
2702
 * May sleep if called *not* from interrupt context.
2703 2704
 * Must not be called in NMI context (strictly speaking, it could be
 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
I
Ingo Molnar 已提交
2705
 * conventions for vfree() arch-dependent would be a really bad idea).
L
Linus Torvalds 已提交
2706
 */
2707
void vfree(const void *addr)
L
Linus Torvalds 已提交
2708
{
C
Christoph Hellwig 已提交
2709 2710
	struct vm_struct *vm;
	int i;
2711

C
Christoph Hellwig 已提交
2712 2713 2714 2715
	if (unlikely(in_interrupt())) {
		vfree_atomic(addr);
		return;
	}
2716

C
Christoph Hellwig 已提交
2717
	BUG_ON(in_nmi());
2718
	kmemleak_free(addr);
C
Christoph Hellwig 已提交
2719
	might_sleep();
A
Andrey Ryabinin 已提交
2720

2721 2722
	if (!addr)
		return;
2723

C
Christoph Hellwig 已提交
2724 2725 2726 2727 2728 2729 2730
	vm = remove_vm_area(addr);
	if (unlikely(!vm)) {
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
				addr);
		return;
	}

2731 2732
	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
		vm_reset_perms(vm);
C
Christoph Hellwig 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	for (i = 0; i < vm->nr_pages; i++) {
		struct page *page = vm->pages[i];

		BUG_ON(!page);
		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
		/*
		 * High-order allocs for huge vmallocs are split, so
		 * can be freed as an array of order-0 allocations
		 */
		__free_pages(page, 0);
		cond_resched();
	}
	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
	kvfree(vm->pages);
	kfree(vm);
L
Linus Torvalds 已提交
2748 2749 2750 2751
}
EXPORT_SYMBOL(vfree);

/**
2752 2753
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2754
 *
2755 2756
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2757
 *
2758
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2759
 */
2760
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2761
{
C
Christoph Hellwig 已提交
2762 2763
	struct vm_struct *vm;

L
Linus Torvalds 已提交
2764
	BUG_ON(in_interrupt());
2765
	might_sleep();
C
Christoph Hellwig 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

	if (!addr)
		return;
	vm = remove_vm_area(addr);
	if (unlikely(!vm)) {
		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
				addr);
		return;
	}
	kfree(vm);
L
Linus Torvalds 已提交
2776 2777 2778 2779
}
EXPORT_SYMBOL(vunmap);

/**
2780 2781 2782 2783 2784 2785
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
2786 2787 2788 2789 2790
 * Maps @count pages from @pages into contiguous kernel virtual space.
 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
 * are transferred from the caller to vmap(), and will be freed / dropped when
 * vfree() is called on the return value.
2791 2792
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2793 2794
 */
void *vmap(struct page **pages, unsigned int count,
2795
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2796 2797
{
	struct vm_struct *area;
2798
	unsigned long addr;
2799
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2800

2801 2802
	might_sleep();

2803 2804 2805
	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
		return NULL;

2806 2807 2808 2809 2810 2811 2812
	/*
	 * Your top guard is someone else's bottom guard. Not having a top
	 * guard compromises someone else's mappings too.
	 */
	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
		flags &= ~VM_NO_GUARD;

2813
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2814 2815
		return NULL;

2816 2817
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2818 2819
	if (!area)
		return NULL;
2820

2821 2822 2823
	addr = (unsigned long)area->addr;
	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
				pages, PAGE_SHIFT) < 0) {
L
Linus Torvalds 已提交
2824 2825 2826 2827
		vunmap(area->addr);
		return NULL;
	}

2828
	if (flags & VM_MAP_PUT_PAGES) {
2829
		area->pages = pages;
2830 2831
		area->nr_pages = count;
	}
L
Linus Torvalds 已提交
2832 2833 2834 2835
	return area->addr;
}
EXPORT_SYMBOL(vmap);

C
Christoph Hellwig 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
#ifdef CONFIG_VMAP_PFN
struct vmap_pfn_data {
	unsigned long	*pfns;
	pgprot_t	prot;
	unsigned int	idx;
};

static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
{
	struct vmap_pfn_data *data = private;

	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
		return -EINVAL;
	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
	return 0;
}

/**
 * vmap_pfn - map an array of PFNs into virtually contiguous space
 * @pfns: array of PFNs
 * @count: number of pages to map
 * @prot: page protection for the mapping
 *
 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
 * the start address of the mapping.
 */
void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
{
	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
	struct vm_struct *area;

	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
			__builtin_return_address(0));
	if (!area)
		return NULL;
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
		free_vm_area(area);
		return NULL;
	}
	return area->addr;
}
EXPORT_SYMBOL_GPL(vmap_pfn);
#endif /* CONFIG_VMAP_PFN */

2881 2882
static inline unsigned int
vm_area_alloc_pages(gfp_t gfp, int nid,
2883
		unsigned int order, unsigned int nr_pages, struct page **pages)
2884 2885
{
	unsigned int nr_allocated = 0;
2886 2887
	gfp_t alloc_gfp = gfp;
	bool nofail = false;
2888 2889
	struct page *page;
	int i;
2890 2891 2892 2893 2894 2895 2896

	/*
	 * For order-0 pages we make use of bulk allocator, if
	 * the page array is partly or not at all populated due
	 * to fails, fallback to a single page allocator that is
	 * more permissive.
	 */
2897
	if (!order) {
2898
		/* bulk allocator doesn't support nofail req. officially */
2899 2900
		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
		while (nr_allocated < nr_pages) {
			unsigned int nr, nr_pages_request;

			/*
			 * A maximum allowed request is hard-coded and is 100
			 * pages per call. That is done in order to prevent a
			 * long preemption off scenario in the bulk-allocator
			 * so the range is [1:100].
			 */
			nr_pages_request = min(100U, nr_pages - nr_allocated);

2912 2913 2914
			/* memory allocation should consider mempolicy, we can't
			 * wrongly use nearest node when nid == NUMA_NO_NODE,
			 * otherwise memory may be allocated in only one node,
Y
Yixuan Cao 已提交
2915
			 * but mempolicy wants to alloc memory by interleaving.
2916 2917
			 */
			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2918
				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2919 2920 2921 2922
							nr_pages_request,
							pages + nr_allocated);

			else
2923
				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2924 2925
							nr_pages_request,
							pages + nr_allocated);
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

			nr_allocated += nr;
			cond_resched();

			/*
			 * If zero or pages were obtained partly,
			 * fallback to a single page allocator.
			 */
			if (nr != nr_pages_request)
				break;
		}
2937 2938 2939 2940 2941 2942 2943 2944
	} else if (gfp & __GFP_NOFAIL) {
		/*
		 * Higher order nofail allocations are really expensive and
		 * potentially dangerous (pre-mature OOM, disruptive reclaim
		 * and compaction etc.
		 */
		alloc_gfp &= ~__GFP_NOFAIL;
		nofail = true;
2945
	}
2946 2947

	/* High-order pages or fallback path if "bulk" fails. */
2948
	while (nr_allocated < nr_pages) {
2949 2950 2951
		if (fatal_signal_pending(current))
			break;

2952
		if (nid == NUMA_NO_NODE)
2953
			page = alloc_pages(alloc_gfp, order);
2954
		else
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
			page = alloc_pages_node(nid, alloc_gfp, order);
		if (unlikely(!page)) {
			if (!nofail)
				break;

			/* fall back to the zero order allocations */
			alloc_gfp |= __GFP_NOFAIL;
			order = 0;
			continue;
		}

2966 2967 2968 2969 2970 2971 2972 2973 2974
		/*
		 * Higher order allocations must be able to be treated as
		 * indepdenent small pages by callers (as they can with
		 * small-page vmallocs). Some drivers do their own refcounting
		 * on vmalloc_to_page() pages, some use page->mapping,
		 * page->lru, etc.
		 */
		if (order)
			split_page(page, order);
2975 2976 2977 2978 2979 2980 2981 2982 2983

		/*
		 * Careful, we allocate and map page-order pages, but
		 * tracking is done per PAGE_SIZE page so as to keep the
		 * vm_struct APIs independent of the physical/mapped size.
		 */
		for (i = 0; i < (1U << order); i++)
			pages[nr_allocated + i] = page + i;

2984
		cond_resched();
2985 2986 2987 2988 2989 2990
		nr_allocated += 1U << order;
	}

	return nr_allocated;
}

A
Adrian Bunk 已提交
2991
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2992 2993
				 pgprot_t prot, unsigned int page_shift,
				 int node)
L
Linus Torvalds 已提交
2994
{
2995
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2996
	bool nofail = gfp_mask & __GFP_NOFAIL;
2997 2998
	unsigned long addr = (unsigned long)area->addr;
	unsigned long size = get_vm_area_size(area);
2999
	unsigned long array_size;
3000 3001
	unsigned int nr_small_pages = size >> PAGE_SHIFT;
	unsigned int page_order;
3002 3003
	unsigned int flags;
	int ret;
L
Linus Torvalds 已提交
3004

3005
	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3006

3007 3008
	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
		gfp_mask |= __GFP_HIGHMEM;
L
Linus Torvalds 已提交
3009 3010

	/* Please note that the recursion is strictly bounded. */
3011
	if (array_size > PAGE_SIZE) {
3012
		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3013
					area->caller);
3014
	} else {
3015
		area->pages = kmalloc_node(array_size, nested_gfp, node);
3016
	}
3017

3018
	if (!area->pages) {
3019
		warn_alloc(gfp_mask, NULL,
3020 3021
			"vmalloc error: size %lu, failed to allocated page array size %lu",
			nr_small_pages * PAGE_SIZE, array_size);
3022
		free_vm_area(area);
L
Linus Torvalds 已提交
3023 3024 3025
		return NULL;
	}

3026 3027
	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
	page_order = vm_area_page_order(area);
3028

3029 3030
	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
		node, page_order, nr_small_pages, area->pages);
3031

3032
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
S
Shakeel Butt 已提交
3033
	if (gfp_mask & __GFP_ACCOUNT) {
3034
		int i;
S
Shakeel Butt 已提交
3035

3036 3037
		for (i = 0; i < area->nr_pages; i++)
			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
S
Shakeel Butt 已提交
3038
	}
L
Linus Torvalds 已提交
3039

3040 3041
	/*
	 * If not enough pages were obtained to accomplish an
C
Christoph Hellwig 已提交
3042
	 * allocation request, free them via vfree() if any.
3043 3044
	 */
	if (area->nr_pages != nr_small_pages) {
3045 3046 3047 3048 3049
		/* vm_area_alloc_pages() can also fail due to a fatal signal */
		if (!fatal_signal_pending(current))
			warn_alloc(gfp_mask, NULL,
				"vmalloc error: size %lu, page order %u, failed to allocate pages",
				area->nr_pages * PAGE_SIZE, page_order);
3050 3051 3052
		goto fail;
	}

3053 3054 3055 3056 3057 3058 3059 3060 3061
	/*
	 * page tables allocations ignore external gfp mask, enforce it
	 * by the scope API
	 */
	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
		flags = memalloc_nofs_save();
	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
		flags = memalloc_noio_save();

3062 3063
	do {
		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3064
			page_shift);
3065 3066 3067
		if (nofail && (ret < 0))
			schedule_timeout_uninterruptible(1);
	} while (nofail && (ret < 0));
3068 3069 3070 3071 3072 3073 3074

	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
		memalloc_nofs_restore(flags);
	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
		memalloc_noio_restore(flags);

	if (ret < 0) {
3075
		warn_alloc(gfp_mask, NULL,
3076 3077
			"vmalloc error: size %lu, failed to map pages",
			area->nr_pages * PAGE_SIZE);
L
Linus Torvalds 已提交
3078
		goto fail;
3079
	}
C
Christoph Hellwig 已提交
3080

L
Linus Torvalds 已提交
3081 3082 3083
	return area->addr;

fail:
C
Christoph Hellwig 已提交
3084
	vfree(area->addr);
L
Linus Torvalds 已提交
3085 3086 3087 3088
	return NULL;
}

/**
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
3101
 * allocator with @gfp_mask flags. Please note that the full set of gfp
3102 3103 3104 3105 3106 3107 3108 3109
 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
 * supported.
 * Zone modifiers are not supported. From the reclaim modifiers
 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
 * __GFP_RETRY_MAYFAIL are not supported).
 *
 * __GFP_NOWARN can be used to suppress failures messages.
3110 3111 3112
 *
 * Map them into contiguous kernel virtual space, using a pagetable
 * protection of @prot.
3113 3114
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
3115
 */
3116 3117
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
3118 3119
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
3120 3121
{
	struct vm_struct *area;
3122
	void *ret;
3123
	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3124
	unsigned long real_size = size;
3125 3126
	unsigned long real_align = align;
	unsigned int shift = PAGE_SHIFT;
L
Linus Torvalds 已提交
3127

3128 3129 3130 3131 3132
	if (WARN_ON_ONCE(!size))
		return NULL;

	if ((size >> PAGE_SHIFT) > totalram_pages()) {
		warn_alloc(gfp_mask, NULL,
3133 3134
			"vmalloc error: size %lu, exceeds total pages",
			real_size);
3135
		return NULL;
3136 3137
	}

3138
	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3139
		unsigned long size_per_node;
L
Linus Torvalds 已提交
3140

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		/*
		 * Try huge pages. Only try for PAGE_KERNEL allocations,
		 * others like modules don't yet expect huge pages in
		 * their allocations due to apply_to_page_range not
		 * supporting them.
		 */

		size_per_node = size;
		if (node == NUMA_NO_NODE)
			size_per_node /= num_online_nodes();
3151
		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3152
			shift = PMD_SHIFT;
3153 3154 3155 3156 3157
		else
			shift = arch_vmap_pte_supported_shift(size_per_node);

		align = max(real_align, 1UL << shift);
		size = ALIGN(real_size, 1UL << shift);
3158 3159 3160
	}

again:
3161 3162 3163
	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
				  VM_UNINITIALIZED | vm_flags, start, end, node,
				  gfp_mask, caller);
3164
	if (!area) {
3165
		bool nofail = gfp_mask & __GFP_NOFAIL;
3166
		warn_alloc(gfp_mask, NULL,
3167 3168 3169 3170 3171 3172
			"vmalloc error: size %lu, vm_struct allocation failed%s",
			real_size, (nofail) ? ". Retrying." : "");
		if (nofail) {
			schedule_timeout_uninterruptible(1);
			goto again;
		}
3173
		goto fail;
3174
	}
L
Linus Torvalds 已提交
3175

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	/*
	 * Prepare arguments for __vmalloc_area_node() and
	 * kasan_unpoison_vmalloc().
	 */
	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
		if (kasan_hw_tags_enabled()) {
			/*
			 * Modify protection bits to allow tagging.
			 * This must be done before mapping.
			 */
			prot = arch_vmap_pgprot_tagged(prot);
3187

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
			/*
			 * Skip page_alloc poisoning and zeroing for physical
			 * pages backing VM_ALLOC mapping. Memory is instead
			 * poisoned and zeroed by kasan_unpoison_vmalloc().
			 */
			gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
		}

		/* Take note that the mapping is PAGE_KERNEL. */
		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3198 3199
	}

3200
	/* Allocate physical pages and map them into vmalloc space. */
3201 3202
	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
	if (!ret)
3203
		goto fail;
3204

3205 3206
	/*
	 * Mark the pages as accessible, now that they are mapped.
3207 3208 3209
	 * The condition for setting KASAN_VMALLOC_INIT should complement the
	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
	 * to make sure that memory is initialized under the same conditions.
3210 3211
	 * Tag-based KASAN modes only assign tags to normal non-executable
	 * allocations, see __kasan_unpoison_vmalloc().
3212
	 */
3213
	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3214 3215
	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
	    (gfp_mask & __GFP_SKIP_ZERO))
3216
		kasan_flags |= KASAN_VMALLOC_INIT;
3217
	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3218
	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3219

3220
	/*
3221 3222
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
3223
	 * Now, it is fully initialized, so remove this flag here.
3224
	 */
3225
	clear_vm_uninitialized_flag(area);
3226

3227
	size = PAGE_ALIGN(size);
3228 3229
	if (!(vm_flags & VM_DEFER_KMEMLEAK))
		kmemleak_vmalloc(area, size, gfp_mask);
3230

3231
	return area->addr;
3232 3233

fail:
3234 3235 3236 3237 3238 3239 3240
	if (shift > PAGE_SHIFT) {
		shift = PAGE_SHIFT;
		align = real_align;
		size = real_size;
		goto again;
	}

3241
	return NULL;
L
Linus Torvalds 已提交
3242 3243
}

3244
/**
3245 3246 3247 3248 3249 3250
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
3251
 *
3252 3253
 * Allocate enough pages to cover @size from the page level allocator with
 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
M
Michal Hocko 已提交
3254
 *
3255 3256
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
3257
 *
3258 3259
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
3260 3261
 *
 * Return: pointer to the allocated memory or %NULL on error
3262
 */
3263
void *__vmalloc_node(unsigned long size, unsigned long align,
3264
			    gfp_t gfp_mask, int node, const void *caller)
3265 3266
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3267
				gfp_mask, PAGE_KERNEL, 0, node, caller);
3268
}
3269 3270 3271 3272 3273 3274 3275 3276
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node);
#endif
3277

3278
void *__vmalloc(unsigned long size, gfp_t gfp_mask)
C
Christoph Lameter 已提交
3279
{
3280
	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3281
				__builtin_return_address(0));
C
Christoph Lameter 已提交
3282
}
L
Linus Torvalds 已提交
3283 3284 3285
EXPORT_SYMBOL(__vmalloc);

/**
3286 3287 3288 3289 3290
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
3291
 *
3292 3293
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
3294 3295
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
3296 3297 3298
 */
void *vmalloc(unsigned long size)
{
3299 3300
	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
				__builtin_return_address(0));
L
Linus Torvalds 已提交
3301 3302 3303
}
EXPORT_SYMBOL(vmalloc);

3304
/**
3305 3306 3307
 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
 * @size:      allocation size
 * @gfp_mask:  flags for the page level allocator
3308
 *
3309
 * Allocate enough pages to cover @size from the page level
3310
 * allocator and map them into contiguous kernel virtual space.
3311 3312
 * If @size is greater than or equal to PMD_SIZE, allow using
 * huge pages for the memory
3313 3314 3315
 *
 * Return: pointer to the allocated memory or %NULL on error
 */
3316
void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3317 3318
{
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3319
				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3320 3321
				    NUMA_NO_NODE, __builtin_return_address(0));
}
3322
EXPORT_SYMBOL_GPL(vmalloc_huge);
3323

3324
/**
3325 3326 3327 3328 3329 3330 3331 3332 3333
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
3334 3335
 *
 * Return: pointer to the allocated memory or %NULL on error
3336 3337 3338
 */
void *vzalloc(unsigned long size)
{
3339 3340
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
				__builtin_return_address(0));
3341 3342 3343
}
EXPORT_SYMBOL(vzalloc);

3344
/**
3345 3346
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
3347
 *
3348 3349
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
3350 3351
 *
 * Return: pointer to the allocated memory or %NULL on error
3352 3353 3354
 */
void *vmalloc_user(unsigned long size)
{
3355 3356 3357 3358
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
3359 3360 3361
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
3362
/**
3363 3364 3365
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
3366
 *
3367 3368
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
3369
 *
3370 3371
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
3372 3373
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
3374 3375 3376
 */
void *vmalloc_node(unsigned long size, int node)
{
3377 3378
	return __vmalloc_node(size, 1, GFP_KERNEL, node,
			__builtin_return_address(0));
C
Christoph Lameter 已提交
3379 3380 3381
}
EXPORT_SYMBOL(vmalloc_node);

3382 3383 3384 3385 3386 3387 3388 3389 3390
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
3391
 * Return: pointer to the allocated memory or %NULL on error
3392 3393 3394
 */
void *vzalloc_node(unsigned long size, int node)
{
3395 3396
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
				__builtin_return_address(0));
3397 3398 3399
}
EXPORT_SYMBOL(vzalloc_node);

3400
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3401
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3402
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3403
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3404
#else
3405 3406 3407 3408
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
3409
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3410 3411
#endif

L
Linus Torvalds 已提交
3412
/**
3413 3414
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
3415
 *
3416 3417
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
3418 3419
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
3420 3421 3422
 */
void *vmalloc_32(unsigned long size)
{
3423 3424
	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
			__builtin_return_address(0));
L
Linus Torvalds 已提交
3425 3426 3427
}
EXPORT_SYMBOL(vmalloc_32);

3428
/**
3429
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3430
 * @size:	     allocation size
3431 3432 3433
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
3434 3435
 *
 * Return: pointer to the allocated memory or %NULL on error
3436 3437 3438
 */
void *vmalloc_32_user(unsigned long size)
{
3439 3440 3441 3442
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
3443 3444 3445
}
EXPORT_SYMBOL(vmalloc_32_user);

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

3459
		offset = offset_in_page(addr);
3460 3461 3462 3463 3464 3465 3466
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
I
Ingo Molnar 已提交
3467
		 * overhead of vmalloc()/vfree() calls for this _debug_
3468 3469 3470 3471
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
D
David Hildenbrand 已提交
3472
			/* We can expect USER0 is not used -- see vread() */
3473
			void *map = kmap_atomic(p);
3474
			memcpy(buf, map + offset, length);
3475
			kunmap_atomic(map);
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
static void vmap_ram_vread(char *buf, char *addr, int count, unsigned long flags)
{
	char *start;
	struct vmap_block *vb;
	unsigned long offset;
	unsigned int rs, re, n;

	/*
	 * If it's area created by vm_map_ram() interface directly, but
	 * not further subdividing and delegating management to vmap_block,
	 * handle it here.
	 */
	if (!(flags & VMAP_BLOCK)) {
		aligned_vread(buf, addr, count);
		return;
	}

	/*
	 * Area is split into regions and tracked with vmap_block, read out
	 * each region and zero fill the hole between regions.
	 */
	vb = xa_load(&vmap_blocks, addr_to_vb_idx((unsigned long)addr));
	if (!vb)
		goto finished;

	spin_lock(&vb->lock);
	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
		spin_unlock(&vb->lock);
		goto finished;
	}
	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
		if (!count)
			break;
		start = vmap_block_vaddr(vb->va->va_start, rs);
		while (addr < start) {
			if (count == 0)
				goto unlock;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
		/*it could start reading from the middle of used region*/
		offset = offset_in_page(addr);
		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
		if (n > count)
			n = count;
		aligned_vread(buf, start+offset, n);

		buf += n;
		addr += n;
		count -= n;
	}
unlock:
	spin_unlock(&vb->lock);

finished:
	/* zero-fill the left dirty or free regions */
	if (count)
		memset(buf, 0, count);
}

3549
/**
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
3567
 * any information, as /proc/kcore.
3568 3569 3570 3571
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
3572
 */
L
Linus Torvalds 已提交
3573 3574
long vread(char *buf, char *addr, unsigned long count)
{
3575 3576
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
3577
	char *vaddr, *buf_start = buf;
3578
	unsigned long buflen = count;
3579
	unsigned long n, size, flags;
L
Linus Torvalds 已提交
3580

3581 3582
	addr = kasan_reset_tag(addr);

L
Linus Torvalds 已提交
3583 3584 3585 3586
	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

3587
	spin_lock(&vmap_area_lock);
3588
	va = find_vmap_area_exceed_addr((unsigned long)addr);
3589 3590
	if (!va)
		goto finished;
3591 3592 3593 3594 3595

	/* no intersects with alive vmap_area */
	if ((unsigned long)addr + count <= va->va_start)
		goto finished;

3596
	list_for_each_entry_from(va, &vmap_area_list, list) {
3597 3598 3599
		if (!count)
			break;

3600 3601 3602 3603 3604 3605 3606 3607 3608
		vm = va->vm;
		flags = va->flags & VMAP_FLAGS_MASK;
		/*
		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
		 * be set together with VMAP_RAM.
		 */
		WARN_ON(flags == VMAP_BLOCK);

		if (!vm && !flags)
3609 3610
			continue;

3611 3612 3613 3614 3615
		if (vm && (vm->flags & VM_UNINITIALIZED))
			continue;
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();

3616 3617 3618 3619
		vaddr = (char *) va->va_start;
		size = vm ? get_vm_area_size(vm) : va_size(va);

		if (addr >= vaddr + size)
L
Linus Torvalds 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
3629
		n = vaddr + size - addr;
3630 3631
		if (n > count)
			n = count;
3632 3633 3634 3635

		if (flags & VMAP_RAM)
			vmap_ram_vread(buf, addr, n, flags);
		else if (!(vm->flags & VM_IOREMAP))
3636 3637 3638 3639 3640 3641
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
3642 3643
	}
finished:
3644
	spin_unlock(&vmap_area_lock);
3645 3646 3647 3648 3649 3650 3651 3652

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
3653 3654
}

3655
/**
3656 3657 3658 3659
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
3660
 * @pgoff:		offset from @kaddr to start at
3661
 * @size:		size of map area
3662
 *
3663
 * Returns:	0 for success, -Exxx on failure
3664
 *
3665 3666 3667 3668
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
3669
 *
3670
 * Similar to remap_pfn_range() (see mm/memory.c)
3671
 */
3672
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3673 3674
				void *kaddr, unsigned long pgoff,
				unsigned long size)
3675 3676
{
	struct vm_struct *area;
3677 3678 3679 3680 3681
	unsigned long off;
	unsigned long end_index;

	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
		return -EINVAL;
3682

3683 3684 3685
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3686 3687
		return -EINVAL;

3688
	area = find_vm_area(kaddr);
3689
	if (!area)
N
Nick Piggin 已提交
3690
		return -EINVAL;
3691

3692
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3693
		return -EINVAL;
3694

3695 3696
	if (check_add_overflow(size, off, &end_index) ||
	    end_index > get_vm_area_size(area))
N
Nick Piggin 已提交
3697
		return -EINVAL;
3698
	kaddr += off;
3699 3700

	do {
3701
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3702 3703
		int ret;

3704 3705 3706 3707 3708
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3709 3710 3711
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3712

3713
	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3714

N
Nick Piggin 已提交
3715
	return 0;
3716
}
3717 3718

/**
3719 3720 3721 3722
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3723
 *
3724
 * Returns:	0 for success, -Exxx on failure
3725
 *
3726 3727 3728
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3729
 *
3730
 * Similar to remap_pfn_range() (see mm/memory.c)
3731 3732 3733 3734 3735
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
3736
					   addr, pgoff,
3737 3738
					   vma->vm_end - vma->vm_start);
}
3739 3740
EXPORT_SYMBOL(remap_vmalloc_range);

3741 3742 3743 3744 3745 3746 3747 3748
void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3749

3750
#ifdef CONFIG_SMP
3751 3752
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3753
	return rb_entry_safe(n, struct vmap_area, rb_node);
3754 3755 3756
}

/**
3757 3758
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3759
 *
3760 3761 3762 3763
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3764
 */
3765 3766
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3767
{
3768 3769 3770 3771 3772
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3773 3774

	while (n) {
3775 3776 3777 3778 3779 3780
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3781
			n = n->rb_right;
3782 3783 3784
		} else {
			n = n->rb_left;
		}
3785 3786
	}

3787
	return va;
3788 3789 3790
}

/**
3791 3792 3793 3794 3795
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3796
 * @align: alignment for required highest address
3797
 *
3798
 * Returns: determined end address within vmap_area
3799
 */
3800 3801
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3802
{
3803
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3804 3805
	unsigned long addr;

3806 3807 3808 3809 3810 3811 3812
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3813 3814
	}

3815
	return 0;
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3830 3831 3832 3833
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3834
 *
3835 3836 3837 3838 3839 3840
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3841 3842 3843
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3844
				     size_t align)
3845 3846 3847
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3848
	struct vmap_area **vas, *va;
3849 3850
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3851
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3852 3853 3854
	bool purged = false;

	/* verify parameters and allocate data structures */
3855
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3868
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3869 3870 3871
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3872
			BUG_ON(start2 < end && start < end2);
3873 3874 3875 3876 3877 3878 3879 3880 3881
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3882 3883
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3884
	if (!vas || !vms)
3885
		goto err_free2;
3886 3887

	for (area = 0; area < nr_vms; area++) {
3888
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3889
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3890 3891 3892 3893
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3894
	spin_lock(&free_vmap_area_lock);
3895 3896 3897 3898 3899 3900

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3901 3902
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3903 3904 3905 3906 3907 3908

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3909 3910
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3911 3912

		/*
3913
		 * Fitting base has not been found.
3914
		 */
3915 3916
		if (va == NULL)
			goto overflow;
3917

3918
		/*
Q
Qiujun Huang 已提交
3919
		 * If required width exceeds current VA block, move
3920 3921 3922 3923 3924 3925 3926 3927
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3928
		/*
3929
		 * If this VA does not fit, move base downwards and recheck.
3930
		 */
3931
		if (base + start < va->va_start) {
3932 3933
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3945

3946 3947
		start = offsets[area];
		end = start + sizes[area];
3948
		va = pvm_find_va_enclose_addr(base + end);
3949
	}
3950

3951 3952
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3953
		int ret;
3954

3955 3956
		start = base + offsets[area];
		size = sizes[area];
3957

3958 3959 3960 3961 3962
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

3963 3964 3965
		ret = adjust_va_to_fit_type(&free_vmap_area_root,
					    &free_vmap_area_list,
					    va, start, size);
3966
		if (WARN_ON_ONCE(unlikely(ret)))
3967 3968 3969 3970 3971 3972 3973 3974
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3975

3976
	spin_unlock(&free_vmap_area_lock);
3977

3978 3979 3980 3981 3982 3983
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;
	}

3984
	/* insert all vm's */
3985 3986 3987 3988 3989
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3990
				 pcpu_get_vm_areas);
3991 3992
	}
	spin_unlock(&vmap_area_lock);
3993

3994 3995 3996
	/*
	 * Mark allocated areas as accessible. Do it now as a best-effort
	 * approach, as they can be mapped outside of vmalloc code.
3997 3998
	 * With hardware tag-based KASAN, marking is skipped for
	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3999
	 */
4000 4001
	for (area = 0; area < nr_vms; area++)
		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4002
				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4003

4004 4005 4006
	kfree(vas);
	return vms;

4007
recovery:
4008 4009 4010 4011 4012 4013
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
4014
	while (area--) {
4015 4016
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
4017 4018
		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
				&free_vmap_area_list);
4019 4020 4021
		if (va)
			kasan_release_vmalloc(orig_start, orig_end,
				va->va_start, va->va_end);
4022 4023 4024 4025
		vas[area] = NULL;
	}

overflow:
4026
	spin_unlock(&free_vmap_area_lock);
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

4045 4046
err_free:
	for (area = 0; area < nr_vms; area++) {
4047 4048 4049
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

4050
		kfree(vms[area]);
4051
	}
4052
err_free2:
4053 4054 4055
	kfree(vas);
	kfree(vms);
	return NULL;
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
4067 4068
		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
				&free_vmap_area_list);
4069 4070 4071
		if (va)
			kasan_release_vmalloc(orig_start, orig_end,
				va->va_start, va->va_end);
4072 4073 4074 4075 4076 4077 4078
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
4096
#endif	/* CONFIG_SMP */
4097

4098
#ifdef CONFIG_PRINTK
4099 4100 4101 4102 4103 4104 4105 4106
bool vmalloc_dump_obj(void *object)
{
	struct vm_struct *vm;
	void *objp = (void *)PAGE_ALIGN((unsigned long)object);

	vm = find_vm_area(objp);
	if (!vm)
		return false;
4107 4108
	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4109 4110
	return true;
}
4111
#endif
4112

4113 4114
#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
4115
	__acquires(&vmap_purge_lock)
4116
	__acquires(&vmap_area_lock)
4117
{
4118
	mutex_lock(&vmap_purge_lock);
4119
	spin_lock(&vmap_area_lock);
4120

4121
	return seq_list_start(&vmap_area_list, *pos);
4122 4123 4124 4125
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4126
	return seq_list_next(p, &vmap_area_list, pos);
4127 4128 4129
}

static void s_stop(struct seq_file *m, void *p)
4130
	__releases(&vmap_area_lock)
4131
	__releases(&vmap_purge_lock)
4132
{
4133
	spin_unlock(&vmap_area_lock);
4134
	mutex_unlock(&vmap_purge_lock);
4135 4136
}

E
Eric Dumazet 已提交
4137 4138
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
4139
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
4140
		unsigned int nr, *counters = m->private;
4141
		unsigned int step = 1U << vm_area_page_order(v);
E
Eric Dumazet 已提交
4142 4143 4144 4145

		if (!counters)
			return;

4146 4147
		if (v->flags & VM_UNINITIALIZED)
			return;
4148 4149
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
4150

E
Eric Dumazet 已提交
4151 4152
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

4153 4154
		for (nr = 0; nr < v->nr_pages; nr += step)
			counters[page_to_nid(v->pages[nr])] += step;
E
Eric Dumazet 已提交
4155 4156 4157 4158 4159 4160
		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

4161 4162 4163 4164
static void show_purge_info(struct seq_file *m)
{
	struct vmap_area *va;

4165 4166
	spin_lock(&purge_vmap_area_lock);
	list_for_each_entry(va, &purge_vmap_area_list, list) {
4167 4168 4169 4170
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
4171
	spin_unlock(&purge_vmap_area_lock);
4172 4173
}

4174 4175
static int s_show(struct seq_file *m, void *p)
{
4176
	struct vmap_area *va;
4177 4178
	struct vm_struct *v;

4179 4180
	va = list_entry(p, struct vmap_area, list);

4181
	if (!va->vm) {
4182 4183 4184 4185
		if (va->flags & VMAP_RAM)
			seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
				(void *)va->va_start, (void *)va->va_end,
				va->va_end - va->va_start);
4186

4187
		goto final;
4188
	}
4189 4190

	v = va->vm;
4191

K
Kees Cook 已提交
4192
	seq_printf(m, "0x%pK-0x%pK %7ld",
4193 4194
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
4195 4196
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
4197

4198 4199 4200 4201
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
4202
		seq_printf(m, " phys=%pa", &v->phys_addr);
4203 4204

	if (v->flags & VM_IOREMAP)
4205
		seq_puts(m, " ioremap");
4206 4207

	if (v->flags & VM_ALLOC)
4208
		seq_puts(m, " vmalloc");
4209 4210

	if (v->flags & VM_MAP)
4211
		seq_puts(m, " vmap");
4212 4213

	if (v->flags & VM_USERMAP)
4214
		seq_puts(m, " user");
4215

4216 4217 4218
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
4219
	if (is_vmalloc_addr(v->pages))
4220
		seq_puts(m, " vpages");
4221

E
Eric Dumazet 已提交
4222
	show_numa_info(m, v);
4223
	seq_putc(m, '\n');
4224 4225

	/*
4226
	 * As a final step, dump "unpurged" areas.
4227
	 */
4228
final:
4229 4230 4231
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

4232 4233 4234
	return 0;
}

4235
static const struct seq_operations vmalloc_op = {
4236 4237 4238 4239 4240
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
4241 4242 4243

static int __init proc_vmalloc_init(void)
{
4244
	if (IS_ENABLED(CONFIG_NUMA))
4245
		proc_create_seq_private("vmallocinfo", 0400, NULL,
4246 4247
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
4248
	else
4249
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4250 4251 4252
	return 0;
}
module_init(proc_vmalloc_init);
4253

4254
#endif
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296

void __init vmalloc_init(void)
{
	struct vmap_area *va;
	struct vm_struct *tmp;
	int i;

	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
		struct vfree_deferred *p;

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, delayed_vfree_work);
	}

	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
		va->vm = tmp;
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
	}

	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
	vmap_initialized = true;
}