vmalloc.c 92.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37
#include <linux/overflow.h>
38

39
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
40
#include <asm/tlbflush.h>
41
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
42

43 44
#include "internal.h"

45 46 47 48 49 50 51 52
bool is_vmalloc_addr(const void *x)
{
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

53 54 55 56 57 58 59 60 61 62 63
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 65 66 67
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
68 69
}

N
Nick Piggin 已提交
70
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
71

L
Linus Torvalds 已提交
72 73 74 75 76 77 78 79 80 81 82
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
83
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
84 85 86 87 88 89 90
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
91 92
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
93 94 95 96 97 98
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

99
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
100 101 102 103
{
	pud_t *pud;
	unsigned long next;

104
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
105 106
	do {
		next = pud_addr_end(addr, end);
107 108
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
109 110 111 112 113 114
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144
/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 * should have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible
 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 * function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
L
Linus Torvalds 已提交
145
{
146
	unsigned long end = addr + size;
L
Linus Torvalds 已提交
147
	unsigned long next;
148
	pgd_t *pgd;
L
Linus Torvalds 已提交
149 150 151 152 153 154 155

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
156
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
157 158 159 160
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
161
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
162 163 164
{
	pte_t *pte;

N
Nick Piggin 已提交
165 166 167 168 169
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
170
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
171 172 173
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
174 175 176 177 178
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
179 180
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
181
		(*nr)++;
L
Linus Torvalds 已提交
182 183 184 185
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
186 187
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
197
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
198 199 200 201 202
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

203
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
204
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
205 206 207 208
{
	pud_t *pud;
	unsigned long next;

209
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
210 211 212 213
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
214
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
215 216 217 218 219
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

237 238 239 240 241 242
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
N
Nick Piggin 已提交
243
 *
244 245 246 247 248 249 250 251 252
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 * have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible for
 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 * function.
 *
 * RETURNS:
253
 * 0 on success, -errno on failure.
N
Nick Piggin 已提交
254
 */
255 256
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
257
{
258
	unsigned long end = addr + size;
L
Linus Torvalds 已提交
259
	unsigned long next;
260
	pgd_t *pgd;
N
Nick Piggin 已提交
261 262
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
263 264 265 266 267

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
268
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
269
		if (err)
270
			return err;
L
Linus Torvalds 已提交
271
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
272

273
	return 0;
L
Linus Torvalds 已提交
274 275
}

276
static int map_kernel_range(unsigned long start, unsigned long size,
277 278 279 280
			   pgprot_t prot, struct page **pages)
{
	int ret;

281 282
	ret = map_kernel_range_noflush(start, size, prot, pages);
	flush_cache_vmap(start, start + size);
283 284 285
	return ret;
}

286
int is_vmalloc_or_module_addr(const void *x)
287 288
{
	/*
289
	 * ARM, x86-64 and sparc64 put modules in a special place,
290 291 292 293 294 295 296 297 298 299 300
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

301
/*
302
 * Walk a vmap address to the struct page it maps.
303
 */
304
struct page *vmalloc_to_page(const void *vmalloc_addr)
305 306
{
	unsigned long addr = (unsigned long) vmalloc_addr;
307
	struct page *page = NULL;
308
	pgd_t *pgd = pgd_offset_k(addr);
309 310 311 312
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
313

314 315 316 317
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
318
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
319

320 321 322 323 324 325
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
326 327 328 329 330 331 332 333 334 335 336

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
337 338
		return NULL;
	pmd = pmd_offset(pud, addr);
339 340
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
341 342 343 344 345 346 347
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
348
	return page;
349
}
350
EXPORT_SYMBOL(vmalloc_to_page);
351 352

/*
353
 * Map a vmalloc()-space virtual address to the physical page frame number.
354
 */
355
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
356
{
357
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
358
}
359
EXPORT_SYMBOL(vmalloc_to_pfn);
360

N
Nick Piggin 已提交
361 362 363

/*** Global kva allocator ***/

364
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
365
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
366

N
Nick Piggin 已提交
367 368

static DEFINE_SPINLOCK(vmap_area_lock);
369
static DEFINE_SPINLOCK(free_vmap_area_lock);
370 371
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
372
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
373
static struct rb_root vmap_area_root = RB_ROOT;
374
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

402 403 404 405 406 407 408
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

409 410 411 412 413 414 415 416 417 418 419 420 421 422
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
423

424 425 426 427 428 429 430 431 432 433 434
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

435 436
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
437 438 439 440

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
441

442 443 444 445 446 447 448
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
449
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
450
{
N
Nick Piggin 已提交
451 452 453 454 455 456 457 458
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
459
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
460 461 462 463 464 465 466 467
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
489

490 491 492 493 494 495 496
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
497

498 499 500 501 502 503 504 505 506 507 508
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
509 510
		else
			BUG();
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
547 548
	}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
569

570 571
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
572 573
}

574 575 576
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
577 578
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
579

580 581 582 583 584 585 586 587
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
588 589
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
681 682 683 684

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
721
static __always_inline struct vmap_area *
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

783 784
			if (merged)
				unlink_va(va, root);
785 786 787

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
788 789 790 791

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
792 793 794 795 796 797 798 799
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
800 801

	return va;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
863
			 * OK. We roll back and find the first right sub-tree,
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
961
	struct vmap_area *lva = NULL;
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
1025 1026 1027 1028 1029
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1048
		if (lva)	/* type == NE_FIT_TYPE */
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1062
	unsigned long vstart, unsigned long vend)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1092 1093 1094 1095
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1096 1097
	return nva_start_addr;
}
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
	spin_unlock(&free_vmap_area_lock);
}

N
Nick Piggin 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1128
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1129
	unsigned long addr;
N
Nick Piggin 已提交
1130
	int purged = 0;
1131
	int ret;
N
Nick Piggin 已提交
1132

N
Nick Piggin 已提交
1133
	BUG_ON(!size);
1134
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1135
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1136

1137 1138 1139
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1140
	might_sleep();
1141
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1142

1143
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1144 1145 1146
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1147 1148 1149 1150
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1151
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1152

N
Nick Piggin 已提交
1153
retry:
1154
	/*
1155 1156 1157 1158 1159 1160
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1161 1162 1163
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1164 1165
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1166
	 *
1167
	 * Set "pva" to NULL here, because of "retry" path.
1168
	 */
1169
	pva = NULL;
1170

1171 1172 1173 1174 1175 1176
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1177
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1178

1179
	spin_lock(&free_vmap_area_lock);
1180 1181 1182

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1183

1184
	/*
1185 1186
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1187
	 */
1188
	addr = __alloc_vmap_area(size, align, vstart, vend);
1189 1190
	spin_unlock(&free_vmap_area_lock);

1191
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1192
		goto overflow;
N
Nick Piggin 已提交
1193 1194 1195

	va->va_start = addr;
	va->va_end = addr + size;
1196
	va->vm = NULL;
1197

1198

1199 1200
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1201 1202
	spin_unlock(&vmap_area_lock);

1203
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1204 1205 1206
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1207 1208 1209 1210 1211 1212
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1213
	return va;
N
Nick Piggin 已提交
1214 1215 1216 1217 1218 1219 1220

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1231
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1232 1233
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1234 1235

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1236
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1237 1238
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1251 1252 1253 1254 1255
/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
1256
	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
N
Nick Piggin 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1284
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1285

1286 1287 1288 1289 1290
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1291
static DEFINE_MUTEX(vmap_purge_lock);
1292

1293 1294 1295
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1296 1297 1298 1299 1300 1301
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1302
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1303 1304
}

N
Nick Piggin 已提交
1305 1306 1307
/*
 * Purges all lazily-freed vmap areas.
 */
1308
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1309
{
1310
	unsigned long resched_threshold;
1311
	struct llist_node *valist;
N
Nick Piggin 已提交
1312
	struct vmap_area *va;
1313
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1314

1315
	lockdep_assert_held(&vmap_purge_lock);
1316

1317
	valist = llist_del_all(&vmap_purge_list);
1318 1319 1320
	if (unlikely(valist == NULL))
		return false;

1321 1322 1323 1324
	/*
	 * First make sure the mappings are removed from all page-tables
	 * before they are freed.
	 */
J
Joerg Roedel 已提交
1325
	vmalloc_sync_unmappings();
1326

1327 1328 1329 1330
	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1331
	llist_for_each_entry(va, valist, purge_list) {
1332 1333 1334 1335
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1336 1337
	}

1338
	flush_tlb_kernel_range(start, end);
1339
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1340

1341
	spin_lock(&free_vmap_area_lock);
1342
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1343
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1344 1345
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1346

1347 1348 1349 1350 1351
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1352 1353 1354 1355 1356 1357
		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
					    &free_vmap_area_list);

		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1358

1359
		atomic_long_sub(nr, &vmap_lazy_nr);
1360

1361
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1362
			cond_resched_lock(&free_vmap_area_lock);
1363
	}
1364
	spin_unlock(&free_vmap_area_lock);
1365
	return true;
N
Nick Piggin 已提交
1366 1367
}

N
Nick Piggin 已提交
1368 1369 1370 1371 1372 1373
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1374
	if (mutex_trylock(&vmap_purge_lock)) {
1375
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1376
		mutex_unlock(&vmap_purge_lock);
1377
	}
N
Nick Piggin 已提交
1378 1379
}

N
Nick Piggin 已提交
1380 1381 1382 1383 1384
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1385
	mutex_lock(&vmap_purge_lock);
1386 1387
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1388
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1389 1390 1391
}

/*
1392 1393 1394
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1395
 */
1396
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1397
{
1398
	unsigned long nr_lazy;
1399

1400 1401 1402 1403
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1404 1405
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1406 1407 1408 1409 1410

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1411
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1412 1413
}

1414 1415 1416 1417 1418 1419
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1420
	unmap_vmap_area(va);
1421
	if (debug_pagealloc_enabled_static())
1422 1423
		flush_tlb_kernel_range(va->va_start, va->va_end);

1424
	free_vmap_area_noflush(va);
1425 1426
}

N
Nick Piggin 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1461 1462 1463 1464
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1477
	unsigned long dirty_min, dirty_max; /*< dirty range */
1478 1479
	struct list_head free_list;
	struct rcu_head rcu_head;
1480
	struct list_head purge;
N
Nick Piggin 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1523
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1524 1525
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1526 1527 1528 1529 1530 1531
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1532
	void *vaddr;
N
Nick Piggin 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1544
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1545
		kfree(vb);
J
Julia Lawall 已提交
1546
		return ERR_CAST(va);
N
Nick Piggin 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1556
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1557 1558
	spin_lock_init(&vb->lock);
	vb->va = va;
1559 1560 1561
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1562
	vb->dirty = 0;
1563 1564
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1576
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1577
	spin_unlock(&vbq->lock);
1578
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1579

1580
	return vaddr;
N
Nick Piggin 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1594
	free_vmap_area_noflush(vb->va);
1595
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1596 1597
}

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1615 1616
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1641 1642 1643 1644
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1645
	void *vaddr = NULL;
N
Nick Piggin 已提交
1646 1647
	unsigned int order;

1648
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1649
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1650 1651 1652 1653 1654 1655 1656 1657
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1658 1659 1660 1661 1662
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1663
		unsigned long pages_off;
N
Nick Piggin 已提交
1664 1665

		spin_lock(&vb->lock);
1666 1667 1668 1669
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1670

1671 1672
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1673 1674 1675 1676 1677 1678
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1679

1680 1681
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1682
	}
1683

1684
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1685 1686
	rcu_read_unlock();

1687 1688 1689
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1690

1691
	return vaddr;
N
Nick Piggin 已提交
1692 1693
}

1694
static void vb_free(unsigned long addr, unsigned long size)
N
Nick Piggin 已提交
1695 1696 1697 1698 1699 1700
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1701
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1702
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1703

1704
	flush_cache_vunmap(addr, addr + size);
1705

N
Nick Piggin 已提交
1706 1707
	order = get_order(size);

1708
	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
N
Nick Piggin 已提交
1709

1710
	vb_idx = addr_to_vb_idx(addr);
N
Nick Piggin 已提交
1711 1712 1713 1714 1715
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1716
	unmap_kernel_range_noflush(addr, size);
1717

1718
	if (debug_pagealloc_enabled_static())
1719
		flush_tlb_kernel_range(addr, addr + size);
1720

N
Nick Piggin 已提交
1721
	spin_lock(&vb->lock);
1722 1723 1724 1725

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1726

N
Nick Piggin 已提交
1727 1728
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1729
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1730 1731 1732 1733 1734 1735
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1736
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1737 1738 1739
{
	int cpu;

1740 1741 1742
	if (unlikely(!vmap_initialized))
		return;

1743 1744
	might_sleep();

N
Nick Piggin 已提交
1745 1746 1747 1748 1749 1750 1751
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1752 1753
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1754
				unsigned long s, e;
1755

1756 1757
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1758

1759 1760
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1761

1762
				flush = 1;
N
Nick Piggin 已提交
1763 1764 1765 1766 1767 1768
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1769
	mutex_lock(&vmap_purge_lock);
1770 1771 1772
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1773
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1774
}
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1805
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1806
	unsigned long addr = (unsigned long)mem;
1807
	struct vmap_area *va;
N
Nick Piggin 已提交
1808

1809
	might_sleep();
N
Nick Piggin 已提交
1810 1811 1812
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1813
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1814

1815 1816
	kasan_poison_vmalloc(mem, size);

1817
	if (likely(count <= VMAP_MAX_ALLOC)) {
1818
		debug_check_no_locks_freed(mem, size);
1819
		vb_free(addr, size);
1820 1821 1822 1823 1824
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1825 1826
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1827
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1837
 *
1838 1839 1840 1841 1842 1843
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1844
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1845 1846 1847
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1848
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
1867 1868 1869

	kasan_unpoison_vmalloc(mem, size);

1870
	if (map_kernel_range(addr, size, prot, pages) < 0) {
N
Nick Piggin 已提交
1871 1872 1873 1874 1875 1876 1877
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1878
static struct vm_struct *vmlist __initdata;
1879

N
Nicolas Pitre 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1906 1907 1908
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1909
 * @align: requested alignment
1910 1911 1912 1913 1914 1915 1916 1917
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1918
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1919 1920
{
	static size_t vm_init_off __initdata;
1921 1922 1923 1924
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1925

1926
	vm->addr = (void *)addr;
1927

N
Nicolas Pitre 已提交
1928
	vm_area_add_early(vm);
1929 1930
}

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1972 1973
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1974 1975
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1976 1977
	int i;

1978 1979 1980 1981 1982
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1983 1984
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1985
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1986 1987 1988 1989

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1990 1991 1992
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1993
	}
1994

I
Ivan Kokshaysky 已提交
1995 1996
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1997 1998 1999 2000
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
2001 2002
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
2003
		va->vm = tmp;
2004
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
2005
	}
2006

2007 2008 2009 2010
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
2011
	vmap_initialized = true;
N
Nick Piggin 已提交
2012 2013
}

2014 2015 2016 2017 2018 2019 2020 2021
/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2022 2023 2024
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2025 2026

	flush_cache_vunmap(addr, end);
2027
	unmap_kernel_range_noflush(addr, size);
N
Nick Piggin 已提交
2028 2029 2030
	flush_tlb_kernel_range(addr, end);
}

2031
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
2032 2033 2034 2035
{
	unsigned long addr = (unsigned long)area->addr;
	int err;

2036
	err = map_kernel_range(addr, get_vm_area_size(area), prot, pages);
N
Nick Piggin 已提交
2037

2038
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
2039 2040
}

2041 2042
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2043 2044 2045 2046 2047
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2048
	va->vm = vm;
2049 2050 2051 2052 2053 2054 2055
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2056
	spin_unlock(&vmap_area_lock);
2057
}
2058

2059
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2060
{
2061
	/*
2062
	 * Before removing VM_UNINITIALIZED,
2063 2064 2065 2066
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2067
	vm->flags &= ~VM_UNINITIALIZED;
2068 2069
}

N
Nick Piggin 已提交
2070
static struct vm_struct *__get_vm_area_node(unsigned long size,
2071
		unsigned long align, unsigned long flags, unsigned long start,
2072
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2073
{
2074
	struct vmap_area *va;
N
Nick Piggin 已提交
2075
	struct vm_struct *area;
2076
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2077

2078
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2079
	size = PAGE_ALIGN(size);
2080 2081
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2082

2083 2084 2085 2086
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2087
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2088 2089 2090
	if (unlikely(!area))
		return NULL;

2091 2092
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2093

N
Nick Piggin 已提交
2094 2095 2096 2097
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2098 2099
	}

2100
	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2101

2102
	setup_vmalloc_vm(area, va, flags, caller);
2103

L
Linus Torvalds 已提交
2104 2105 2106
	return area;
}

2107 2108
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2109
				       const void *caller)
2110
{
D
David Rientjes 已提交
2111 2112
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2113 2114
}

L
Linus Torvalds 已提交
2115
/**
2116 2117 2118
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2119
 *
2120 2121 2122
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2123 2124
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2125 2126 2127
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2128
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2129 2130
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2131 2132 2133
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2134
				const void *caller)
2135
{
2136
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2137
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2138 2139
}

2140
/**
2141 2142
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2143
 *
2144 2145 2146
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2147 2148
 *
 * Return: pointer to the found area or %NULL on faulure
2149 2150
 */
struct vm_struct *find_vm_area(const void *addr)
2151
{
N
Nick Piggin 已提交
2152
	struct vmap_area *va;
2153

N
Nick Piggin 已提交
2154
	va = find_vmap_area((unsigned long)addr);
2155 2156
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2157

2158
	return va->vm;
L
Linus Torvalds 已提交
2159 2160
}

2161
/**
2162 2163
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2164
 *
2165 2166 2167
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2168 2169
 *
 * Return: pointer to the found area or %NULL on faulure
2170
 */
2171
struct vm_struct *remove_vm_area(const void *addr)
2172
{
N
Nick Piggin 已提交
2173 2174
	struct vmap_area *va;

2175 2176
	might_sleep();

2177 2178
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2179
	if (va && va->vm) {
2180
		struct vm_struct *vm = va->vm;
2181

2182 2183 2184
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2185
		kasan_free_shadow(vm);
2186 2187
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2188 2189
		return vm;
	}
2190 2191

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2192
	return NULL;
2193 2194
}

2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2210
	int flush_dmap = 0;
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2234 2235
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2236
			start = min(addr, start);
2237
			end = max(addr + PAGE_SIZE, end);
2238
			flush_dmap = 1;
2239 2240 2241 2242 2243 2244 2245 2246 2247
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2248
	_vm_unmap_aliases(start, end, flush_dmap);
2249 2250 2251
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2252
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2253 2254 2255 2256 2257 2258
{
	struct vm_struct *area;

	if (!addr)
		return;

2259
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2260
			addr))
L
Linus Torvalds 已提交
2261 2262
		return;

2263
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2264
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2265
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2266 2267 2268 2269
				addr);
		return;
	}

2270 2271
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2272

2273
	kasan_poison_vmalloc(area->addr, area->size);
2274

2275 2276
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2277 2278 2279 2280
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2281 2282 2283
			struct page *page = area->pages[i];

			BUG_ON(!page);
2284
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2285
		}
2286
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2287

D
David Rientjes 已提交
2288
		kvfree(area->pages);
L
Linus Torvalds 已提交
2289 2290 2291 2292 2293
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2310 2311
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2312
 *
2313 2314
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2327 2328 2329 2330 2331 2332 2333 2334
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2335
/**
2336 2337
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2338
 *
2339 2340 2341
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2342
 *
2343 2344 2345
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2346
 *
2347
 * May sleep if called *not* from interrupt context.
2348
 *
2349
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2350
 */
2351
void vfree(const void *addr)
L
Linus Torvalds 已提交
2352
{
2353
	BUG_ON(in_nmi());
2354 2355 2356

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2357 2358
	might_sleep_if(!in_interrupt());

2359 2360
	if (!addr)
		return;
2361 2362

	__vfree(addr);
L
Linus Torvalds 已提交
2363 2364 2365 2366
}
EXPORT_SYMBOL(vfree);

/**
2367 2368
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2369
 *
2370 2371
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2372
 *
2373
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2374
 */
2375
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2376 2377
{
	BUG_ON(in_interrupt());
2378
	might_sleep();
2379 2380
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2381 2382 2383 2384
}
EXPORT_SYMBOL(vunmap);

/**
2385 2386 2387 2388 2389 2390 2391 2392
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2393 2394
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2395 2396
 */
void *vmap(struct page **pages, unsigned int count,
2397
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2398 2399
{
	struct vm_struct *area;
2400
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2401

2402 2403
	might_sleep();

2404
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2405 2406
		return NULL;

2407 2408
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2409 2410
	if (!area)
		return NULL;
2411

2412
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
2413 2414 2415 2416 2417 2418 2419 2420
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2421 2422 2423
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2424
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2425
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2426 2427 2428
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2429
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2430 2431 2432 2433
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2434

2435
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2436 2437 2438
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2439
	if (array_size > PAGE_SIZE) {
2440
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2441
				PAGE_KERNEL, node, area->caller);
2442
	} else {
2443
		pages = kmalloc_node(array_size, nested_gfp, node);
2444
	}
2445 2446

	if (!pages) {
L
Linus Torvalds 已提交
2447 2448 2449 2450 2451
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2452 2453 2454
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2455
	for (i = 0; i < area->nr_pages; i++) {
2456 2457
		struct page *page;

J
Jianguo Wu 已提交
2458
		if (node == NUMA_NO_NODE)
2459
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2460
		else
2461
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2462 2463

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2464 2465
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2466
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2467 2468
			goto fail;
		}
2469
		area->pages[i] = page;
2470
		if (gfpflags_allow_blocking(gfp_mask))
2471
			cond_resched();
L
Linus Torvalds 已提交
2472
	}
2473
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2474

2475
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
2476 2477 2478 2479
		goto fail;
	return area->addr;

fail:
2480
	warn_alloc(gfp_mask, NULL,
2481
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2482
			  (area->nr_pages*PAGE_SIZE), area->size);
2483
	__vfree(area->addr);
L
Linus Torvalds 已提交
2484 2485 2486 2487
	return NULL;
}

/**
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2502 2503
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2504
 */
2505 2506
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2507 2508
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2509 2510
{
	struct vm_struct *area;
2511 2512
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2513 2514

	size = PAGE_ALIGN(size);
2515
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2516
		goto fail;
L
Linus Torvalds 已提交
2517

2518
	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2519
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2520
	if (!area)
2521
		goto fail;
L
Linus Torvalds 已提交
2522

2523
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2524
	if (!addr)
2525
		return NULL;
2526

2527
	/*
2528 2529
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2530
	 * Now, it is fully initialized, so remove this flag here.
2531
	 */
2532
	clear_vm_uninitialized_flag(area);
2533

2534
	kmemleak_vmalloc(area, size, gfp_mask);
2535 2536

	return addr;
2537 2538

fail:
2539
	warn_alloc(gfp_mask, NULL,
2540
			  "vmalloc: allocation failure: %lu bytes", real_size);
2541
	return NULL;
L
Linus Torvalds 已提交
2542 2543
}

2544 2545 2546 2547 2548 2549 2550 2551 2552
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2553
/**
2554 2555 2556 2557 2558 2559 2560
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2561
 *
2562 2563 2564
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2565
 *
2566 2567
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2568
 *
2569 2570
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2571 2572
 *
 * Return: pointer to the allocated memory or %NULL on error
2573
 */
2574
static void *__vmalloc_node(unsigned long size, unsigned long align,
2575
			    gfp_t gfp_mask, pgprot_t prot,
2576
			    int node, const void *caller)
2577 2578
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2579
				gfp_mask, prot, 0, node, caller);
2580 2581
}

C
Christoph Lameter 已提交
2582 2583
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2584
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2585
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2586
}
L
Linus Torvalds 已提交
2587 2588
EXPORT_SYMBOL(__vmalloc);

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2603
/**
2604 2605 2606 2607 2608
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2609
 *
2610 2611
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2612 2613
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2614 2615 2616
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2617
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2618
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2619 2620 2621
}
EXPORT_SYMBOL(vmalloc);

2622
/**
2623 2624 2625 2626 2627 2628 2629 2630 2631
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2632 2633
 *
 * Return: pointer to the allocated memory or %NULL on error
2634 2635 2636
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2637
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2638
				GFP_KERNEL | __GFP_ZERO);
2639 2640 2641
}
EXPORT_SYMBOL(vzalloc);

2642
/**
2643 2644
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2645
 *
2646 2647
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2648 2649
 *
 * Return: pointer to the allocated memory or %NULL on error
2650 2651 2652
 */
void *vmalloc_user(unsigned long size)
{
2653 2654 2655 2656
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2657 2658 2659
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2660
/**
2661 2662 2663
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2664
 *
2665 2666
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2667
 *
2668 2669
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2670 2671
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2672 2673 2674
 */
void *vmalloc_node(unsigned long size, int node)
{
2675
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2676
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2677 2678 2679
}
EXPORT_SYMBOL(vmalloc_node);

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2691 2692
 *
 * Return: pointer to the allocated memory or %NULL on error
2693 2694 2695 2696
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2697
			 GFP_KERNEL | __GFP_ZERO);
2698 2699 2700
}
EXPORT_SYMBOL(vzalloc_node);

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
/**
 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
 * @size: allocation size
 * @node: numa node
 * @flags: flags for the page level allocator
 *
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
 *
 * Return: pointer to the allocated memory or %NULL on error
 */
void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
{
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    flags | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, node,
				    __builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_user_node_flags);

L
Linus Torvalds 已提交
2721
/**
2722 2723
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2724
 *
2725 2726 2727
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2728
 *
2729 2730
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2731 2732
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2733 2734 2735
 */
void *vmalloc_exec(unsigned long size)
{
2736 2737 2738
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2739 2740
}

2741
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2742
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2743
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2744
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2745
#else
2746 2747 2748 2749 2750
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2751 2752
#endif

L
Linus Torvalds 已提交
2753
/**
2754 2755
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2756
 *
2757 2758
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2759 2760
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2761 2762 2763
 */
void *vmalloc_32(unsigned long size)
{
2764
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2765
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2766 2767 2768
}
EXPORT_SYMBOL(vmalloc_32);

2769
/**
2770
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2771
 * @size:	     allocation size
2772 2773 2774
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2775 2776
 *
 * Return: pointer to the allocated memory or %NULL on error
2777 2778 2779
 */
void *vmalloc_32_user(unsigned long size)
{
2780 2781 2782 2783
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2784 2785 2786
}
EXPORT_SYMBOL(vmalloc_32_user);

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2800
		offset = offset_in_page(addr);
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2817
			void *map = kmap_atomic(p);
2818
			memcpy(buf, map + offset, length);
2819
			kunmap_atomic(map);
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2839
		offset = offset_in_page(addr);
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2856
			void *map = kmap_atomic(p);
2857
			memcpy(map + offset, buf, length);
2858
			kunmap_atomic(map);
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2886
 * any information, as /dev/kmem.
2887 2888 2889 2890
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2891
 */
L
Linus Torvalds 已提交
2892 2893
long vread(char *buf, char *addr, unsigned long count)
{
2894 2895
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2896
	char *vaddr, *buf_start = buf;
2897
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2898 2899 2900 2901 2902 2903
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2904 2905 2906 2907 2908
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2909
		if (!va->vm)
2910 2911 2912 2913
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2914
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2924
		n = vaddr + get_vm_area_size(vm) - addr;
2925 2926
		if (n > count)
			n = count;
2927
		if (!(vm->flags & VM_IOREMAP))
2928 2929 2930 2931 2932 2933
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2934 2935
	}
finished:
2936
	spin_unlock(&vmap_area_lock);
2937 2938 2939 2940 2941 2942 2943 2944

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2945 2946
}

2947
/**
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2965
 * any information, as /dev/kmem.
2966 2967 2968 2969
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2970
 */
L
Linus Torvalds 已提交
2971 2972
long vwrite(char *buf, char *addr, unsigned long count)
{
2973 2974
	struct vmap_area *va;
	struct vm_struct *vm;
2975 2976 2977
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2978 2979 2980 2981

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2982
	buflen = count;
L
Linus Torvalds 已提交
2983

2984 2985 2986 2987 2988
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2989
		if (!va->vm)
2990 2991 2992 2993
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2994
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000 3001 3002
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
3003
		n = vaddr + get_vm_area_size(vm) - addr;
3004 3005
		if (n > count)
			n = count;
3006
		if (!(vm->flags & VM_IOREMAP)) {
3007 3008 3009 3010 3011 3012
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
3013 3014
	}
finished:
3015
	spin_unlock(&vmap_area_lock);
3016 3017 3018
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
3019
}
3020 3021

/**
3022 3023 3024 3025
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
3026
 * @pgoff:		offset from @kaddr to start at
3027
 * @size:		size of map area
3028
 *
3029
 * Returns:	0 for success, -Exxx on failure
3030
 *
3031 3032 3033 3034
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
3035
 *
3036
 * Similar to remap_pfn_range() (see mm/memory.c)
3037
 */
3038
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3039 3040
				void *kaddr, unsigned long pgoff,
				unsigned long size)
3041 3042
{
	struct vm_struct *area;
3043 3044 3045 3046 3047
	unsigned long off;
	unsigned long end_index;

	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
		return -EINVAL;
3048

3049 3050 3051
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3052 3053
		return -EINVAL;

3054
	area = find_vm_area(kaddr);
3055
	if (!area)
N
Nick Piggin 已提交
3056
		return -EINVAL;
3057

3058
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3059
		return -EINVAL;
3060

3061 3062
	if (check_add_overflow(size, off, &end_index) ||
	    end_index > get_vm_area_size(area))
N
Nick Piggin 已提交
3063
		return -EINVAL;
3064
	kaddr += off;
3065 3066

	do {
3067
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3068 3069
		int ret;

3070 3071 3072 3073 3074
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3075 3076 3077
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3078

3079
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3080

N
Nick Piggin 已提交
3081
	return 0;
3082
}
3083 3084 3085
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3086 3087 3088 3089
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3090
 *
3091
 * Returns:	0 for success, -Exxx on failure
3092
 *
3093 3094 3095
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3096
 *
3097
 * Similar to remap_pfn_range() (see mm/memory.c)
3098 3099 3100 3101 3102
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
3103
					   addr, pgoff,
3104 3105
					   vma->vm_end - vma->vm_start);
}
3106 3107
EXPORT_SYMBOL(remap_vmalloc_range);

3108
/*
J
Joerg Roedel 已提交
3109 3110
 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
 * not to have one.
3111 3112 3113
 *
 * The purpose of this function is to make sure the vmalloc area
 * mappings are identical in all page-tables in the system.
3114
 */
J
Joerg Roedel 已提交
3115
void __weak vmalloc_sync_mappings(void)
3116 3117
{
}
3118

J
Joerg Roedel 已提交
3119 3120 3121
void __weak vmalloc_sync_unmappings(void)
{
}
3122

3123
static int f(pte_t *pte, unsigned long addr, void *data)
3124
{
3125 3126 3127 3128 3129 3130
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3131 3132 3133 3134
	return 0;
}

/**
3135 3136 3137
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3138
 *
3139
 * Returns:	NULL on failure, vm_struct on success
3140
 *
3141 3142 3143
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3144
 *
3145 3146
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3147
 */
3148
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3149 3150 3151
{
	struct vm_struct *area;

3152 3153
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3154 3155 3156 3157 3158 3159 3160 3161
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3162
				size, f, ptes ? &ptes : NULL)) {
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3179

3180
#ifdef CONFIG_SMP
3181 3182
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3183
	return rb_entry_safe(n, struct vmap_area, rb_node);
3184 3185 3186
}

/**
3187 3188
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3189
 *
3190 3191 3192 3193
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3194
 */
3195 3196
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3197
{
3198 3199 3200 3201 3202
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3203 3204

	while (n) {
3205 3206 3207 3208 3209 3210
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3211
			n = n->rb_right;
3212 3213 3214
		} else {
			n = n->rb_left;
		}
3215 3216
	}

3217
	return va;
3218 3219 3220
}

/**
3221 3222 3223 3224 3225
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3226
 *
3227
 * Returns: determined end address within vmap_area
3228
 */
3229 3230
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3231
{
3232
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3233 3234
	unsigned long addr;

3235 3236 3237 3238 3239 3240 3241
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3242 3243
	}

3244
	return 0;
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3259 3260 3261 3262
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3263
 *
3264 3265 3266 3267 3268 3269
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3270 3271 3272
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3273
				     size_t align)
3274 3275 3276
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3277
	struct vmap_area **vas, *va;
3278 3279
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3280
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3281
	bool purged = false;
3282
	enum fit_type type;
3283 3284

	/* verify parameters and allocate data structures */
3285
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3298
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3299 3300 3301
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3302
			BUG_ON(start2 < end && start < end2);
3303 3304 3305 3306 3307 3308 3309 3310 3311
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3312 3313
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3314
	if (!vas || !vms)
3315
		goto err_free2;
3316 3317

	for (area = 0; area < nr_vms; area++) {
3318
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3319
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3320 3321 3322 3323
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3324
	spin_lock(&free_vmap_area_lock);
3325 3326 3327 3328 3329 3330

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3331 3332
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3333 3334 3335 3336 3337 3338

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3339 3340
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3341 3342

		/*
3343
		 * Fitting base has not been found.
3344
		 */
3345 3346
		if (va == NULL)
			goto overflow;
3347

3348
		/*
Q
Qiujun Huang 已提交
3349
		 * If required width exceeds current VA block, move
3350 3351 3352 3353 3354 3355 3356 3357
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3358
		/*
3359
		 * If this VA does not fit, move base downwards and recheck.
3360
		 */
3361
		if (base + start < va->va_start) {
3362 3363
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3375

3376 3377
		start = offsets[area];
		end = start + sizes[area];
3378
		va = pvm_find_va_enclose_addr(base + end);
3379
	}
3380

3381 3382
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3383
		int ret;
3384

3385 3386
		start = base + offsets[area];
		size = sizes[area];
3387

3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3407

3408
	spin_unlock(&free_vmap_area_lock);
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;

		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
				       sizes[area]);
	}

3419
	/* insert all vm's */
3420 3421 3422 3423 3424
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3425
				 pcpu_get_vm_areas);
3426 3427
	}
	spin_unlock(&vmap_area_lock);
3428 3429 3430 3431

	kfree(vas);
	return vms;

3432
recovery:
3433 3434 3435 3436 3437 3438
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3439
	while (area--) {
3440 3441 3442 3443 3444 3445
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
3446 3447 3448 3449
		vas[area] = NULL;
	}

overflow:
3450
	spin_unlock(&free_vmap_area_lock);
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3469 3470
err_free:
	for (area = 0; area < nr_vms; area++) {
3471 3472 3473
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3474
		kfree(vms[area]);
3475
	}
3476
err_free2:
3477 3478 3479
	kfree(vas);
	kfree(vms);
	return NULL;
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3519
#endif	/* CONFIG_SMP */
3520 3521 3522

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3523
	__acquires(&vmap_purge_lock)
3524
	__acquires(&vmap_area_lock)
3525
{
3526
	mutex_lock(&vmap_purge_lock);
3527
	spin_lock(&vmap_area_lock);
3528

3529
	return seq_list_start(&vmap_area_list, *pos);
3530 3531 3532 3533
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3534
	return seq_list_next(p, &vmap_area_list, pos);
3535 3536 3537
}

static void s_stop(struct seq_file *m, void *p)
3538
	__releases(&vmap_purge_lock)
3539
	__releases(&vmap_area_lock)
3540
{
3541
	mutex_unlock(&vmap_purge_lock);
3542
	spin_unlock(&vmap_area_lock);
3543 3544
}

E
Eric Dumazet 已提交
3545 3546
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3547
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3548 3549 3550 3551 3552
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3553 3554
		if (v->flags & VM_UNINITIALIZED)
			return;
3555 3556
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3557

E
Eric Dumazet 已提交
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3585 3586
static int s_show(struct seq_file *m, void *p)
{
3587
	struct vmap_area *va;
3588 3589
	struct vm_struct *v;

3590 3591
	va = list_entry(p, struct vmap_area, list);

3592
	/*
3593 3594
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3595
	 */
3596
	if (!va->vm) {
3597
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3598
			(void *)va->va_start, (void *)va->va_end,
3599
			va->va_end - va->va_start);
3600

3601
		return 0;
3602
	}
3603 3604

	v = va->vm;
3605

K
Kees Cook 已提交
3606
	seq_printf(m, "0x%pK-0x%pK %7ld",
3607 3608
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3609 3610
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3611

3612 3613 3614 3615
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3616
		seq_printf(m, " phys=%pa", &v->phys_addr);
3617 3618

	if (v->flags & VM_IOREMAP)
3619
		seq_puts(m, " ioremap");
3620 3621

	if (v->flags & VM_ALLOC)
3622
		seq_puts(m, " vmalloc");
3623 3624

	if (v->flags & VM_MAP)
3625
		seq_puts(m, " vmap");
3626 3627

	if (v->flags & VM_USERMAP)
3628
		seq_puts(m, " user");
3629

3630 3631 3632
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3633
	if (is_vmalloc_addr(v->pages))
3634
		seq_puts(m, " vpages");
3635

E
Eric Dumazet 已提交
3636
	show_numa_info(m, v);
3637
	seq_putc(m, '\n');
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3648 3649 3650
	return 0;
}

3651
static const struct seq_operations vmalloc_op = {
3652 3653 3654 3655 3656
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3657 3658 3659

static int __init proc_vmalloc_init(void)
{
3660
	if (IS_ENABLED(CONFIG_NUMA))
3661
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3662 3663
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3664
	else
3665
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3666 3667 3668
	return 0;
}
module_init(proc_vmalloc_init);
3669

3670
#endif