vmalloc.c 91.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37

38
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
39
#include <asm/tlbflush.h>
40
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48 49 50 51 52 53 54
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 56 57 58
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
59 60
}

N
Nick Piggin 已提交
61
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
62

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71 72 73
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
74
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
75 76 77 78 79 80 81
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
82 83
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
84 85 86 87 88 89
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

90
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
91 92 93 94
{
	pud_t *pud;
	unsigned long next;

95
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
96 97
	do {
		next = pud_addr_end(addr, end);
98 99
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
100 101 102 103 104 105
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

N
Nick Piggin 已提交
122
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
123 124 125 126 127 128 129 130 131 132
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
133
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
134 135 136 137
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
138
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
139 140 141
{
	pte_t *pte;

N
Nick Piggin 已提交
142 143 144 145 146
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
147
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
148 149 150
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
151 152 153 154 155
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
156 157
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
158
		(*nr)++;
L
Linus Torvalds 已提交
159 160 161 162
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
163 164
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
165 166 167 168 169 170 171 172 173
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
174
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
175 176 177 178 179
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

180
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
181
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
182 183 184 185
{
	pud_t *pud;
	unsigned long next;

186
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
187 188 189 190
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
191
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
192 193 194 195 196
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
214 215 216 217 218 219
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
220 221
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
222 223 224
{
	pgd_t *pgd;
	unsigned long next;
225
	unsigned long addr = start;
N
Nick Piggin 已提交
226 227
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
228 229 230 231 232

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
233
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
234
		if (err)
235
			return err;
L
Linus Torvalds 已提交
236
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
237 238

	return nr;
L
Linus Torvalds 已提交
239 240
}

241 242 243 244 245 246 247 248 249 250
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

251
int is_vmalloc_or_module_addr(const void *x)
252 253
{
	/*
254
	 * ARM, x86-64 and sparc64 put modules in a special place,
255 256 257 258 259 260 261 262 263 264 265
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

266
/*
267
 * Walk a vmap address to the struct page it maps.
268
 */
269
struct page *vmalloc_to_page(const void *vmalloc_addr)
270 271
{
	unsigned long addr = (unsigned long) vmalloc_addr;
272
	struct page *page = NULL;
273
	pgd_t *pgd = pgd_offset_k(addr);
274 275 276 277
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
278

279 280 281 282
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
283
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
284

285 286 287 288 289 290
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
291 292 293 294 295 296 297 298 299 300 301

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
302 303
		return NULL;
	pmd = pmd_offset(pud, addr);
304 305
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 307 308 309 310 311 312
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
313
	return page;
314
}
315
EXPORT_SYMBOL(vmalloc_to_page);
316 317

/*
318
 * Map a vmalloc()-space virtual address to the physical page frame number.
319
 */
320
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321
{
322
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323
}
324
EXPORT_SYMBOL(vmalloc_to_pfn);
325

N
Nick Piggin 已提交
326 327 328

/*** Global kva allocator ***/

329
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331

N
Nick Piggin 已提交
332 333

static DEFINE_SPINLOCK(vmap_area_lock);
334
static DEFINE_SPINLOCK(free_vmap_area_lock);
335 336
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
337
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
338
static struct rb_root vmap_area_root = RB_ROOT;
339
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

367 368 369 370 371 372 373
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

374 375 376 377 378 379 380 381 382 383 384 385 386 387
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
388

389 390 391 392 393 394 395 396 397 398 399
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

400 401
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
402 403 404 405

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
406

407 408 409 410 411 412 413
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
414
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
415
{
N
Nick Piggin 已提交
416 417 418 419 420 421 422 423
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
424
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
425 426 427 428 429 430 431 432
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
454

455 456 457 458 459 460 461
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
462

463 464 465 466 467 468 469 470 471 472 473
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
474 475
		else
			BUG();
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
512 513
	}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
534

535 536
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
537 538
}

539 540 541
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
542 543
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
544

545 546 547 548 549 550 551 552
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
646 647 648 649

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
static __always_inline void
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

748 749
			if (merged)
				unlink_va(va, root);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
			return;
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
823
			 * OK. We roll back and find the first right sub-tree,
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
921
	struct vmap_area *lva = NULL;
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
959 960 961 962 963 964 965 966 967 968 969 970 971
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
972 973 974 975 976 977 978 979 980 981 982 983 984
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
985 986 987 988 989
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1008
		if (lva)	/* type == NE_FIT_TYPE */
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1022
	unsigned long vstart, unsigned long vend)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1052 1053 1054 1055
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1056 1057
	return nva_start_addr;
}
1058

N
Nick Piggin 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1068
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1069
	unsigned long addr;
N
Nick Piggin 已提交
1070 1071
	int purged = 0;

N
Nick Piggin 已提交
1072
	BUG_ON(!size);
1073
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1074
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1075

1076 1077 1078
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1079
	might_sleep();
1080
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1081

1082
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1083 1084 1085
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1086 1087 1088 1089
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1090
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1091

N
Nick Piggin 已提交
1092
retry:
1093
	/*
1094 1095 1096 1097 1098 1099
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1100 1101 1102
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1103 1104
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1105
	 *
1106
	 * Set "pva" to NULL here, because of "retry" path.
1107
	 */
1108
	pva = NULL;
1109

1110 1111 1112 1113 1114 1115
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1116
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1117

1118
	spin_lock(&free_vmap_area_lock);
1119 1120 1121

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1122

1123
	/*
1124 1125
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1126
	 */
1127
	addr = __alloc_vmap_area(size, align, vstart, vend);
1128 1129
	spin_unlock(&free_vmap_area_lock);

1130
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1131
		goto overflow;
N
Nick Piggin 已提交
1132 1133 1134

	va->va_start = addr;
	va->va_end = addr + size;
1135
	va->vm = NULL;
1136

1137 1138
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1139 1140
	spin_unlock(&vmap_area_lock);

1141
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1142 1143 1144
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
1145
	return va;
N
Nick Piggin 已提交
1146 1147 1148 1149 1150 1151 1152

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1163
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1164 1165
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1166 1167

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1168
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1169 1170
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

1183 1184 1185 1186
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
N
Nick Piggin 已提交
1187
{
1188
	/*
1189
	 * Remove from the busy tree/list.
1190
	 */
1191
	spin_lock(&vmap_area_lock);
1192
	unlink_va(va, &vmap_area_root);
1193
	spin_unlock(&vmap_area_lock);
1194

1195
	/*
1196
	 * Insert/Merge it back to the free tree/list.
1197
	 */
1198
	spin_lock(&free_vmap_area_lock);
1199 1200
	merge_or_add_vmap_area(va,
		&free_vmap_area_root, &free_vmap_area_list);
1201
	spin_unlock(&free_vmap_area_lock);
N
Nick Piggin 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1237
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1238

1239 1240 1241 1242 1243
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1244
static DEFINE_MUTEX(vmap_purge_lock);
1245

1246 1247 1248
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1249 1250 1251 1252 1253 1254
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1255
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1256 1257
}

N
Nick Piggin 已提交
1258 1259 1260
/*
 * Purges all lazily-freed vmap areas.
 */
1261
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1262
{
1263
	unsigned long resched_threshold;
1264
	struct llist_node *valist;
N
Nick Piggin 已提交
1265
	struct vmap_area *va;
1266
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1267

1268
	lockdep_assert_held(&vmap_purge_lock);
1269

1270
	valist = llist_del_all(&vmap_purge_list);
1271 1272 1273
	if (unlikely(valist == NULL))
		return false;

1274 1275 1276 1277 1278 1279
	/*
	 * First make sure the mappings are removed from all page-tables
	 * before they are freed.
	 */
	vmalloc_sync_all();

1280 1281 1282 1283
	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1284
	llist_for_each_entry(va, valist, purge_list) {
1285 1286 1287 1288
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1289 1290
	}

1291
	flush_tlb_kernel_range(start, end);
1292
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1293

1294
	spin_lock(&free_vmap_area_lock);
1295
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1296
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1297

1298 1299 1300 1301 1302 1303 1304 1305
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
		merge_or_add_vmap_area(va,
			&free_vmap_area_root, &free_vmap_area_list);

1306
		atomic_long_sub(nr, &vmap_lazy_nr);
1307

1308
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1309
			cond_resched_lock(&free_vmap_area_lock);
1310
	}
1311
	spin_unlock(&free_vmap_area_lock);
1312
	return true;
N
Nick Piggin 已提交
1313 1314
}

N
Nick Piggin 已提交
1315 1316 1317 1318 1319 1320
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1321
	if (mutex_trylock(&vmap_purge_lock)) {
1322
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1323
		mutex_unlock(&vmap_purge_lock);
1324
	}
N
Nick Piggin 已提交
1325 1326
}

N
Nick Piggin 已提交
1327 1328 1329 1330 1331
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1332
	mutex_lock(&vmap_purge_lock);
1333 1334
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1335
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1336 1337 1338
}

/*
1339 1340 1341
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1342
 */
1343
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1344
{
1345
	unsigned long nr_lazy;
1346

1347 1348 1349 1350
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1351 1352
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1353 1354 1355 1356 1357

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1358
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1359 1360
}

1361 1362 1363 1364 1365 1366
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1367
	unmap_vmap_area(va);
1368 1369 1370
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range(va->va_start, va->va_end);

1371
	free_vmap_area_noflush(va);
1372 1373
}

N
Nick Piggin 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1408 1409 1410 1411
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1424
	unsigned long dirty_min, dirty_max; /*< dirty range */
1425 1426
	struct list_head free_list;
	struct rcu_head rcu_head;
1427
	struct list_head purge;
N
Nick Piggin 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1470
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1471 1472
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1473 1474 1475 1476 1477 1478
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1479
	void *vaddr;
N
Nick Piggin 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1491
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1492
		kfree(vb);
J
Julia Lawall 已提交
1493
		return ERR_CAST(va);
N
Nick Piggin 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1503
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1504 1505
	spin_lock_init(&vb->lock);
	vb->va = va;
1506 1507 1508
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1509
	vb->dirty = 0;
1510 1511
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1523
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1524
	spin_unlock(&vbq->lock);
1525
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1526

1527
	return vaddr;
N
Nick Piggin 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1541
	free_vmap_area_noflush(vb->va);
1542
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1543 1544
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1562 1563
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1588 1589 1590 1591
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1592
	void *vaddr = NULL;
N
Nick Piggin 已提交
1593 1594
	unsigned int order;

1595
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1596
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1597 1598 1599 1600 1601 1602 1603 1604
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1605 1606 1607 1608 1609
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1610
		unsigned long pages_off;
N
Nick Piggin 已提交
1611 1612

		spin_lock(&vb->lock);
1613 1614 1615 1616
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1617

1618 1619
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1620 1621 1622 1623 1624 1625
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1626

1627 1628
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1629
	}
1630

1631
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1632 1633
	rcu_read_unlock();

1634 1635 1636
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1637

1638
	return vaddr;
N
Nick Piggin 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1648
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1649
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1650 1651 1652

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
1653 1654 1655
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1656
	offset >>= PAGE_SHIFT;
N
Nick Piggin 已提交
1657 1658 1659 1660 1661 1662 1663

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1664 1665
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

1666 1667 1668 1669
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range((unsigned long)addr,
					(unsigned long)addr + size);

N
Nick Piggin 已提交
1670
	spin_lock(&vb->lock);
1671 1672 1673 1674

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1675

N
Nick Piggin 已提交
1676 1677
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1678
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1679 1680 1681 1682 1683 1684
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1685
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1686 1687 1688
{
	int cpu;

1689 1690 1691
	if (unlikely(!vmap_initialized))
		return;

1692 1693
	might_sleep();

N
Nick Piggin 已提交
1694 1695 1696 1697 1698 1699 1700
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1701 1702
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1703
				unsigned long s, e;
1704

1705 1706
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1707

1708 1709
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1710

1711
				flush = 1;
N
Nick Piggin 已提交
1712 1713 1714 1715 1716 1717
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1718
	mutex_lock(&vmap_purge_lock);
1719 1720 1721
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1722
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1723
}
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1754
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1755
	unsigned long addr = (unsigned long)mem;
1756
	struct vmap_area *va;
N
Nick Piggin 已提交
1757

1758
	might_sleep();
N
Nick Piggin 已提交
1759 1760 1761
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1762
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1763

1764
	if (likely(count <= VMAP_MAX_ALLOC)) {
1765
		debug_check_no_locks_freed(mem, size);
N
Nick Piggin 已提交
1766
		vb_free(mem, size);
1767 1768 1769 1770 1771
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1772 1773
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1774
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1784
 *
1785 1786 1787 1788 1789 1790
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1791
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1792 1793 1794
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1795
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1822
static struct vm_struct *vmlist __initdata;
1823

N
Nicolas Pitre 已提交
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1850 1851 1852
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1853
 * @align: requested alignment
1854 1855 1856 1857 1858 1859 1860 1861
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1862
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1863 1864
{
	static size_t vm_init_off __initdata;
1865 1866 1867 1868
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1869

1870
	vm->addr = (void *)addr;
1871

N
Nicolas Pitre 已提交
1872
	vm_area_add_early(vm);
1873 1874
}

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1916 1917
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1918 1919
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1920 1921
	int i;

1922 1923 1924 1925 1926
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1927 1928
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1929
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1930 1931 1932 1933

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1934 1935 1936
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1937
	}
1938

I
Ivan Kokshaysky 已提交
1939 1940
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1941 1942 1943 1944
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
1945 1946
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1947
		va->vm = tmp;
1948
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1949
	}
1950

1951 1952 1953 1954
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
1955
	vmap_initialized = true;
N
Nick Piggin 已提交
1956 1957
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
2001
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
2002 2003 2004 2005 2006 2007 2008 2009 2010

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2011 2012 2013
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2014 2015

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
2016 2017 2018
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
2019
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
2020

2021
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
2022 2023
{
	unsigned long addr = (unsigned long)area->addr;
2024
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
2025 2026
	int err;

2027
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
2028

2029
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
2030 2031 2032
}
EXPORT_SYMBOL_GPL(map_vm_area);

2033 2034
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2035 2036 2037 2038 2039
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2040
	va->vm = vm;
2041 2042 2043 2044 2045 2046 2047
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2048
	spin_unlock(&vmap_area_lock);
2049
}
2050

2051
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2052
{
2053
	/*
2054
	 * Before removing VM_UNINITIALIZED,
2055 2056 2057 2058
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2059
	vm->flags &= ~VM_UNINITIALIZED;
2060 2061
}

N
Nick Piggin 已提交
2062
static struct vm_struct *__get_vm_area_node(unsigned long size,
2063
		unsigned long align, unsigned long flags, unsigned long start,
2064
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2065
{
2066
	struct vmap_area *va;
N
Nick Piggin 已提交
2067
	struct vm_struct *area;
L
Linus Torvalds 已提交
2068

2069
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2070
	size = PAGE_ALIGN(size);
2071 2072
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2073

2074 2075 2076 2077
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2078
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2079 2080 2081
	if (unlikely(!area))
		return NULL;

2082 2083
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2084

N
Nick Piggin 已提交
2085 2086 2087 2088
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2089 2090
	}

2091
	setup_vmalloc_vm(area, va, flags, caller);
2092

L
Linus Torvalds 已提交
2093 2094 2095
	return area;
}

C
Christoph Lameter 已提交
2096 2097 2098
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
2099 2100
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
2101
}
2102
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
2103

2104 2105
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2106
				       const void *caller)
2107
{
D
David Rientjes 已提交
2108 2109
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2110 2111
}

L
Linus Torvalds 已提交
2112
/**
2113 2114 2115
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2116
 *
2117 2118 2119
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2120 2121
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2122 2123 2124
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2125
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2126 2127
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2128 2129 2130
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2131
				const void *caller)
2132
{
2133
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2134
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2135 2136
}

2137
/**
2138 2139
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2140
 *
2141 2142 2143
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2144 2145
 *
 * Return: pointer to the found area or %NULL on faulure
2146 2147
 */
struct vm_struct *find_vm_area(const void *addr)
2148
{
N
Nick Piggin 已提交
2149
	struct vmap_area *va;
2150

N
Nick Piggin 已提交
2151
	va = find_vmap_area((unsigned long)addr);
2152 2153
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2154

2155
	return va->vm;
L
Linus Torvalds 已提交
2156 2157
}

2158
/**
2159 2160
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2161
 *
2162 2163 2164
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2165 2166
 *
 * Return: pointer to the found area or %NULL on faulure
2167
 */
2168
struct vm_struct *remove_vm_area(const void *addr)
2169
{
N
Nick Piggin 已提交
2170 2171
	struct vmap_area *va;

2172 2173
	might_sleep();

2174 2175
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2176
	if (va && va->vm) {
2177
		struct vm_struct *vm = va->vm;
2178

2179 2180 2181
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2182
		kasan_free_shadow(vm);
2183 2184
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2185 2186
		return vm;
	}
2187 2188

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2189
	return NULL;
2190 2191
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2207
	int flush_dmap = 0;
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2231 2232
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2233
			start = min(addr, start);
2234
			end = max(addr + PAGE_SIZE, end);
2235
			flush_dmap = 1;
2236 2237 2238 2239 2240 2241 2242 2243 2244
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2245
	_vm_unmap_aliases(start, end, flush_dmap);
2246 2247 2248
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2249
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2250 2251 2252 2253 2254 2255
{
	struct vm_struct *area;

	if (!addr)
		return;

2256
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2257
			addr))
L
Linus Torvalds 已提交
2258 2259
		return;

2260
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2261
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2262
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2263 2264 2265 2266
				addr);
		return;
	}

2267 2268
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2269

2270 2271
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2272 2273 2274 2275
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2276 2277 2278
			struct page *page = area->pages[i];

			BUG_ON(!page);
2279
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2280
		}
2281
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2282

D
David Rientjes 已提交
2283
		kvfree(area->pages);
L
Linus Torvalds 已提交
2284 2285 2286 2287 2288
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2305 2306
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2307
 *
2308 2309
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2322 2323 2324 2325 2326 2327 2328 2329
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2330
/**
2331 2332
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2333
 *
2334 2335 2336
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2337
 *
2338 2339 2340
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2341
 *
2342
 * May sleep if called *not* from interrupt context.
2343
 *
2344
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2345
 */
2346
void vfree(const void *addr)
L
Linus Torvalds 已提交
2347
{
2348
	BUG_ON(in_nmi());
2349 2350 2351

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2352 2353
	might_sleep_if(!in_interrupt());

2354 2355
	if (!addr)
		return;
2356 2357

	__vfree(addr);
L
Linus Torvalds 已提交
2358 2359 2360 2361
}
EXPORT_SYMBOL(vfree);

/**
2362 2363
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2364
 *
2365 2366
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2367
 *
2368
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2369
 */
2370
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2371 2372
{
	BUG_ON(in_interrupt());
2373
	might_sleep();
2374 2375
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2376 2377 2378 2379
}
EXPORT_SYMBOL(vunmap);

/**
2380 2381 2382 2383 2384 2385 2386 2387
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2388 2389
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2390 2391
 */
void *vmap(struct page **pages, unsigned int count,
2392
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2393 2394
{
	struct vm_struct *area;
2395
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2396

2397 2398
	might_sleep();

2399
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2400 2401
		return NULL;

2402 2403
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2404 2405
	if (!area)
		return NULL;
2406

2407
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
2408 2409 2410 2411 2412 2413 2414 2415
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2416 2417 2418
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2419
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2420
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2421 2422 2423
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2424
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2425 2426 2427 2428
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2429

2430
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2431 2432 2433
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2434
	if (array_size > PAGE_SIZE) {
2435
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2436
				PAGE_KERNEL, node, area->caller);
2437
	} else {
2438
		pages = kmalloc_node(array_size, nested_gfp, node);
2439
	}
2440 2441

	if (!pages) {
L
Linus Torvalds 已提交
2442 2443 2444 2445 2446
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2447 2448 2449
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2450
	for (i = 0; i < area->nr_pages; i++) {
2451 2452
		struct page *page;

J
Jianguo Wu 已提交
2453
		if (node == NUMA_NO_NODE)
2454
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2455
		else
2456
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2457 2458

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2459 2460
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2461
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2462 2463
			goto fail;
		}
2464
		area->pages[i] = page;
2465
		if (gfpflags_allow_blocking(gfp_mask))
2466
			cond_resched();
L
Linus Torvalds 已提交
2467
	}
2468
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2469

2470
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
2471 2472 2473 2474
		goto fail;
	return area->addr;

fail:
2475
	warn_alloc(gfp_mask, NULL,
2476
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2477
			  (area->nr_pages*PAGE_SIZE), area->size);
2478
	__vfree(area->addr);
L
Linus Torvalds 已提交
2479 2480 2481 2482
	return NULL;
}

/**
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2497 2498
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2499
 */
2500 2501
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2502 2503
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2504 2505
{
	struct vm_struct *area;
2506 2507
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2508 2509

	size = PAGE_ALIGN(size);
2510
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2511
		goto fail;
L
Linus Torvalds 已提交
2512

2513 2514
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2515
	if (!area)
2516
		goto fail;
L
Linus Torvalds 已提交
2517

2518
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2519
	if (!addr)
2520
		return NULL;
2521

2522
	/*
2523 2524
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2525
	 * Now, it is fully initialized, so remove this flag here.
2526
	 */
2527
	clear_vm_uninitialized_flag(area);
2528

2529
	kmemleak_vmalloc(area, size, gfp_mask);
2530 2531

	return addr;
2532 2533

fail:
2534
	warn_alloc(gfp_mask, NULL,
2535
			  "vmalloc: allocation failure: %lu bytes", real_size);
2536
	return NULL;
L
Linus Torvalds 已提交
2537 2538
}

2539 2540 2541 2542 2543 2544 2545 2546 2547
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2548
/**
2549 2550 2551 2552 2553 2554 2555
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2556
 *
2557 2558 2559
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2560
 *
2561 2562
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2563
 *
2564 2565
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2566 2567
 *
 * Return: pointer to the allocated memory or %NULL on error
2568
 */
2569
static void *__vmalloc_node(unsigned long size, unsigned long align,
2570
			    gfp_t gfp_mask, pgprot_t prot,
2571
			    int node, const void *caller)
2572 2573
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2574
				gfp_mask, prot, 0, node, caller);
2575 2576
}

C
Christoph Lameter 已提交
2577 2578
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2579
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2580
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2581
}
L
Linus Torvalds 已提交
2582 2583
EXPORT_SYMBOL(__vmalloc);

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2598
/**
2599 2600 2601 2602 2603
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2604
 *
2605 2606
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2607 2608
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2609 2610 2611
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2612
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2613
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2614 2615 2616
}
EXPORT_SYMBOL(vmalloc);

2617
/**
2618 2619 2620 2621 2622 2623 2624 2625 2626
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2627 2628
 *
 * Return: pointer to the allocated memory or %NULL on error
2629 2630 2631
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2632
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2633
				GFP_KERNEL | __GFP_ZERO);
2634 2635 2636
}
EXPORT_SYMBOL(vzalloc);

2637
/**
2638 2639
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2640
 *
2641 2642
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2643 2644
 *
 * Return: pointer to the allocated memory or %NULL on error
2645 2646 2647
 */
void *vmalloc_user(unsigned long size)
{
2648 2649 2650 2651
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2652 2653 2654
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2655
/**
2656 2657 2658
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2659
 *
2660 2661
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2662
 *
2663 2664
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2665 2666
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2667 2668 2669
 */
void *vmalloc_node(unsigned long size, int node)
{
2670
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2671
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2672 2673 2674
}
EXPORT_SYMBOL(vmalloc_node);

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2686 2687
 *
 * Return: pointer to the allocated memory or %NULL on error
2688 2689 2690 2691
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2692
			 GFP_KERNEL | __GFP_ZERO);
2693 2694 2695
}
EXPORT_SYMBOL(vzalloc_node);

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
/**
 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
 * @size: allocation size
 * @node: numa node
 * @flags: flags for the page level allocator
 *
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
 *
 * Return: pointer to the allocated memory or %NULL on error
 */
void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
{
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    flags | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, node,
				    __builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_user_node_flags);

L
Linus Torvalds 已提交
2716
/**
2717 2718
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2719
 *
2720 2721 2722
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2723
 *
2724 2725
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2726 2727
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2728 2729 2730
 */
void *vmalloc_exec(unsigned long size)
{
2731 2732 2733
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2734 2735
}

2736
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2737
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2738
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2739
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2740
#else
2741 2742 2743 2744 2745
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2746 2747
#endif

L
Linus Torvalds 已提交
2748
/**
2749 2750
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2751
 *
2752 2753
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2754 2755
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2756 2757 2758
 */
void *vmalloc_32(unsigned long size)
{
2759
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2760
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2761 2762 2763
}
EXPORT_SYMBOL(vmalloc_32);

2764
/**
2765
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2766
 * @size:	     allocation size
2767 2768 2769
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2770 2771
 *
 * Return: pointer to the allocated memory or %NULL on error
2772 2773 2774
 */
void *vmalloc_32_user(unsigned long size)
{
2775 2776 2777 2778
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2779 2780 2781
}
EXPORT_SYMBOL(vmalloc_32_user);

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2795
		offset = offset_in_page(addr);
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2812
			void *map = kmap_atomic(p);
2813
			memcpy(buf, map + offset, length);
2814
			kunmap_atomic(map);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2834
		offset = offset_in_page(addr);
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2851
			void *map = kmap_atomic(p);
2852
			memcpy(map + offset, buf, length);
2853
			kunmap_atomic(map);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2881
 * any information, as /dev/kmem.
2882 2883 2884 2885
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2886
 */
L
Linus Torvalds 已提交
2887 2888
long vread(char *buf, char *addr, unsigned long count)
{
2889 2890
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2891
	char *vaddr, *buf_start = buf;
2892
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2893 2894 2895 2896 2897 2898
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2899 2900 2901 2902 2903
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2904
		if (!va->vm)
2905 2906 2907 2908
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2909
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2919
		n = vaddr + get_vm_area_size(vm) - addr;
2920 2921
		if (n > count)
			n = count;
2922
		if (!(vm->flags & VM_IOREMAP))
2923 2924 2925 2926 2927 2928
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2929 2930
	}
finished:
2931
	spin_unlock(&vmap_area_lock);
2932 2933 2934 2935 2936 2937 2938 2939

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2940 2941
}

2942
/**
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2960
 * any information, as /dev/kmem.
2961 2962 2963 2964
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2965
 */
L
Linus Torvalds 已提交
2966 2967
long vwrite(char *buf, char *addr, unsigned long count)
{
2968 2969
	struct vmap_area *va;
	struct vm_struct *vm;
2970 2971 2972
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2973 2974 2975 2976

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2977
	buflen = count;
L
Linus Torvalds 已提交
2978

2979 2980 2981 2982 2983
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2984
		if (!va->vm)
2985 2986 2987 2988
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2989
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2990 2991 2992 2993 2994 2995 2996 2997
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2998
		n = vaddr + get_vm_area_size(vm) - addr;
2999 3000
		if (n > count)
			n = count;
3001
		if (!(vm->flags & VM_IOREMAP)) {
3002 3003 3004 3005 3006 3007
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
3008 3009
	}
finished:
3010
	spin_unlock(&vmap_area_lock);
3011 3012 3013
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
3014
}
3015 3016

/**
3017 3018 3019 3020 3021
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
 * @size:		size of map area
3022
 *
3023
 * Returns:	0 for success, -Exxx on failure
3024
 *
3025 3026 3027 3028
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
3029
 *
3030
 * Similar to remap_pfn_range() (see mm/memory.c)
3031
 */
3032 3033
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
3034 3035 3036
{
	struct vm_struct *area;

3037 3038 3039
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3040 3041
		return -EINVAL;

3042
	area = find_vm_area(kaddr);
3043
	if (!area)
N
Nick Piggin 已提交
3044
		return -EINVAL;
3045

3046
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3047
		return -EINVAL;
3048

3049
	if (kaddr + size > area->addr + get_vm_area_size(area))
N
Nick Piggin 已提交
3050
		return -EINVAL;
3051 3052

	do {
3053
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3054 3055
		int ret;

3056 3057 3058 3059 3060
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3061 3062 3063
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3064

3065
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3066

N
Nick Piggin 已提交
3067
	return 0;
3068
}
3069 3070 3071
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3072 3073 3074 3075
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3076
 *
3077
 * Returns:	0 for success, -Exxx on failure
3078
 *
3079 3080 3081
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3082
 *
3083
 * Similar to remap_pfn_range() (see mm/memory.c)
3084 3085 3086 3087 3088 3089 3090 3091
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
3092 3093
EXPORT_SYMBOL(remap_vmalloc_range);

3094 3095 3096
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
3097 3098 3099
 *
 * The purpose of this function is to make sure the vmalloc area
 * mappings are identical in all page-tables in the system.
3100
 */
3101
void __weak vmalloc_sync_all(void)
3102 3103
{
}
3104 3105


3106
static int f(pte_t *pte, unsigned long addr, void *data)
3107
{
3108 3109 3110 3111 3112 3113
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3114 3115 3116 3117
	return 0;
}

/**
3118 3119 3120
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3121
 *
3122
 * Returns:	NULL on failure, vm_struct on success
3123
 *
3124 3125 3126
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3127
 *
3128 3129
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3130
 */
3131
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3132 3133 3134
{
	struct vm_struct *area;

3135 3136
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3137 3138 3139 3140 3141 3142 3143 3144
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3145
				size, f, ptes ? &ptes : NULL)) {
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3162

3163
#ifdef CONFIG_SMP
3164 3165
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3166
	return rb_entry_safe(n, struct vmap_area, rb_node);
3167 3168 3169
}

/**
3170 3171
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3172
 *
3173 3174 3175 3176
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3177
 */
3178 3179
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3180
{
3181 3182 3183 3184 3185
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3186 3187

	while (n) {
3188 3189 3190 3191 3192 3193
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3194
			n = n->rb_right;
3195 3196 3197
		} else {
			n = n->rb_left;
		}
3198 3199
	}

3200
	return va;
3201 3202 3203
}

/**
3204 3205 3206 3207 3208
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3209
 *
3210
 * Returns: determined end address within vmap_area
3211
 */
3212 3213
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3214
{
3215
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3216 3217
	unsigned long addr;

3218 3219 3220 3221 3222 3223 3224
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3225 3226
	}

3227
	return 0;
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3242 3243 3244 3245
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3246
 *
3247 3248 3249 3250 3251 3252
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3253 3254 3255
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3256
				     size_t align)
3257 3258 3259
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3260
	struct vmap_area **vas, *va;
3261 3262
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3263
	unsigned long base, start, size, end, last_end;
3264
	bool purged = false;
3265
	enum fit_type type;
3266 3267

	/* verify parameters and allocate data structures */
3268
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3281
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3282 3283 3284
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3285
			BUG_ON(start2 < end && start < end2);
3286 3287 3288 3289 3290 3291 3292 3293 3294
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3295 3296
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3297
	if (!vas || !vms)
3298
		goto err_free2;
3299 3300

	for (area = 0; area < nr_vms; area++) {
3301
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3302
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3303 3304 3305 3306
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3307
	spin_lock(&free_vmap_area_lock);
3308 3309 3310 3311 3312 3313

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3314 3315
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3316 3317 3318 3319 3320 3321

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3322 3323
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3324 3325

		/*
3326
		 * Fitting base has not been found.
3327
		 */
3328 3329
		if (va == NULL)
			goto overflow;
3330

3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
		/*
		 * If required width exeeds current VA block, move
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3341
		/*
3342
		 * If this VA does not fit, move base downwards and recheck.
3343
		 */
3344
		if (base + start < va->va_start) {
3345 3346
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3358

3359 3360
		start = offsets[area];
		end = start + sizes[area];
3361
		va = pvm_find_va_enclose_addr(base + end);
3362
	}
3363

3364 3365
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3366
		int ret;
3367

3368 3369
		start = base + offsets[area];
		size = sizes[area];
3370

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3390

3391
	spin_unlock(&free_vmap_area_lock);
3392 3393

	/* insert all vm's */
3394 3395 3396 3397 3398
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3399
				 pcpu_get_vm_areas);
3400 3401
	}
	spin_unlock(&vmap_area_lock);
3402 3403 3404 3405

	kfree(vas);
	return vms;

3406
recovery:
3407 3408 3409 3410 3411 3412
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3413
	while (area--) {
3414 3415
		merge_or_add_vmap_area(vas[area],
			&free_vmap_area_root, &free_vmap_area_list);
3416 3417 3418 3419
		vas[area] = NULL;
	}

overflow:
3420
	spin_unlock(&free_vmap_area_lock);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3439 3440
err_free:
	for (area = 0; area < nr_vms; area++) {
3441 3442 3443
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3444
		kfree(vms[area]);
3445
	}
3446
err_free2:
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3467
#endif	/* CONFIG_SMP */
3468 3469 3470

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3471
	__acquires(&vmap_purge_lock)
3472
	__acquires(&vmap_area_lock)
3473
{
3474
	mutex_lock(&vmap_purge_lock);
3475
	spin_lock(&vmap_area_lock);
3476

3477
	return seq_list_start(&vmap_area_list, *pos);
3478 3479 3480 3481
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3482
	return seq_list_next(p, &vmap_area_list, pos);
3483 3484 3485
}

static void s_stop(struct seq_file *m, void *p)
3486
	__releases(&vmap_purge_lock)
3487
	__releases(&vmap_area_lock)
3488
{
3489
	mutex_unlock(&vmap_purge_lock);
3490
	spin_unlock(&vmap_area_lock);
3491 3492
}

E
Eric Dumazet 已提交
3493 3494
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3495
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3496 3497 3498 3499 3500
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3501 3502
		if (v->flags & VM_UNINITIALIZED)
			return;
3503 3504
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3505

E
Eric Dumazet 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3533 3534
static int s_show(struct seq_file *m, void *p)
{
3535
	struct vmap_area *va;
3536 3537
	struct vm_struct *v;

3538 3539
	va = list_entry(p, struct vmap_area, list);

3540
	/*
3541 3542
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3543
	 */
3544
	if (!va->vm) {
3545
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3546
			(void *)va->va_start, (void *)va->va_end,
3547
			va->va_end - va->va_start);
3548

3549
		return 0;
3550
	}
3551 3552

	v = va->vm;
3553

K
Kees Cook 已提交
3554
	seq_printf(m, "0x%pK-0x%pK %7ld",
3555 3556
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3557 3558
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3559

3560 3561 3562 3563
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3564
		seq_printf(m, " phys=%pa", &v->phys_addr);
3565 3566

	if (v->flags & VM_IOREMAP)
3567
		seq_puts(m, " ioremap");
3568 3569

	if (v->flags & VM_ALLOC)
3570
		seq_puts(m, " vmalloc");
3571 3572

	if (v->flags & VM_MAP)
3573
		seq_puts(m, " vmap");
3574 3575

	if (v->flags & VM_USERMAP)
3576
		seq_puts(m, " user");
3577

3578 3579 3580
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3581
	if (is_vmalloc_addr(v->pages))
3582
		seq_puts(m, " vpages");
3583

E
Eric Dumazet 已提交
3584
	show_numa_info(m, v);
3585
	seq_putc(m, '\n');
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3596 3597 3598
	return 0;
}

3599
static const struct seq_operations vmalloc_op = {
3600 3601 3602 3603 3604
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3605 3606 3607

static int __init proc_vmalloc_init(void)
{
3608
	if (IS_ENABLED(CONFIG_NUMA))
3609
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3610 3611
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3612
	else
3613
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3614 3615 3616
	return 0;
}
module_init(proc_vmalloc_init);
3617

3618
#endif