vmalloc.c 89.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37

38
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
39
#include <asm/tlbflush.h>
40
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48 49 50 51 52 53 54
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 56 57 58
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
59 60
}

N
Nick Piggin 已提交
61
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
62

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71 72 73
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
74
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
75 76 77 78 79 80 81
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
82 83
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
84 85 86 87 88 89
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

90
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
91 92 93 94
{
	pud_t *pud;
	unsigned long next;

95
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
96 97
	do {
		next = pud_addr_end(addr, end);
98 99
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
100 101 102 103 104 105
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

N
Nick Piggin 已提交
122
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
123 124 125 126 127 128 129 130 131 132
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
133
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
134 135 136 137
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
138
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
139 140 141
{
	pte_t *pte;

N
Nick Piggin 已提交
142 143 144 145 146
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
147
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
148 149 150
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
151 152 153 154 155
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
156 157
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
158
		(*nr)++;
L
Linus Torvalds 已提交
159 160 161 162
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
163 164
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
165 166 167 168 169 170 171 172 173
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
174
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
175 176 177 178 179
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

180
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
181
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
182 183 184 185
{
	pud_t *pud;
	unsigned long next;

186
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
187 188 189 190
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
191
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
192 193 194 195 196
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
214 215 216 217 218 219
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
220 221
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
222 223 224
{
	pgd_t *pgd;
	unsigned long next;
225
	unsigned long addr = start;
N
Nick Piggin 已提交
226 227
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
228 229 230 231 232

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
233
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
234
		if (err)
235
			return err;
L
Linus Torvalds 已提交
236
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
237 238

	return nr;
L
Linus Torvalds 已提交
239 240
}

241 242 243 244 245 246 247 248 249 250
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

251
int is_vmalloc_or_module_addr(const void *x)
252 253
{
	/*
254
	 * ARM, x86-64 and sparc64 put modules in a special place,
255 256 257 258 259 260 261 262 263 264 265
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

266
/*
267
 * Walk a vmap address to the struct page it maps.
268
 */
269
struct page *vmalloc_to_page(const void *vmalloc_addr)
270 271
{
	unsigned long addr = (unsigned long) vmalloc_addr;
272
	struct page *page = NULL;
273
	pgd_t *pgd = pgd_offset_k(addr);
274 275 276 277
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
278

279 280 281 282
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
283
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
284

285 286 287 288 289 290
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
291 292 293 294 295 296 297 298 299 300 301

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
302 303
		return NULL;
	pmd = pmd_offset(pud, addr);
304 305
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 307 308 309 310 311 312
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
313
	return page;
314
}
315
EXPORT_SYMBOL(vmalloc_to_page);
316 317

/*
318
 * Map a vmalloc()-space virtual address to the physical page frame number.
319
 */
320
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321
{
322
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323
}
324
EXPORT_SYMBOL(vmalloc_to_pfn);
325

N
Nick Piggin 已提交
326 327 328

/*** Global kva allocator ***/

329
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331

N
Nick Piggin 已提交
332 333 334
#define VM_VM_AREA	0x04

static DEFINE_SPINLOCK(vmap_area_lock);
335 336
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
337
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
338
static struct rb_root vmap_area_root = RB_ROOT;
339
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

367 368 369 370 371 372 373
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

374 375 376 377 378 379 380 381 382 383 384 385 386 387
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size,
	compute_subtree_max_size)

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
407

408 409 410 411 412 413 414
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
415
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
416
{
N
Nick Piggin 已提交
417 418 419 420 421 422 423 424
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
425
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
426 427 428 429 430 431 432 433
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
455

456 457 458 459 460 461 462
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
463

464 465 466 467 468 469 470 471 472 473 474
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
475 476
		else
			BUG();
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
513 514
	}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
535

536 537
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
538 539
}

540 541 542
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
543 544
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
545

546 547 548 549 550 551 552 553
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
554 555
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
647 648 649 650

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
static __always_inline void
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

749 750
			if (merged)
				unlink_va(va, root);
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
			return;
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
824
			 * OK. We roll back and find the first right sub-tree,
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
922
	struct vmap_area *lva = NULL;
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

996
		if (lva)	/* type == NE_FIT_TYPE */
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1010
	unsigned long vstart, unsigned long vend)
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1040 1041 1042 1043
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1044 1045
	return nva_start_addr;
}
1046

N
Nick Piggin 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1056
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1057
	unsigned long addr;
N
Nick Piggin 已提交
1058 1059
	int purged = 0;

N
Nick Piggin 已提交
1060
	BUG_ON(!size);
1061
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1062
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1063

1064 1065 1066
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1067
	might_sleep();
1068

1069
	va = kmem_cache_alloc_node(vmap_area_cachep,
N
Nick Piggin 已提交
1070 1071 1072 1073
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1074 1075 1076 1077 1078 1079
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);

N
Nick Piggin 已提交
1080
retry:
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	/*
	 * Preload this CPU with one extra vmap_area object to ensure
	 * that we have it available when fit type of free area is
	 * NE_FIT_TYPE.
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
	 * low memory condition and high memory pressure.
	 *
	 * Even if it fails we do not really care about that. Just proceed
	 * as it is. "overflow" path will refill the cache we allocate from.
	 */
	preempt_disable();
	if (!__this_cpu_read(ne_fit_preload_node)) {
		preempt_enable();
		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
		preempt_disable();

		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
			if (pva)
				kmem_cache_free(vmap_area_cachep, pva);
		}
	}

N
Nick Piggin 已提交
1105
	spin_lock(&vmap_area_lock);
1106
	preempt_enable();
N
Nick Piggin 已提交
1107

1108
	/*
1109 1110
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1111
	 */
1112
	addr = __alloc_vmap_area(size, align, vstart, vend);
1113
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1114
		goto overflow;
N
Nick Piggin 已提交
1115 1116 1117 1118

	va->va_start = addr;
	va->va_end = addr + size;
	va->flags = 0;
1119 1120
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);

N
Nick Piggin 已提交
1121 1122
	spin_unlock(&vmap_area_lock);

1123
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1124 1125 1126
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
1127
	return va;
N
Nick Piggin 已提交
1128 1129 1130 1131 1132 1133 1134 1135

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1146
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1147 1148
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1149 1150

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1151
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1152 1153
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1166 1167
static void __free_vmap_area(struct vmap_area *va)
{
1168
	/*
1169
	 * Remove from the busy tree/list.
1170
	 */
1171
	unlink_va(va, &vmap_area_root);
1172

1173 1174 1175 1176 1177
	/*
	 * Merge VA with its neighbors, otherwise just add it.
	 */
	merge_or_add_vmap_area(va,
		&free_vmap_area_root, &free_vmap_area_list);
N
Nick Piggin 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1223
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1224

1225 1226 1227 1228 1229
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1230
static DEFINE_MUTEX(vmap_purge_lock);
1231

1232 1233 1234
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1235 1236 1237 1238 1239 1240
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1241
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1242 1243
}

N
Nick Piggin 已提交
1244 1245 1246
/*
 * Purges all lazily-freed vmap areas.
 */
1247
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1248
{
1249
	unsigned long resched_threshold;
1250
	struct llist_node *valist;
N
Nick Piggin 已提交
1251
	struct vmap_area *va;
1252
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1253

1254
	lockdep_assert_held(&vmap_purge_lock);
1255

1256
	valist = llist_del_all(&vmap_purge_list);
1257 1258 1259
	if (unlikely(valist == NULL))
		return false;

1260 1261 1262 1263 1264 1265
	/*
	 * First make sure the mappings are removed from all page-tables
	 * before they are freed.
	 */
	vmalloc_sync_all();

1266 1267 1268 1269
	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1270
	llist_for_each_entry(va, valist, purge_list) {
1271 1272 1273 1274
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1275 1276
	}

1277
	flush_tlb_kernel_range(start, end);
1278
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1279

1280
	spin_lock(&vmap_area_lock);
1281
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1282
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1283

1284 1285 1286 1287 1288 1289 1290 1291
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
		merge_or_add_vmap_area(va,
			&free_vmap_area_root, &free_vmap_area_list);

1292
		atomic_long_sub(nr, &vmap_lazy_nr);
1293

1294
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1295
			cond_resched_lock(&vmap_area_lock);
1296
	}
1297 1298
	spin_unlock(&vmap_area_lock);
	return true;
N
Nick Piggin 已提交
1299 1300
}

N
Nick Piggin 已提交
1301 1302 1303 1304 1305 1306
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1307
	if (mutex_trylock(&vmap_purge_lock)) {
1308
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1309
		mutex_unlock(&vmap_purge_lock);
1310
	}
N
Nick Piggin 已提交
1311 1312
}

N
Nick Piggin 已提交
1313 1314 1315 1316 1317
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1318
	mutex_lock(&vmap_purge_lock);
1319 1320
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1321
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1322 1323 1324
}

/*
1325 1326 1327
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1328
 */
1329
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1330
{
1331
	unsigned long nr_lazy;
1332

1333 1334 1335 1336
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1337 1338
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1339 1340 1341 1342 1343

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1344
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1345 1346
}

1347 1348 1349 1350 1351 1352
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1353
	unmap_vmap_area(va);
1354 1355 1356
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range(va->va_start, va->va_end);

1357
	free_vmap_area_noflush(va);
1358 1359
}

N
Nick Piggin 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1394 1395 1396 1397
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1410
	unsigned long dirty_min, dirty_max; /*< dirty range */
1411 1412
	struct list_head free_list;
	struct rcu_head rcu_head;
1413
	struct list_head purge;
N
Nick Piggin 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1456
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1457 1458
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1459 1460 1461 1462 1463 1464
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1465
	void *vaddr;
N
Nick Piggin 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1477
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1478
		kfree(vb);
J
Julia Lawall 已提交
1479
		return ERR_CAST(va);
N
Nick Piggin 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1489
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1490 1491
	spin_lock_init(&vb->lock);
	vb->va = va;
1492 1493 1494
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1495
	vb->dirty = 0;
1496 1497
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1509
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1510
	spin_unlock(&vbq->lock);
1511
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1512

1513
	return vaddr;
N
Nick Piggin 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1527
	free_vmap_area_noflush(vb->va);
1528
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1548 1549
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1574 1575 1576 1577
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1578
	void *vaddr = NULL;
N
Nick Piggin 已提交
1579 1580
	unsigned int order;

1581
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1582
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1583 1584 1585 1586 1587 1588 1589 1590
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1591 1592 1593 1594 1595
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1596
		unsigned long pages_off;
N
Nick Piggin 已提交
1597 1598

		spin_lock(&vb->lock);
1599 1600 1601 1602
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1603

1604 1605
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1606 1607 1608 1609 1610 1611
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1612

1613 1614
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1615
	}
1616

1617
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1618 1619
	rcu_read_unlock();

1620 1621 1622
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1623

1624
	return vaddr;
N
Nick Piggin 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1634
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1635
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1636 1637 1638

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
1639 1640 1641
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1642
	offset >>= PAGE_SHIFT;
N
Nick Piggin 已提交
1643 1644 1645 1646 1647 1648 1649

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1650 1651
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

1652 1653 1654 1655
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range((unsigned long)addr,
					(unsigned long)addr + size);

N
Nick Piggin 已提交
1656
	spin_lock(&vb->lock);
1657 1658 1659 1660

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1661

N
Nick Piggin 已提交
1662 1663
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1664
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1665 1666 1667 1668 1669 1670
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1671
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1672 1673 1674
{
	int cpu;

1675 1676 1677
	if (unlikely(!vmap_initialized))
		return;

1678 1679
	might_sleep();

N
Nick Piggin 已提交
1680 1681 1682 1683 1684 1685 1686
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1687 1688
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1689
				unsigned long s, e;
1690

1691 1692
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1693

1694 1695
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1696

1697
				flush = 1;
N
Nick Piggin 已提交
1698 1699 1700 1701 1702 1703
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1704
	mutex_lock(&vmap_purge_lock);
1705 1706 1707
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1708
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1709
}
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1740
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1741
	unsigned long addr = (unsigned long)mem;
1742
	struct vmap_area *va;
N
Nick Piggin 已提交
1743

1744
	might_sleep();
N
Nick Piggin 已提交
1745 1746 1747
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1748
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1749

1750
	if (likely(count <= VMAP_MAX_ALLOC)) {
1751
		debug_check_no_locks_freed(mem, size);
N
Nick Piggin 已提交
1752
		vb_free(mem, size);
1753 1754 1755 1756 1757
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1758 1759
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1760
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1770
 *
1771 1772 1773 1774 1775 1776
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1777
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1778 1779 1780
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1781
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1808
static struct vm_struct *vmlist __initdata;
1809

N
Nicolas Pitre 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1836 1837 1838
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1839
 * @align: requested alignment
1840 1841 1842 1843 1844 1845 1846 1847
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1848
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1849 1850
{
	static size_t vm_init_off __initdata;
1851 1852 1853 1854
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1855

1856
	vm->addr = (void *)addr;
1857

N
Nicolas Pitre 已提交
1858
	vm_area_add_early(vm);
1859 1860
}

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1902 1903
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1904 1905
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1906 1907
	int i;

1908 1909 1910 1911 1912
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1913 1914
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1915
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1916 1917 1918 1919

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1920 1921 1922
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1923
	}
1924

I
Ivan Kokshaysky 已提交
1925 1926
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1927 1928 1929 1930
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

1931
		va->flags = VM_VM_AREA;
I
Ivan Kokshaysky 已提交
1932 1933
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1934
		va->vm = tmp;
1935
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1936
	}
1937

1938 1939 1940 1941
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
1942
	vmap_initialized = true;
N
Nick Piggin 已提交
1943 1944
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
1988
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1989 1990 1991 1992 1993 1994 1995 1996 1997

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1998 1999 2000
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2001 2002

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
2003 2004 2005
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
2006
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
2007

2008
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
2009 2010
{
	unsigned long addr = (unsigned long)area->addr;
2011
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
2012 2013
	int err;

2014
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
2015

2016
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
2017 2018 2019
}
EXPORT_SYMBOL_GPL(map_vm_area);

2020
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2021
			      unsigned long flags, const void *caller)
2022
{
2023
	spin_lock(&vmap_area_lock);
2024 2025 2026 2027
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2028
	va->vm = vm;
2029
	va->flags |= VM_VM_AREA;
2030
	spin_unlock(&vmap_area_lock);
2031
}
2032

2033
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2034
{
2035
	/*
2036
	 * Before removing VM_UNINITIALIZED,
2037 2038 2039 2040
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2041
	vm->flags &= ~VM_UNINITIALIZED;
2042 2043
}

N
Nick Piggin 已提交
2044
static struct vm_struct *__get_vm_area_node(unsigned long size,
2045
		unsigned long align, unsigned long flags, unsigned long start,
2046
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2047
{
2048
	struct vmap_area *va;
N
Nick Piggin 已提交
2049
	struct vm_struct *area;
L
Linus Torvalds 已提交
2050

2051
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2052
	size = PAGE_ALIGN(size);
2053 2054
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2055

2056 2057 2058 2059
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2060
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2061 2062 2063
	if (unlikely(!area))
		return NULL;

2064 2065
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2066

N
Nick Piggin 已提交
2067 2068 2069 2070
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2071 2072
	}

2073
	setup_vmalloc_vm(area, va, flags, caller);
2074

L
Linus Torvalds 已提交
2075 2076 2077
	return area;
}

C
Christoph Lameter 已提交
2078 2079 2080
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
2081 2082
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
2083
}
2084
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
2085

2086 2087
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2088
				       const void *caller)
2089
{
D
David Rientjes 已提交
2090 2091
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2092 2093
}

L
Linus Torvalds 已提交
2094
/**
2095 2096 2097
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2098
 *
2099 2100 2101
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2102 2103
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2104 2105 2106
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2107
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2108 2109
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2110 2111 2112
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2113
				const void *caller)
2114
{
2115
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2116
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2117 2118
}

2119
/**
2120 2121
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2122
 *
2123 2124 2125
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2126 2127
 *
 * Return: pointer to the found area or %NULL on faulure
2128 2129
 */
struct vm_struct *find_vm_area(const void *addr)
2130
{
N
Nick Piggin 已提交
2131
	struct vmap_area *va;
2132

N
Nick Piggin 已提交
2133 2134
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA)
2135
		return va->vm;
L
Linus Torvalds 已提交
2136 2137 2138 2139

	return NULL;
}

2140
/**
2141 2142
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2143
 *
2144 2145 2146
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2147 2148
 *
 * Return: pointer to the found area or %NULL on faulure
2149
 */
2150
struct vm_struct *remove_vm_area(const void *addr)
2151
{
N
Nick Piggin 已提交
2152 2153
	struct vmap_area *va;

2154 2155
	might_sleep();

2156 2157
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
N
Nick Piggin 已提交
2158
	if (va && va->flags & VM_VM_AREA) {
2159
		struct vm_struct *vm = va->vm;
2160

2161 2162 2163 2164
		va->vm = NULL;
		va->flags &= ~VM_VM_AREA;
		spin_unlock(&vmap_area_lock);

2165
		kasan_free_shadow(vm);
2166 2167
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2168 2169
		return vm;
	}
2170 2171

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2172
	return NULL;
2173 2174
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2190
	int flush_dmap = 0;
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2214 2215
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2216
			start = min(addr, start);
2217
			end = max(addr + PAGE_SIZE, end);
2218
			flush_dmap = 1;
2219 2220 2221 2222 2223 2224 2225 2226 2227
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2228
	_vm_unmap_aliases(start, end, flush_dmap);
2229 2230 2231
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2232
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2233 2234 2235 2236 2237 2238
{
	struct vm_struct *area;

	if (!addr)
		return;

2239
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2240
			addr))
L
Linus Torvalds 已提交
2241 2242
		return;

2243
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2244
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2245
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2246 2247 2248 2249
				addr);
		return;
	}

2250 2251
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2252

2253 2254
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2255 2256 2257 2258
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2259 2260 2261
			struct page *page = area->pages[i];

			BUG_ON(!page);
2262
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2263
		}
2264
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2265

D
David Rientjes 已提交
2266
		kvfree(area->pages);
L
Linus Torvalds 已提交
2267 2268 2269 2270 2271
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2288 2289
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2290
 *
2291 2292
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2305 2306 2307 2308 2309 2310 2311 2312
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2313
/**
2314 2315
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2316
 *
2317 2318 2319
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2320
 *
2321 2322 2323
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2324
 *
2325
 * May sleep if called *not* from interrupt context.
2326
 *
2327
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2328
 */
2329
void vfree(const void *addr)
L
Linus Torvalds 已提交
2330
{
2331
	BUG_ON(in_nmi());
2332 2333 2334

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2335 2336
	might_sleep_if(!in_interrupt());

2337 2338
	if (!addr)
		return;
2339 2340

	__vfree(addr);
L
Linus Torvalds 已提交
2341 2342 2343 2344
}
EXPORT_SYMBOL(vfree);

/**
2345 2346
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2347
 *
2348 2349
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2350
 *
2351
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2352
 */
2353
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2354 2355
{
	BUG_ON(in_interrupt());
2356
	might_sleep();
2357 2358
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2359 2360 2361 2362
}
EXPORT_SYMBOL(vunmap);

/**
2363 2364 2365 2366 2367 2368 2369 2370
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2371 2372
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2373 2374
 */
void *vmap(struct page **pages, unsigned int count,
2375
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2376 2377
{
	struct vm_struct *area;
2378
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2379

2380 2381
	might_sleep();

2382
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2383 2384
		return NULL;

2385 2386
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2387 2388
	if (!area)
		return NULL;
2389

2390
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395 2396 2397 2398
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2399 2400 2401
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2402
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2403
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2404 2405 2406
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2407
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2408 2409 2410 2411
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2412

2413
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2414 2415 2416 2417
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
2418
	if (array_size > PAGE_SIZE) {
2419
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2420
				PAGE_KERNEL, node, area->caller);
2421
	} else {
2422
		pages = kmalloc_node(array_size, nested_gfp, node);
2423
	}
L
Linus Torvalds 已提交
2424 2425 2426 2427 2428 2429 2430 2431
	area->pages = pages;
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
2432 2433
		struct page *page;

J
Jianguo Wu 已提交
2434
		if (node == NUMA_NO_NODE)
2435
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2436
		else
2437
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2438 2439

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2440 2441
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2442
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2443 2444
			goto fail;
		}
2445
		area->pages[i] = page;
2446
		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2447
			cond_resched();
L
Linus Torvalds 已提交
2448
	}
2449
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2450

2451
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
2452 2453 2454 2455
		goto fail;
	return area->addr;

fail:
2456
	warn_alloc(gfp_mask, NULL,
2457
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2458
			  (area->nr_pages*PAGE_SIZE), area->size);
2459
	__vfree(area->addr);
L
Linus Torvalds 已提交
2460 2461 2462 2463
	return NULL;
}

/**
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2478 2479
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2480
 */
2481 2482
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2483 2484
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2485 2486
{
	struct vm_struct *area;
2487 2488
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2489 2490

	size = PAGE_ALIGN(size);
2491
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2492
		goto fail;
L
Linus Torvalds 已提交
2493

2494 2495
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2496
	if (!area)
2497
		goto fail;
L
Linus Torvalds 已提交
2498

2499
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2500
	if (!addr)
2501
		return NULL;
2502

2503
	/*
2504 2505
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2506
	 * Now, it is fully initialized, so remove this flag here.
2507
	 */
2508
	clear_vm_uninitialized_flag(area);
2509

2510
	kmemleak_vmalloc(area, size, gfp_mask);
2511 2512

	return addr;
2513 2514

fail:
2515
	warn_alloc(gfp_mask, NULL,
2516
			  "vmalloc: allocation failure: %lu bytes", real_size);
2517
	return NULL;
L
Linus Torvalds 已提交
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527 2528
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2529
/**
2530 2531 2532 2533 2534 2535 2536
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2537
 *
2538 2539 2540
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2541
 *
2542 2543
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2544
 *
2545 2546
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2547 2548
 *
 * Return: pointer to the allocated memory or %NULL on error
2549
 */
2550
static void *__vmalloc_node(unsigned long size, unsigned long align,
2551
			    gfp_t gfp_mask, pgprot_t prot,
2552
			    int node, const void *caller)
2553 2554
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2555
				gfp_mask, prot, 0, node, caller);
2556 2557
}

C
Christoph Lameter 已提交
2558 2559
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2560
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2561
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2562
}
L
Linus Torvalds 已提交
2563 2564
EXPORT_SYMBOL(__vmalloc);

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2579
/**
2580 2581 2582 2583 2584
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2585
 *
2586 2587
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2588 2589
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2590 2591 2592
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2593
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2594
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2595 2596 2597
}
EXPORT_SYMBOL(vmalloc);

2598
/**
2599 2600 2601 2602 2603 2604 2605 2606 2607
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2608 2609
 *
 * Return: pointer to the allocated memory or %NULL on error
2610 2611 2612
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2613
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2614
				GFP_KERNEL | __GFP_ZERO);
2615 2616 2617
}
EXPORT_SYMBOL(vzalloc);

2618
/**
2619 2620
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2621
 *
2622 2623
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2624 2625
 *
 * Return: pointer to the allocated memory or %NULL on error
2626 2627 2628
 */
void *vmalloc_user(unsigned long size)
{
2629 2630 2631 2632
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2633 2634 2635
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2636
/**
2637 2638 2639
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2640
 *
2641 2642
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2643
 *
2644 2645
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2646 2647
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2648 2649 2650
 */
void *vmalloc_node(unsigned long size, int node)
{
2651
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2652
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2653 2654 2655
}
EXPORT_SYMBOL(vmalloc_node);

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2667 2668
 *
 * Return: pointer to the allocated memory or %NULL on error
2669 2670 2671 2672
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2673
			 GFP_KERNEL | __GFP_ZERO);
2674 2675 2676
}
EXPORT_SYMBOL(vzalloc_node);

L
Linus Torvalds 已提交
2677
/**
2678 2679
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2680
 *
2681 2682 2683
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2684
 *
2685 2686
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2687 2688
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2689 2690 2691
 */
void *vmalloc_exec(unsigned long size)
{
2692 2693 2694
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2695 2696
}

2697
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2698
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2699
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2700
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2701
#else
2702 2703 2704 2705 2706
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2707 2708
#endif

L
Linus Torvalds 已提交
2709
/**
2710 2711
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2712
 *
2713 2714
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2715 2716
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2717 2718 2719
 */
void *vmalloc_32(unsigned long size)
{
2720
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2721
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2722 2723 2724
}
EXPORT_SYMBOL(vmalloc_32);

2725
/**
2726
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2727
 * @size:	     allocation size
2728 2729 2730
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2731 2732
 *
 * Return: pointer to the allocated memory or %NULL on error
2733 2734 2735
 */
void *vmalloc_32_user(unsigned long size)
{
2736 2737 2738 2739
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2740 2741 2742
}
EXPORT_SYMBOL(vmalloc_32_user);

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2756
		offset = offset_in_page(addr);
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2773
			void *map = kmap_atomic(p);
2774
			memcpy(buf, map + offset, length);
2775
			kunmap_atomic(map);
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2795
		offset = offset_in_page(addr);
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2812
			void *map = kmap_atomic(p);
2813
			memcpy(map + offset, buf, length);
2814
			kunmap_atomic(map);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2842
 * any information, as /dev/kmem.
2843 2844 2845 2846
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2847
 */
L
Linus Torvalds 已提交
2848 2849
long vread(char *buf, char *addr, unsigned long count)
{
2850 2851
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2852
	char *vaddr, *buf_start = buf;
2853
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858 2859
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2870
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2871 2872 2873 2874 2875 2876 2877 2878 2879
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2880
		n = vaddr + get_vm_area_size(vm) - addr;
2881 2882
		if (n > count)
			n = count;
2883
		if (!(vm->flags & VM_IOREMAP))
2884 2885 2886 2887 2888 2889
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2890 2891
	}
finished:
2892
	spin_unlock(&vmap_area_lock);
2893 2894 2895 2896 2897 2898 2899 2900

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2901 2902
}

2903
/**
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2921
 * any information, as /dev/kmem.
2922 2923 2924 2925
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2926
 */
L
Linus Torvalds 已提交
2927 2928
long vwrite(char *buf, char *addr, unsigned long count)
{
2929 2930
	struct vmap_area *va;
	struct vm_struct *vm;
2931 2932 2933
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2934 2935 2936 2937

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2938
	buflen = count;
L
Linus Torvalds 已提交
2939

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2950
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2951 2952 2953 2954 2955 2956 2957 2958
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2959
		n = vaddr + get_vm_area_size(vm) - addr;
2960 2961
		if (n > count)
			n = count;
2962
		if (!(vm->flags & VM_IOREMAP)) {
2963 2964 2965 2966 2967 2968
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2969 2970
	}
finished:
2971
	spin_unlock(&vmap_area_lock);
2972 2973 2974
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2975
}
2976 2977

/**
2978 2979 2980 2981 2982
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
 * @size:		size of map area
2983
 *
2984
 * Returns:	0 for success, -Exxx on failure
2985
 *
2986 2987 2988 2989
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
2990
 *
2991
 * Similar to remap_pfn_range() (see mm/memory.c)
2992
 */
2993 2994
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
2995 2996 2997
{
	struct vm_struct *area;

2998 2999 3000
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3001 3002
		return -EINVAL;

3003
	area = find_vm_area(kaddr);
3004
	if (!area)
N
Nick Piggin 已提交
3005
		return -EINVAL;
3006

3007
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3008
		return -EINVAL;
3009

3010
	if (kaddr + size > area->addr + get_vm_area_size(area))
N
Nick Piggin 已提交
3011
		return -EINVAL;
3012 3013

	do {
3014
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3015 3016
		int ret;

3017 3018 3019 3020 3021
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3022 3023 3024
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3025

3026
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3027

N
Nick Piggin 已提交
3028
	return 0;
3029
}
3030 3031 3032
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3033 3034 3035 3036
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3037
 *
3038
 * Returns:	0 for success, -Exxx on failure
3039
 *
3040 3041 3042
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3043
 *
3044
 * Similar to remap_pfn_range() (see mm/memory.c)
3045 3046 3047 3048 3049 3050 3051 3052
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
3053 3054
EXPORT_SYMBOL(remap_vmalloc_range);

3055 3056 3057
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
3058 3059 3060
 *
 * The purpose of this function is to make sure the vmalloc area
 * mappings are identical in all page-tables in the system.
3061
 */
3062
void __weak vmalloc_sync_all(void)
3063 3064
{
}
3065 3066


3067
static int f(pte_t *pte, unsigned long addr, void *data)
3068
{
3069 3070 3071 3072 3073 3074
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3075 3076 3077 3078
	return 0;
}

/**
3079 3080 3081
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3082
 *
3083
 * Returns:	NULL on failure, vm_struct on success
3084
 *
3085 3086 3087
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3088
 *
3089 3090
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3091
 */
3092
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3093 3094 3095
{
	struct vm_struct *area;

3096 3097
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3098 3099 3100 3101 3102 3103 3104 3105
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3106
				size, f, ptes ? &ptes : NULL)) {
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3123

3124
#ifdef CONFIG_SMP
3125 3126
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3127
	return rb_entry_safe(n, struct vmap_area, rb_node);
3128 3129 3130
}

/**
3131 3132
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3133
 *
3134 3135 3136 3137
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3138
 */
3139 3140
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3141
{
3142 3143 3144 3145 3146
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3147 3148

	while (n) {
3149 3150 3151 3152 3153 3154
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3155
			n = n->rb_right;
3156 3157 3158
		} else {
			n = n->rb_left;
		}
3159 3160
	}

3161
	return va;
3162 3163 3164
}

/**
3165 3166 3167 3168 3169
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3170
 *
3171
 * Returns: determined end address within vmap_area
3172
 */
3173 3174
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3175
{
3176
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3177 3178
	unsigned long addr;

3179 3180 3181 3182 3183 3184 3185
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3186 3187
	}

3188
	return 0;
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3203 3204 3205 3206
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3207
 *
3208 3209 3210 3211 3212 3213
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3214 3215 3216
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3217
				     size_t align)
3218 3219 3220
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3221
	struct vmap_area **vas, *va;
3222 3223
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3224
	unsigned long base, start, size, end, last_end;
3225
	bool purged = false;
3226
	enum fit_type type;
3227 3228

	/* verify parameters and allocate data structures */
3229
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3242
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3243 3244 3245
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3246
			BUG_ON(start2 < end && start < end2);
3247 3248 3249 3250 3251 3252 3253 3254 3255
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3256 3257
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3258
	if (!vas || !vms)
3259
		goto err_free2;
3260 3261

	for (area = 0; area < nr_vms; area++) {
3262
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3263
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3275 3276
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3277 3278 3279 3280 3281 3282

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3283 3284
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3285 3286

		/*
3287
		 * Fitting base has not been found.
3288
		 */
3289 3290
		if (va == NULL)
			goto overflow;
3291

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
		/*
		 * If required width exeeds current VA block, move
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3302
		/*
3303
		 * If this VA does not fit, move base downwards and recheck.
3304
		 */
3305
		if (base + start < va->va_start) {
3306 3307
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3319

3320 3321
		start = offsets[area];
		end = start + sizes[area];
3322
		va = pvm_find_va_enclose_addr(base + end);
3323
	}
3324

3325 3326
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3327
		int ret;
3328

3329 3330
		start = base + offsets[area];
		size = sizes[area];
3331

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;

		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
	}
3353 3354 3355 3356 3357

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
3358 3359
		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				 pcpu_get_vm_areas);
3360 3361 3362 3363

	kfree(vas);
	return vms;

3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
recovery:
	/* Remove previously inserted areas. */
	while (area--) {
		__free_vmap_area(vas[area]);
		vas[area] = NULL;
	}

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3391 3392
err_free:
	for (area = 0; area < nr_vms; area++) {
3393 3394 3395
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3396
		kfree(vms[area]);
3397
	}
3398
err_free2:
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3419
#endif	/* CONFIG_SMP */
3420 3421 3422

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3423
	__acquires(&vmap_area_lock)
3424
{
3425
	spin_lock(&vmap_area_lock);
3426
	return seq_list_start(&vmap_area_list, *pos);
3427 3428 3429 3430
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3431
	return seq_list_next(p, &vmap_area_list, pos);
3432 3433 3434
}

static void s_stop(struct seq_file *m, void *p)
3435
	__releases(&vmap_area_lock)
3436
{
3437
	spin_unlock(&vmap_area_lock);
3438 3439
}

E
Eric Dumazet 已提交
3440 3441
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3442
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3443 3444 3445 3446 3447
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3448 3449
		if (v->flags & VM_UNINITIALIZED)
			return;
3450 3451
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3452

E
Eric Dumazet 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3480 3481
static int s_show(struct seq_file *m, void *p)
{
3482
	struct vmap_area *va;
3483 3484
	struct vm_struct *v;

3485 3486
	va = list_entry(p, struct vmap_area, list);

3487 3488 3489 3490
	/*
	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
	 * behalf of vmap area is being tear down or vm_map_ram allocation.
	 */
3491
	if (!(va->flags & VM_VM_AREA)) {
3492
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3493
			(void *)va->va_start, (void *)va->va_end,
3494
			va->va_end - va->va_start);
3495

3496
		return 0;
3497
	}
3498 3499

	v = va->vm;
3500

K
Kees Cook 已提交
3501
	seq_printf(m, "0x%pK-0x%pK %7ld",
3502 3503
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3504 3505
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3506

3507 3508 3509 3510
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3511
		seq_printf(m, " phys=%pa", &v->phys_addr);
3512 3513

	if (v->flags & VM_IOREMAP)
3514
		seq_puts(m, " ioremap");
3515 3516

	if (v->flags & VM_ALLOC)
3517
		seq_puts(m, " vmalloc");
3518 3519

	if (v->flags & VM_MAP)
3520
		seq_puts(m, " vmap");
3521 3522

	if (v->flags & VM_USERMAP)
3523
		seq_puts(m, " user");
3524

3525 3526 3527
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3528
	if (is_vmalloc_addr(v->pages))
3529
		seq_puts(m, " vpages");
3530

E
Eric Dumazet 已提交
3531
	show_numa_info(m, v);
3532
	seq_putc(m, '\n');
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3543 3544 3545
	return 0;
}

3546
static const struct seq_operations vmalloc_op = {
3547 3548 3549 3550 3551
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3552 3553 3554

static int __init proc_vmalloc_init(void)
{
3555
	if (IS_ENABLED(CONFIG_NUMA))
3556
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3557 3558
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3559
	else
3560
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3561 3562 3563
	return 0;
}
module_init(proc_vmalloc_init);
3564

3565
#endif