vmalloc.c 90.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27
#include <linux/rbtree.h>
28
#include <linux/xarray.h>
N
Nick Piggin 已提交
29
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37
#include <linux/overflow.h>
38

39
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
40
#include <asm/tlbflush.h>
41
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
42

43
#include "internal.h"
44
#include "pgalloc-track.h"
45

46 47 48 49 50 51 52 53
bool is_vmalloc_addr(const void *x)
{
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

54 55 56 57 58 59 60 61 62 63 64
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
65 66 67 68
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
69 70
}

N
Nick Piggin 已提交
71
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
72

73 74
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
75 76 77 78 79 80 81 82
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
83
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
84 85
}

86 87
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
88 89 90
{
	pmd_t *pmd;
	unsigned long next;
91
	int cleared;
L
Linus Torvalds 已提交
92 93 94 95

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
96 97 98 99 100 101

		cleared = pmd_clear_huge(pmd);
		if (cleared || pmd_bad(*pmd))
			*mask |= PGTBL_PMD_MODIFIED;

		if (cleared)
102
			continue;
L
Linus Torvalds 已提交
103 104
		if (pmd_none_or_clear_bad(pmd))
			continue;
105
		vunmap_pte_range(pmd, addr, next, mask);
L
Linus Torvalds 已提交
106 107 108
	} while (pmd++, addr = next, addr != end);
}

109 110
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
111 112 113
{
	pud_t *pud;
	unsigned long next;
114
	int cleared;
L
Linus Torvalds 已提交
115

116
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
117 118
	do {
		next = pud_addr_end(addr, end);
119 120 121 122 123 124

		cleared = pud_clear_huge(pud);
		if (cleared || pud_bad(*pud))
			*mask |= PGTBL_PUD_MODIFIED;

		if (cleared)
125
			continue;
L
Linus Torvalds 已提交
126 127
		if (pud_none_or_clear_bad(pud))
			continue;
128
		vunmap_pmd_range(pud, addr, next, mask);
L
Linus Torvalds 已提交
129 130 131
	} while (pud++, addr = next, addr != end);
}

132 133
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
134 135 136
{
	p4d_t *p4d;
	unsigned long next;
137
	int cleared;
138 139 140 141

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
142 143 144 145 146 147

		cleared = p4d_clear_huge(p4d);
		if (cleared || p4d_bad(*p4d))
			*mask |= PGTBL_P4D_MODIFIED;

		if (cleared)
148 149 150
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
151
		vunmap_pud_range(p4d, addr, next, mask);
152 153 154
	} while (p4d++, addr = next, addr != end);
}

155 156
/**
 * unmap_kernel_range_noflush - unmap kernel VM area
157
 * @start: start of the VM area to unmap
158 159 160 161 162 163 164 165 166 167
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 * should have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible
 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 * function and flush_tlb_kernel_range() after.
 */
168
void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
L
Linus Torvalds 已提交
169
{
170
	unsigned long end = start + size;
L
Linus Torvalds 已提交
171
	unsigned long next;
172
	pgd_t *pgd;
173 174
	unsigned long addr = start;
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
175 176

	BUG_ON(addr >= end);
177
	start = addr;
L
Linus Torvalds 已提交
178 179 180
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
181 182
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
L
Linus Torvalds 已提交
183 184
		if (pgd_none_or_clear_bad(pgd))
			continue;
185
		vunmap_p4d_range(pgd, addr, next, &mask);
L
Linus Torvalds 已提交
186
	} while (pgd++, addr = next, addr != end);
187 188 189

	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);
L
Linus Torvalds 已提交
190 191 192
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
193 194
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
195 196 197
{
	pte_t *pte;

N
Nick Piggin 已提交
198 199 200 201 202
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

203
	pte = pte_alloc_kernel_track(pmd, addr, mask);
L
Linus Torvalds 已提交
204 205 206
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
207 208 209 210 211
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
212 213
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
214
		(*nr)++;
L
Linus Torvalds 已提交
215
	} while (pte++, addr += PAGE_SIZE, addr != end);
216
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
217 218 219
	return 0;
}

N
Nick Piggin 已提交
220
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
221 222
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
223 224 225 226
{
	pmd_t *pmd;
	unsigned long next;

227
	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
L
Linus Torvalds 已提交
228 229 230 231
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
232
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
233 234 235 236 237
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

238
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
239 240
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
241 242 243 244
{
	pud_t *pud;
	unsigned long next;

245
	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
L
Linus Torvalds 已提交
246 247 248 249
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
250
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
251 252 253 254 255
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

256
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
257 258
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
259 260 261 262
{
	p4d_t *p4d;
	unsigned long next;

263
	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 265 266 267
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
268
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
269 270 271 272 273
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

274 275 276 277 278 279
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
N
Nick Piggin 已提交
280
 *
281 282 283 284 285 286 287 288 289
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 * have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible for
 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 * function.
 *
 * RETURNS:
290
 * 0 on success, -errno on failure.
N
Nick Piggin 已提交
291
 */
292 293
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
294
{
295
	unsigned long start = addr;
296
	unsigned long end = addr + size;
L
Linus Torvalds 已提交
297
	unsigned long next;
298
	pgd_t *pgd;
N
Nick Piggin 已提交
299 300
	int err = 0;
	int nr = 0;
301
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
302 303 304 305 306

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
307 308 309
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
L
Linus Torvalds 已提交
310
		if (err)
311
			return err;
L
Linus Torvalds 已提交
312
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
313

314 315 316
	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);

317
	return 0;
L
Linus Torvalds 已提交
318 319
}

C
Christoph Hellwig 已提交
320 321
int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
		struct page **pages)
322 323 324
{
	int ret;

325 326
	ret = map_kernel_range_noflush(start, size, prot, pages);
	flush_cache_vmap(start, start + size);
327 328 329
	return ret;
}

330
int is_vmalloc_or_module_addr(const void *x)
331 332
{
	/*
333
	 * ARM, x86-64 and sparc64 put modules in a special place,
334 335 336 337 338 339 340 341 342 343 344
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

345
/*
346
 * Walk a vmap address to the struct page it maps.
347
 */
348
struct page *vmalloc_to_page(const void *vmalloc_addr)
349 350
{
	unsigned long addr = (unsigned long) vmalloc_addr;
351
	struct page *page = NULL;
352
	pgd_t *pgd = pgd_offset_k(addr);
353 354 355 356
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
357

358 359 360 361
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
362
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
363

364 365 366 367 368 369
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
370 371 372 373 374 375 376 377 378 379 380

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
381 382
		return NULL;
	pmd = pmd_offset(pud, addr);
383 384
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
385 386 387 388 389 390 391
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
392
	return page;
393
}
394
EXPORT_SYMBOL(vmalloc_to_page);
395 396

/*
397
 * Map a vmalloc()-space virtual address to the physical page frame number.
398
 */
399
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
400
{
401
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
402
}
403
EXPORT_SYMBOL(vmalloc_to_pfn);
404

N
Nick Piggin 已提交
405 406 407

/*** Global kva allocator ***/

408
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
409
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
410

N
Nick Piggin 已提交
411 412

static DEFINE_SPINLOCK(vmap_area_lock);
413
static DEFINE_SPINLOCK(free_vmap_area_lock);
414 415
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
416
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
417
static struct rb_root vmap_area_root = RB_ROOT;
418
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

446 447 448 449 450 451 452
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

453 454 455 456 457 458 459 460 461 462 463 464 465 466
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
467

468 469 470 471 472 473 474 475 476 477 478
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

479 480
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
481 482 483 484

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
485

486 487 488 489 490 491 492
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
493
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
494
{
N
Nick Piggin 已提交
495 496 497 498 499 500 501 502
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
503
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
504 505 506 507 508 509 510 511
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
533

534 535 536 537 538 539 540
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
541

542 543 544 545 546 547 548 549 550 551 552
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
553 554
		else
			BUG();
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
591 592
	}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
613

614 615
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
616 617
}

618 619 620
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
621 622
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
623

624 625 626 627 628 629 630 631
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
632 633
}

634 635
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
636
augment_tree_propagate_check(void)
637 638
{
	struct vmap_area *va;
639
	unsigned long computed_size;
640

641 642 643 644 645
	list_for_each_entry(va, &free_vmap_area_list, list) {
		computed_size = compute_subtree_max_size(va);
		if (computed_size != va->subtree_max_size)
			pr_emerg("tree is corrupted: %lu, %lu\n",
				va_size(va), va->subtree_max_size);
646 647 648 649
	}
}
#endif

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
699 700

#if DEBUG_AUGMENT_PROPAGATE_CHECK
701
	augment_tree_propagate_check();
702
#endif
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
739
static __always_inline struct vmap_area *
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
793 794 795 796 797 798 799
			/*
			 * If both neighbors are coalesced, it is important
			 * to unlink the "next" node first, followed by merging
			 * with "previous" one. Otherwise the tree might not be
			 * fully populated if a sibling's augmented value is
			 * "normalized" because of rotation operations.
			 */
800 801
			if (merged)
				unlink_va(va, root);
802

803 804
			sibling->va_end = va->va_end;

805 806
			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
807 808 809 810

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
811 812 813 814
		}
	}

insert:
815
	if (!merged)
816
		link_va(va, root, parent, link, head);
817

818 819 820 821
	/*
	 * Last step is to check and update the tree.
	 */
	augment_tree_propagate_from(va);
822
	return va;
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
884
			 * OK. We roll back and find the first right sub-tree,
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
982
	struct vmap_area *lva = NULL;
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
1046 1047 1048 1049 1050
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1069
		if (lva)	/* type == NE_FIT_TYPE */
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1083
	unsigned long vstart, unsigned long vend)
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1113 1114 1115 1116
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1117 1118
	return nva_start_addr;
}
1119

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
	spin_unlock(&free_vmap_area_lock);
}

N
Nick Piggin 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1149
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1150
	unsigned long addr;
N
Nick Piggin 已提交
1151
	int purged = 0;
1152
	int ret;
N
Nick Piggin 已提交
1153

N
Nick Piggin 已提交
1154
	BUG_ON(!size);
1155
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1156
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1157

1158 1159 1160
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1161
	might_sleep();
1162
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1163

1164
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1165 1166 1167
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1168 1169 1170 1171
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1172
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1173

N
Nick Piggin 已提交
1174
retry:
1175
	/*
1176 1177 1178 1179 1180 1181
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1182 1183 1184
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1185 1186
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1187
	 *
1188
	 * Set "pva" to NULL here, because of "retry" path.
1189
	 */
1190
	pva = NULL;
1191

1192 1193 1194 1195 1196 1197
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1198
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1199

1200
	spin_lock(&free_vmap_area_lock);
1201 1202 1203

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1204

1205
	/*
1206 1207
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1208
	 */
1209
	addr = __alloc_vmap_area(size, align, vstart, vend);
1210 1211
	spin_unlock(&free_vmap_area_lock);

1212
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1213
		goto overflow;
N
Nick Piggin 已提交
1214 1215 1216

	va->va_start = addr;
	va->va_end = addr + size;
1217
	va->vm = NULL;
1218

1219

1220 1221
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1222 1223
	spin_unlock(&vmap_area_lock);

1224
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1225 1226 1227
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1228 1229 1230 1231 1232 1233
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1234
	return va;
N
Nick Piggin 已提交
1235 1236 1237 1238 1239 1240 1241

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1252
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1253 1254
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1255 1256

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1257
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1258 1259
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1297
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1298

1299 1300 1301 1302 1303
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1304
static DEFINE_MUTEX(vmap_purge_lock);
1305

1306 1307 1308
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1309 1310 1311 1312 1313 1314
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1315
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1316 1317
}

N
Nick Piggin 已提交
1318 1319 1320
/*
 * Purges all lazily-freed vmap areas.
 */
1321
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1322
{
1323
	unsigned long resched_threshold;
1324
	struct llist_node *valist;
N
Nick Piggin 已提交
1325
	struct vmap_area *va;
1326
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1327

1328
	lockdep_assert_held(&vmap_purge_lock);
1329

1330
	valist = llist_del_all(&vmap_purge_list);
1331 1332 1333 1334 1335 1336 1337
	if (unlikely(valist == NULL))
		return false;

	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1338
	llist_for_each_entry(va, valist, purge_list) {
1339 1340 1341 1342
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1343 1344
	}

1345
	flush_tlb_kernel_range(start, end);
1346
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1347

1348
	spin_lock(&free_vmap_area_lock);
1349
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1350
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1351 1352
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1353

1354 1355 1356 1357 1358
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1359 1360 1361 1362 1363 1364
		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
					    &free_vmap_area_list);

		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1365

1366
		atomic_long_sub(nr, &vmap_lazy_nr);
1367

1368
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1369
			cond_resched_lock(&free_vmap_area_lock);
1370
	}
1371
	spin_unlock(&free_vmap_area_lock);
1372
	return true;
N
Nick Piggin 已提交
1373 1374
}

N
Nick Piggin 已提交
1375 1376 1377 1378 1379 1380
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1381
	if (mutex_trylock(&vmap_purge_lock)) {
1382
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1383
		mutex_unlock(&vmap_purge_lock);
1384
	}
N
Nick Piggin 已提交
1385 1386
}

N
Nick Piggin 已提交
1387 1388 1389 1390 1391
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1392
	mutex_lock(&vmap_purge_lock);
1393 1394
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1395
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1396 1397 1398
}

/*
1399 1400 1401
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1402
 */
1403
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1404
{
1405
	unsigned long nr_lazy;
1406

1407 1408 1409 1410
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1411 1412
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1413 1414 1415 1416 1417

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1418
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1419 1420
}

1421 1422 1423 1424 1425 1426
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
C
Christoph Hellwig 已提交
1427
	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1428
	if (debug_pagealloc_enabled_static())
1429 1430
		flush_tlb_kernel_range(va->va_start, va->va_end);

1431
	free_vmap_area_noflush(va);
1432 1433
}

N
Nick Piggin 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1468 1469 1470 1471
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1484
	unsigned long dirty_min, dirty_max; /*< dirty range */
1485 1486
	struct list_head free_list;
	struct rcu_head rcu_head;
1487
	struct list_head purge;
N
Nick Piggin 已提交
1488 1489 1490 1491 1492 1493
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
1494
 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
N
Nick Piggin 已提交
1495 1496 1497
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
1498
static DEFINE_XARRAY(vmap_blocks);
N
Nick Piggin 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1529
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1530 1531
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1532 1533 1534 1535 1536 1537
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1538
	void *vaddr;
N
Nick Piggin 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1550
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1551
		kfree(vb);
J
Julia Lawall 已提交
1552
		return ERR_CAST(va);
N
Nick Piggin 已提交
1553 1554
	}

1555
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1556 1557
	spin_lock_init(&vb->lock);
	vb->va = va;
1558 1559 1560
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1561
	vb->dirty = 0;
1562 1563
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1564 1565 1566
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
1567 1568 1569 1570 1571 1572
	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
	if (err) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}
N
Nick Piggin 已提交
1573 1574 1575

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1576
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1577
	spin_unlock(&vbq->lock);
1578
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1579

1580
	return vaddr;
N
Nick Piggin 已提交
1581 1582 1583 1584 1585 1586
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;

1587
	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
N
Nick Piggin 已提交
1588 1589
	BUG_ON(tmp != vb);

1590
	free_vmap_area_noflush(vb->va);
1591
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1592 1593
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1611 1612
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1637 1638 1639 1640
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1641
	void *vaddr = NULL;
N
Nick Piggin 已提交
1642 1643
	unsigned int order;

1644
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1645
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1646 1647 1648 1649 1650 1651 1652 1653
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1654 1655 1656 1657 1658
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1659
		unsigned long pages_off;
N
Nick Piggin 已提交
1660 1661

		spin_lock(&vb->lock);
1662 1663 1664 1665
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1666

1667 1668
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1669 1670 1671 1672 1673 1674
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1675

1676 1677
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1678
	}
1679

1680
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1681 1682
	rcu_read_unlock();

1683 1684 1685
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1686

1687
	return vaddr;
N
Nick Piggin 已提交
1688 1689
}

1690
static void vb_free(unsigned long addr, unsigned long size)
N
Nick Piggin 已提交
1691 1692 1693 1694 1695
{
	unsigned long offset;
	unsigned int order;
	struct vmap_block *vb;

1696
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1697
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1698

1699
	flush_cache_vunmap(addr, addr + size);
1700

N
Nick Piggin 已提交
1701
	order = get_order(size);
1702
	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1703
	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
N
Nick Piggin 已提交
1704

1705
	unmap_kernel_range_noflush(addr, size);
1706

1707
	if (debug_pagealloc_enabled_static())
1708
		flush_tlb_kernel_range(addr, addr + size);
1709

N
Nick Piggin 已提交
1710
	spin_lock(&vb->lock);
1711 1712 1713 1714

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1715

N
Nick Piggin 已提交
1716 1717
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1718
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1719 1720 1721 1722 1723 1724
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1725
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1726 1727 1728
{
	int cpu;

1729 1730 1731
	if (unlikely(!vmap_initialized))
		return;

1732 1733
	might_sleep();

N
Nick Piggin 已提交
1734 1735 1736 1737 1738 1739 1740
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1741 1742
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1743
				unsigned long s, e;
1744

1745 1746
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1747

1748 1749
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1750

1751
				flush = 1;
N
Nick Piggin 已提交
1752 1753 1754 1755 1756 1757
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1758
	mutex_lock(&vmap_purge_lock);
1759 1760 1761
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1762
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1763
}
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1794
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1795
	unsigned long addr = (unsigned long)mem;
1796
	struct vmap_area *va;
N
Nick Piggin 已提交
1797

1798
	might_sleep();
N
Nick Piggin 已提交
1799 1800 1801
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1802
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1803

1804 1805
	kasan_poison_vmalloc(mem, size);

1806
	if (likely(count <= VMAP_MAX_ALLOC)) {
1807
		debug_check_no_locks_freed(mem, size);
1808
		vb_free(addr, size);
1809 1810 1811 1812 1813
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1814 1815
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1816
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1817 1818 1819 1820 1821 1822 1823 1824
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
1825
 *
1826 1827 1828 1829 1830 1831
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1832
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1833
 */
1834
void *vm_map_ram(struct page **pages, unsigned int count, int node)
N
Nick Piggin 已提交
1835
{
1836
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
1855 1856 1857

	kasan_unpoison_vmalloc(mem, size);

1858
	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
N
Nick Piggin 已提交
1859 1860 1861 1862 1863 1864 1865
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1866
static struct vm_struct *vmlist __initdata;
1867

N
Nicolas Pitre 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1894 1895 1896
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1897
 * @align: requested alignment
1898 1899 1900 1901 1902 1903 1904 1905
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1906
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1907 1908
{
	static size_t vm_init_off __initdata;
1909 1910 1911 1912
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1913

1914
	vm->addr = (void *)addr;
1915

N
Nicolas Pitre 已提交
1916
	vm_area_add_early(vm);
1917 1918
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1960 1961
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1962 1963
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1964 1965
	int i;

1966 1967 1968 1969 1970
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1971 1972
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1973
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1974 1975 1976 1977

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1978 1979 1980
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1981
	}
1982

I
Ivan Kokshaysky 已提交
1983 1984
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1985 1986 1987 1988
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
1989 1990
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1991
		va->vm = tmp;
1992
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1993
	}
1994

1995 1996 1997 1998
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
1999
	vmap_initialized = true;
N
Nick Piggin 已提交
2000 2001
}

2002 2003 2004 2005 2006 2007 2008 2009
/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2010 2011 2012
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2013 2014

	flush_cache_vunmap(addr, end);
2015
	unmap_kernel_range_noflush(addr, size);
N
Nick Piggin 已提交
2016 2017 2018
	flush_tlb_kernel_range(addr, end);
}

2019 2020
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2021 2022 2023 2024 2025
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2026
	va->vm = vm;
2027 2028 2029 2030 2031 2032 2033
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2034
	spin_unlock(&vmap_area_lock);
2035
}
2036

2037
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2038
{
2039
	/*
2040
	 * Before removing VM_UNINITIALIZED,
2041 2042 2043 2044
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2045
	vm->flags &= ~VM_UNINITIALIZED;
2046 2047
}

N
Nick Piggin 已提交
2048
static struct vm_struct *__get_vm_area_node(unsigned long size,
2049
		unsigned long align, unsigned long flags, unsigned long start,
2050
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2051
{
2052
	struct vmap_area *va;
N
Nick Piggin 已提交
2053
	struct vm_struct *area;
2054
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2055

2056
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2057
	size = PAGE_ALIGN(size);
2058 2059
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2060

2061 2062 2063 2064
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2065
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2066 2067 2068
	if (unlikely(!area))
		return NULL;

2069 2070
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2071

N
Nick Piggin 已提交
2072 2073 2074 2075
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2076 2077
	}

2078
	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2079

2080
	setup_vmalloc_vm(area, va, flags, caller);
2081

L
Linus Torvalds 已提交
2082 2083 2084
	return area;
}

2085 2086
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2087
				       const void *caller)
2088
{
D
David Rientjes 已提交
2089 2090
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2091 2092
}

L
Linus Torvalds 已提交
2093
/**
2094 2095 2096
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2097
 *
2098 2099 2100
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2101 2102
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2103 2104 2105
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2106
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2107 2108
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2109 2110 2111
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2112
				const void *caller)
2113
{
2114
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2115
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2116 2117
}

2118
/**
2119 2120
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2121
 *
2122 2123 2124
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2125 2126
 *
 * Return: pointer to the found area or %NULL on faulure
2127 2128
 */
struct vm_struct *find_vm_area(const void *addr)
2129
{
N
Nick Piggin 已提交
2130
	struct vmap_area *va;
2131

N
Nick Piggin 已提交
2132
	va = find_vmap_area((unsigned long)addr);
2133 2134
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2135

2136
	return va->vm;
L
Linus Torvalds 已提交
2137 2138
}

2139
/**
2140 2141
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2142
 *
2143 2144 2145
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2146 2147
 *
 * Return: pointer to the found area or %NULL on faulure
2148
 */
2149
struct vm_struct *remove_vm_area(const void *addr)
2150
{
N
Nick Piggin 已提交
2151 2152
	struct vmap_area *va;

2153 2154
	might_sleep();

2155 2156
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2157
	if (va && va->vm) {
2158
		struct vm_struct *vm = va->vm;
2159

2160 2161 2162
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2163
		kasan_free_shadow(vm);
2164 2165
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2166 2167
		return vm;
	}
2168 2169

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2170
	return NULL;
2171 2172
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2188
	int flush_dmap = 0;
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2212 2213
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2214
			start = min(addr, start);
2215
			end = max(addr + PAGE_SIZE, end);
2216
			flush_dmap = 1;
2217 2218 2219 2220 2221 2222 2223 2224 2225
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2226
	_vm_unmap_aliases(start, end, flush_dmap);
2227 2228 2229
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2230
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2231 2232 2233 2234 2235 2236
{
	struct vm_struct *area;

	if (!addr)
		return;

2237
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2238
			addr))
L
Linus Torvalds 已提交
2239 2240
		return;

2241
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2242
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2243
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2244 2245 2246 2247
				addr);
		return;
	}

2248 2249
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2250

2251
	kasan_poison_vmalloc(area->addr, area->size);
2252

2253 2254
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2255 2256 2257 2258
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2259 2260 2261
			struct page *page = area->pages[i];

			BUG_ON(!page);
2262
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2263
		}
2264
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2265

D
David Rientjes 已提交
2266
		kvfree(area->pages);
L
Linus Torvalds 已提交
2267 2268 2269 2270 2271
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2272 2273 2274 2275 2276 2277 2278

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
2279
	 * another cpu's list. schedule_work() should be fine with this too.
A
Andrey Ryabinin 已提交
2280 2281 2282 2283 2284 2285 2286 2287
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2288 2289
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2290
 *
2291 2292
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2305 2306 2307 2308 2309 2310 2311 2312
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2313
/**
2314 2315
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2316
 *
2317 2318 2319
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2320
 *
2321 2322 2323
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2324
 *
2325
 * May sleep if called *not* from interrupt context.
2326
 *
2327
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2328
 */
2329
void vfree(const void *addr)
L
Linus Torvalds 已提交
2330
{
2331
	BUG_ON(in_nmi());
2332 2333 2334

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2335 2336
	might_sleep_if(!in_interrupt());

2337 2338
	if (!addr)
		return;
2339 2340

	__vfree(addr);
L
Linus Torvalds 已提交
2341 2342 2343 2344
}
EXPORT_SYMBOL(vfree);

/**
2345 2346
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2347
 *
2348 2349
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2350
 *
2351
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2352
 */
2353
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2354 2355
{
	BUG_ON(in_interrupt());
2356
	might_sleep();
2357 2358
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2359 2360 2361 2362
}
EXPORT_SYMBOL(vunmap);

/**
2363 2364 2365 2366 2367 2368 2369 2370
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2371 2372
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2373 2374
 */
void *vmap(struct page **pages, unsigned int count,
2375
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2376 2377
{
	struct vm_struct *area;
2378
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2379

2380 2381
	might_sleep();

2382
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2383 2384
		return NULL;

2385 2386
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2387 2388
	if (!area)
		return NULL;
2389

2390
	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
C
Christoph Hellwig 已提交
2391
			pages) < 0) {
L
Linus Torvalds 已提交
2392 2393 2394 2395 2396 2397 2398 2399
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

A
Adrian Bunk 已提交
2400
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2401
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2402 2403 2404
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2405
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2406 2407 2408 2409
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2410

2411
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2412 2413 2414
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2415
	if (array_size > PAGE_SIZE) {
2416
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2417
				node, area->caller);
2418
	} else {
2419
		pages = kmalloc_node(array_size, nested_gfp, node);
2420
	}
2421 2422

	if (!pages) {
L
Linus Torvalds 已提交
2423 2424 2425 2426 2427
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2428 2429 2430
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2431
	for (i = 0; i < area->nr_pages; i++) {
2432 2433
		struct page *page;

J
Jianguo Wu 已提交
2434
		if (node == NUMA_NO_NODE)
2435
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2436
		else
2437
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2438 2439

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2440 2441
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2442
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2443 2444
			goto fail;
		}
2445
		area->pages[i] = page;
2446
		if (gfpflags_allow_blocking(gfp_mask))
2447
			cond_resched();
L
Linus Torvalds 已提交
2448
	}
2449
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2450

C
Christoph Hellwig 已提交
2451 2452
	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
			prot, pages) < 0)
L
Linus Torvalds 已提交
2453
		goto fail;
C
Christoph Hellwig 已提交
2454

L
Linus Torvalds 已提交
2455 2456 2457
	return area->addr;

fail:
2458
	warn_alloc(gfp_mask, NULL,
2459
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2460
			  (area->nr_pages*PAGE_SIZE), area->size);
2461
	__vfree(area->addr);
L
Linus Torvalds 已提交
2462 2463 2464 2465
	return NULL;
}

/**
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2480 2481
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2482
 */
2483 2484
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2485 2486
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2487 2488
{
	struct vm_struct *area;
2489 2490
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2491 2492

	size = PAGE_ALIGN(size);
2493
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2494
		goto fail;
L
Linus Torvalds 已提交
2495

2496
	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2497
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2498
	if (!area)
2499
		goto fail;
L
Linus Torvalds 已提交
2500

2501
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2502
	if (!addr)
2503
		return NULL;
2504

2505
	/*
2506 2507
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2508
	 * Now, it is fully initialized, so remove this flag here.
2509
	 */
2510
	clear_vm_uninitialized_flag(area);
2511

2512
	kmemleak_vmalloc(area, size, gfp_mask);
2513 2514

	return addr;
2515 2516

fail:
2517
	warn_alloc(gfp_mask, NULL,
2518
			  "vmalloc: allocation failure: %lu bytes", real_size);
2519
	return NULL;
L
Linus Torvalds 已提交
2520 2521
}

2522
/**
2523 2524 2525 2526 2527 2528
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2529
 *
2530 2531
 * Allocate enough pages to cover @size from the page level allocator with
 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
M
Michal Hocko 已提交
2532
 *
2533 2534
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2535
 *
2536 2537
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2538 2539
 *
 * Return: pointer to the allocated memory or %NULL on error
2540
 */
2541
void *__vmalloc_node(unsigned long size, unsigned long align,
2542
			    gfp_t gfp_mask, int node, const void *caller)
2543 2544
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2545
				gfp_mask, PAGE_KERNEL, 0, node, caller);
2546
}
2547 2548 2549 2550 2551 2552 2553 2554
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node);
#endif
2555

2556
void *__vmalloc(unsigned long size, gfp_t gfp_mask)
C
Christoph Lameter 已提交
2557
{
2558
	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2559
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2560
}
L
Linus Torvalds 已提交
2561 2562 2563
EXPORT_SYMBOL(__vmalloc);

/**
2564 2565 2566 2567 2568
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2569
 *
2570 2571
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2572 2573
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2574 2575 2576
 */
void *vmalloc(unsigned long size)
{
2577 2578
	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
				__builtin_return_address(0));
L
Linus Torvalds 已提交
2579 2580 2581
}
EXPORT_SYMBOL(vmalloc);

2582
/**
2583 2584 2585 2586 2587 2588 2589 2590 2591
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2592 2593
 *
 * Return: pointer to the allocated memory or %NULL on error
2594 2595 2596
 */
void *vzalloc(unsigned long size)
{
2597 2598
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
				__builtin_return_address(0));
2599 2600 2601
}
EXPORT_SYMBOL(vzalloc);

2602
/**
2603 2604
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2605
 *
2606 2607
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2608 2609
 *
 * Return: pointer to the allocated memory or %NULL on error
2610 2611 2612
 */
void *vmalloc_user(unsigned long size)
{
2613 2614 2615 2616
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2617 2618 2619
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2620
/**
2621 2622 2623
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2624
 *
2625 2626
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2627
 *
2628 2629
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2630 2631
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2632 2633 2634
 */
void *vmalloc_node(unsigned long size, int node)
{
2635 2636
	return __vmalloc_node(size, 1, GFP_KERNEL, node,
			__builtin_return_address(0));
C
Christoph Lameter 已提交
2637 2638 2639
}
EXPORT_SYMBOL(vmalloc_node);

2640 2641 2642 2643 2644 2645 2646 2647 2648
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
2649
 * Return: pointer to the allocated memory or %NULL on error
2650 2651 2652
 */
void *vzalloc_node(unsigned long size, int node)
{
2653 2654
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
				__builtin_return_address(0));
2655 2656 2657
}
EXPORT_SYMBOL(vzalloc_node);

2658
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2659
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2660
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2661
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2662
#else
2663 2664 2665 2666 2667
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2668 2669
#endif

L
Linus Torvalds 已提交
2670
/**
2671 2672
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2673
 *
2674 2675
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2676 2677
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2678 2679 2680
 */
void *vmalloc_32(unsigned long size)
{
2681 2682
	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
			__builtin_return_address(0));
L
Linus Torvalds 已提交
2683 2684 2685
}
EXPORT_SYMBOL(vmalloc_32);

2686
/**
2687
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2688
 * @size:	     allocation size
2689 2690 2691
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2692 2693
 *
 * Return: pointer to the allocated memory or %NULL on error
2694 2695 2696
 */
void *vmalloc_32_user(unsigned long size)
{
2697 2698 2699 2700
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2701 2702 2703
}
EXPORT_SYMBOL(vmalloc_32_user);

2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2717
		offset = offset_in_page(addr);
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2734
			void *map = kmap_atomic(p);
2735
			memcpy(buf, map + offset, length);
2736
			kunmap_atomic(map);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2756
		offset = offset_in_page(addr);
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2773
			void *map = kmap_atomic(p);
2774
			memcpy(map + offset, buf, length);
2775
			kunmap_atomic(map);
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2803
 * any information, as /dev/kmem.
2804 2805 2806 2807
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2808
 */
L
Linus Torvalds 已提交
2809 2810
long vread(char *buf, char *addr, unsigned long count)
{
2811 2812
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2813
	char *vaddr, *buf_start = buf;
2814
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2815 2816 2817 2818 2819 2820
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2821 2822 2823 2824 2825
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2826
		if (!va->vm)
2827 2828 2829 2830
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2831
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2841
		n = vaddr + get_vm_area_size(vm) - addr;
2842 2843
		if (n > count)
			n = count;
2844
		if (!(vm->flags & VM_IOREMAP))
2845 2846 2847 2848 2849 2850
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2851 2852
	}
finished:
2853
	spin_unlock(&vmap_area_lock);
2854 2855 2856 2857 2858 2859 2860 2861

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2862 2863
}

2864
/**
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2882
 * any information, as /dev/kmem.
2883 2884 2885 2886
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2887
 */
L
Linus Torvalds 已提交
2888 2889
long vwrite(char *buf, char *addr, unsigned long count)
{
2890 2891
	struct vmap_area *va;
	struct vm_struct *vm;
2892 2893 2894
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2895 2896 2897 2898

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2899
	buflen = count;
L
Linus Torvalds 已提交
2900

2901 2902 2903 2904 2905
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2906
		if (!va->vm)
2907 2908 2909 2910
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2911
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2912 2913 2914 2915 2916 2917 2918 2919
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2920
		n = vaddr + get_vm_area_size(vm) - addr;
2921 2922
		if (n > count)
			n = count;
2923
		if (!(vm->flags & VM_IOREMAP)) {
2924 2925 2926 2927 2928 2929
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2930 2931
	}
finished:
2932
	spin_unlock(&vmap_area_lock);
2933 2934 2935
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2936
}
2937 2938

/**
2939 2940 2941 2942
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
2943
 * @pgoff:		offset from @kaddr to start at
2944
 * @size:		size of map area
2945
 *
2946
 * Returns:	0 for success, -Exxx on failure
2947
 *
2948 2949 2950 2951
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
2952
 *
2953
 * Similar to remap_pfn_range() (see mm/memory.c)
2954
 */
2955
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2956 2957
				void *kaddr, unsigned long pgoff,
				unsigned long size)
2958 2959
{
	struct vm_struct *area;
2960 2961 2962 2963 2964
	unsigned long off;
	unsigned long end_index;

	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
		return -EINVAL;
2965

2966 2967 2968
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2969 2970
		return -EINVAL;

2971
	area = find_vm_area(kaddr);
2972
	if (!area)
N
Nick Piggin 已提交
2973
		return -EINVAL;
2974

2975
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
2976
		return -EINVAL;
2977

2978 2979
	if (check_add_overflow(size, off, &end_index) ||
	    end_index > get_vm_area_size(area))
N
Nick Piggin 已提交
2980
		return -EINVAL;
2981
	kaddr += off;
2982 2983

	do {
2984
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
2985 2986
		int ret;

2987 2988 2989 2990 2991
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
2992 2993 2994
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
2995

2996
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2997

N
Nick Piggin 已提交
2998
	return 0;
2999
}
3000 3001 3002
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3003 3004 3005 3006
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3007
 *
3008
 * Returns:	0 for success, -Exxx on failure
3009
 *
3010 3011 3012
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3013
 *
3014
 * Similar to remap_pfn_range() (see mm/memory.c)
3015 3016 3017 3018 3019
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
3020
					   addr, pgoff,
3021 3022
					   vma->vm_end - vma->vm_start);
}
3023 3024
EXPORT_SYMBOL(remap_vmalloc_range);

3025
static int f(pte_t *pte, unsigned long addr, void *data)
3026
{
3027 3028 3029 3030 3031 3032
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3033 3034 3035 3036
	return 0;
}

/**
3037 3038 3039
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3040
 *
3041
 * Returns:	NULL on failure, vm_struct on success
3042
 *
3043 3044 3045
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3046
 *
3047 3048
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3049
 */
3050
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3051 3052 3053
{
	struct vm_struct *area;

3054 3055
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3056 3057 3058 3059 3060 3061 3062 3063
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3064
				size, f, ptes ? &ptes : NULL)) {
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3081

3082
#ifdef CONFIG_SMP
3083 3084
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3085
	return rb_entry_safe(n, struct vmap_area, rb_node);
3086 3087 3088
}

/**
3089 3090
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3091
 *
3092 3093 3094 3095
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3096
 */
3097 3098
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3099
{
3100 3101 3102 3103 3104
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3105 3106

	while (n) {
3107 3108 3109 3110 3111 3112
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3113
			n = n->rb_right;
3114 3115 3116
		} else {
			n = n->rb_left;
		}
3117 3118
	}

3119
	return va;
3120 3121 3122
}

/**
3123 3124 3125 3126 3127
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3128
 *
3129
 * Returns: determined end address within vmap_area
3130
 */
3131 3132
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3133
{
3134
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3135 3136
	unsigned long addr;

3137 3138 3139 3140 3141 3142 3143
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3144 3145
	}

3146
	return 0;
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3161 3162 3163 3164
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3165
 *
3166 3167 3168 3169 3170 3171
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3172 3173 3174
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3175
				     size_t align)
3176 3177 3178
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3179
	struct vmap_area **vas, *va;
3180 3181
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3182
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3183
	bool purged = false;
3184
	enum fit_type type;
3185 3186

	/* verify parameters and allocate data structures */
3187
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3200
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3201 3202 3203
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3204
			BUG_ON(start2 < end && start < end2);
3205 3206 3207 3208 3209 3210 3211 3212 3213
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3214 3215
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3216
	if (!vas || !vms)
3217
		goto err_free2;
3218 3219

	for (area = 0; area < nr_vms; area++) {
3220
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3221
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3222 3223 3224 3225
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3226
	spin_lock(&free_vmap_area_lock);
3227 3228 3229 3230 3231 3232

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3233 3234
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3235 3236 3237 3238 3239 3240

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3241 3242
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3243 3244

		/*
3245
		 * Fitting base has not been found.
3246
		 */
3247 3248
		if (va == NULL)
			goto overflow;
3249

3250
		/*
Q
Qiujun Huang 已提交
3251
		 * If required width exceeds current VA block, move
3252 3253 3254 3255 3256 3257 3258 3259
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3260
		/*
3261
		 * If this VA does not fit, move base downwards and recheck.
3262
		 */
3263
		if (base + start < va->va_start) {
3264 3265
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3277

3278 3279
		start = offsets[area];
		end = start + sizes[area];
3280
		va = pvm_find_va_enclose_addr(base + end);
3281
	}
3282

3283 3284
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3285
		int ret;
3286

3287 3288
		start = base + offsets[area];
		size = sizes[area];
3289

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3309

3310
	spin_unlock(&free_vmap_area_lock);
3311

3312 3313 3314 3315 3316 3317 3318 3319 3320
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;

		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
				       sizes[area]);
	}

3321
	/* insert all vm's */
3322 3323 3324 3325 3326
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3327
				 pcpu_get_vm_areas);
3328 3329
	}
	spin_unlock(&vmap_area_lock);
3330 3331 3332 3333

	kfree(vas);
	return vms;

3334
recovery:
3335 3336 3337 3338 3339 3340
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3341
	while (area--) {
3342 3343 3344 3345 3346 3347
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
3348 3349 3350 3351
		vas[area] = NULL;
	}

overflow:
3352
	spin_unlock(&free_vmap_area_lock);
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3371 3372
err_free:
	for (area = 0; area < nr_vms; area++) {
3373 3374 3375
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3376
		kfree(vms[area]);
3377
	}
3378
err_free2:
3379 3380 3381
	kfree(vas);
	kfree(vms);
	return NULL;
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3421
#endif	/* CONFIG_SMP */
3422 3423 3424

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3425
	__acquires(&vmap_purge_lock)
3426
	__acquires(&vmap_area_lock)
3427
{
3428
	mutex_lock(&vmap_purge_lock);
3429
	spin_lock(&vmap_area_lock);
3430

3431
	return seq_list_start(&vmap_area_list, *pos);
3432 3433 3434 3435
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3436
	return seq_list_next(p, &vmap_area_list, pos);
3437 3438 3439
}

static void s_stop(struct seq_file *m, void *p)
3440
	__releases(&vmap_purge_lock)
3441
	__releases(&vmap_area_lock)
3442
{
3443
	mutex_unlock(&vmap_purge_lock);
3444
	spin_unlock(&vmap_area_lock);
3445 3446
}

E
Eric Dumazet 已提交
3447 3448
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3449
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3450 3451 3452 3453 3454
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3455 3456
		if (v->flags & VM_UNINITIALIZED)
			return;
3457 3458
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3459

E
Eric Dumazet 已提交
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3487 3488
static int s_show(struct seq_file *m, void *p)
{
3489
	struct vmap_area *va;
3490 3491
	struct vm_struct *v;

3492 3493
	va = list_entry(p, struct vmap_area, list);

3494
	/*
3495 3496
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3497
	 */
3498
	if (!va->vm) {
3499
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3500
			(void *)va->va_start, (void *)va->va_end,
3501
			va->va_end - va->va_start);
3502

3503
		return 0;
3504
	}
3505 3506

	v = va->vm;
3507

K
Kees Cook 已提交
3508
	seq_printf(m, "0x%pK-0x%pK %7ld",
3509 3510
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3511 3512
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3513

3514 3515 3516 3517
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3518
		seq_printf(m, " phys=%pa", &v->phys_addr);
3519 3520

	if (v->flags & VM_IOREMAP)
3521
		seq_puts(m, " ioremap");
3522 3523

	if (v->flags & VM_ALLOC)
3524
		seq_puts(m, " vmalloc");
3525 3526

	if (v->flags & VM_MAP)
3527
		seq_puts(m, " vmap");
3528 3529

	if (v->flags & VM_USERMAP)
3530
		seq_puts(m, " user");
3531

3532 3533 3534
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3535
	if (is_vmalloc_addr(v->pages))
3536
		seq_puts(m, " vpages");
3537

E
Eric Dumazet 已提交
3538
	show_numa_info(m, v);
3539
	seq_putc(m, '\n');
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3550 3551 3552
	return 0;
}

3553
static const struct seq_operations vmalloc_op = {
3554 3555 3556 3557 3558
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3559 3560 3561

static int __init proc_vmalloc_init(void)
{
3562
	if (IS_ENABLED(CONFIG_NUMA))
3563
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3564 3565
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3566
	else
3567
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3568 3569 3570
	return 0;
}
module_init(proc_vmalloc_init);
3571

3572
#endif