vmalloc.c 90.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27
#include <linux/rbtree.h>
28
#include <linux/xarray.h>
N
Nick Piggin 已提交
29
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37
#include <linux/overflow.h>
38

39
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
40
#include <asm/tlbflush.h>
41
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
42

43
#include "internal.h"
44
#include "pgalloc-track.h"
45

46 47 48 49 50 51 52 53
bool is_vmalloc_addr(const void *x)
{
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

54 55 56 57 58 59 60 61 62 63 64
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
65 66 67 68
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
69 70
}

N
Nick Piggin 已提交
71
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
72

73 74
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
75 76 77 78 79 80 81 82
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
83
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
84 85
}

86 87
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
88 89 90
{
	pmd_t *pmd;
	unsigned long next;
91
	int cleared;
L
Linus Torvalds 已提交
92 93 94 95

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
96 97 98 99 100 101

		cleared = pmd_clear_huge(pmd);
		if (cleared || pmd_bad(*pmd))
			*mask |= PGTBL_PMD_MODIFIED;

		if (cleared)
102
			continue;
L
Linus Torvalds 已提交
103 104
		if (pmd_none_or_clear_bad(pmd))
			continue;
105
		vunmap_pte_range(pmd, addr, next, mask);
L
Linus Torvalds 已提交
106 107 108
	} while (pmd++, addr = next, addr != end);
}

109 110
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
111 112 113
{
	pud_t *pud;
	unsigned long next;
114
	int cleared;
L
Linus Torvalds 已提交
115

116
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
117 118
	do {
		next = pud_addr_end(addr, end);
119 120 121 122 123 124

		cleared = pud_clear_huge(pud);
		if (cleared || pud_bad(*pud))
			*mask |= PGTBL_PUD_MODIFIED;

		if (cleared)
125
			continue;
L
Linus Torvalds 已提交
126 127
		if (pud_none_or_clear_bad(pud))
			continue;
128
		vunmap_pmd_range(pud, addr, next, mask);
L
Linus Torvalds 已提交
129 130 131
	} while (pud++, addr = next, addr != end);
}

132 133
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
134 135 136
{
	p4d_t *p4d;
	unsigned long next;
137
	int cleared;
138 139 140 141

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
142 143 144 145 146 147

		cleared = p4d_clear_huge(p4d);
		if (cleared || p4d_bad(*p4d))
			*mask |= PGTBL_P4D_MODIFIED;

		if (cleared)
148 149 150
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
151
		vunmap_pud_range(p4d, addr, next, mask);
152 153 154
	} while (p4d++, addr = next, addr != end);
}

155 156
/**
 * unmap_kernel_range_noflush - unmap kernel VM area
157
 * @start: start of the VM area to unmap
158 159 160 161 162 163 164 165 166 167
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 * should have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible
 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 * function and flush_tlb_kernel_range() after.
 */
168
void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
L
Linus Torvalds 已提交
169
{
170
	unsigned long end = start + size;
L
Linus Torvalds 已提交
171
	unsigned long next;
172
	pgd_t *pgd;
173 174
	unsigned long addr = start;
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
175 176

	BUG_ON(addr >= end);
177
	start = addr;
L
Linus Torvalds 已提交
178 179 180
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
181 182
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
L
Linus Torvalds 已提交
183 184
		if (pgd_none_or_clear_bad(pgd))
			continue;
185
		vunmap_p4d_range(pgd, addr, next, &mask);
L
Linus Torvalds 已提交
186
	} while (pgd++, addr = next, addr != end);
187 188 189

	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);
L
Linus Torvalds 已提交
190 191 192
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
193 194
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
195 196 197
{
	pte_t *pte;

N
Nick Piggin 已提交
198 199 200 201 202
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

203
	pte = pte_alloc_kernel_track(pmd, addr, mask);
L
Linus Torvalds 已提交
204 205 206
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
207 208 209 210 211
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
212 213
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
214
		(*nr)++;
L
Linus Torvalds 已提交
215
	} while (pte++, addr += PAGE_SIZE, addr != end);
216
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
217 218 219
	return 0;
}

N
Nick Piggin 已提交
220
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
221 222
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
223 224 225 226
{
	pmd_t *pmd;
	unsigned long next;

227
	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
L
Linus Torvalds 已提交
228 229 230 231
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
232
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
233 234 235 236 237
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

238
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
239 240
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
241 242 243 244
{
	pud_t *pud;
	unsigned long next;

245
	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
L
Linus Torvalds 已提交
246 247 248 249
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
250
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
251 252 253 254 255
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

256
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
257 258
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
259 260 261 262
{
	p4d_t *p4d;
	unsigned long next;

263
	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 265 266 267
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
268
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
269 270 271 272 273
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

274 275 276 277 278 279
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
N
Nick Piggin 已提交
280
 *
281 282 283 284 285 286 287 288 289
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 * have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible for
 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 * function.
 *
 * RETURNS:
290
 * 0 on success, -errno on failure.
N
Nick Piggin 已提交
291
 */
292 293
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
294
{
295
	unsigned long start = addr;
296
	unsigned long end = addr + size;
L
Linus Torvalds 已提交
297
	unsigned long next;
298
	pgd_t *pgd;
N
Nick Piggin 已提交
299 300
	int err = 0;
	int nr = 0;
301
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
302 303 304 305 306

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
307 308 309
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
L
Linus Torvalds 已提交
310
		if (err)
311
			return err;
L
Linus Torvalds 已提交
312
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
313

314 315 316
	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);

317
	return 0;
L
Linus Torvalds 已提交
318 319
}

C
Christoph Hellwig 已提交
320 321
int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
		struct page **pages)
322 323 324
{
	int ret;

325 326
	ret = map_kernel_range_noflush(start, size, prot, pages);
	flush_cache_vmap(start, start + size);
327 328 329
	return ret;
}

330
int is_vmalloc_or_module_addr(const void *x)
331 332
{
	/*
333
	 * ARM, x86-64 and sparc64 put modules in a special place,
334 335 336 337 338 339 340 341 342 343 344
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

345
/*
346
 * Walk a vmap address to the struct page it maps.
347
 */
348
struct page *vmalloc_to_page(const void *vmalloc_addr)
349 350
{
	unsigned long addr = (unsigned long) vmalloc_addr;
351
	struct page *page = NULL;
352
	pgd_t *pgd = pgd_offset_k(addr);
353 354 355 356
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
357

358 359 360 361
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
362
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
363

364 365 366 367 368 369
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
370 371 372 373 374 375 376 377 378 379 380

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
381 382
		return NULL;
	pmd = pmd_offset(pud, addr);
383 384
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
385 386 387 388 389 390 391
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
392
	return page;
393
}
394
EXPORT_SYMBOL(vmalloc_to_page);
395 396

/*
397
 * Map a vmalloc()-space virtual address to the physical page frame number.
398
 */
399
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
400
{
401
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
402
}
403
EXPORT_SYMBOL(vmalloc_to_pfn);
404

N
Nick Piggin 已提交
405 406 407

/*** Global kva allocator ***/

408
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
409
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
410

N
Nick Piggin 已提交
411 412

static DEFINE_SPINLOCK(vmap_area_lock);
413
static DEFINE_SPINLOCK(free_vmap_area_lock);
414 415
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
416
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
417
static struct rb_root vmap_area_root = RB_ROOT;
418
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

446 447 448 449 450 451 452
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

453 454 455 456 457 458 459 460 461 462 463 464 465 466
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
467

468 469 470 471 472 473 474 475 476 477 478
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

479 480
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
481 482 483 484

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
485

486 487 488 489 490 491 492
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
493
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
494
{
N
Nick Piggin 已提交
495 496 497 498 499 500 501 502
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
503
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
504 505 506 507 508 509 510 511
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
533

534 535 536 537 538 539 540
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
541

542 543 544 545 546 547 548 549 550 551 552
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
553 554
		else
			BUG();
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
591 592
	}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
613

614 615
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
616 617
}

618 619 620
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
621 622
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
623

624 625 626 627 628 629 630 631
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
632 633
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
725 726 727 728

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
765
static __always_inline struct vmap_area *
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

827 828
			if (merged)
				unlink_va(va, root);
829 830 831

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
832 833 834 835

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
836 837 838 839 840 841 842 843
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
844 845

	return va;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
907
			 * OK. We roll back and find the first right sub-tree,
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
1005
	struct vmap_area *lva = NULL;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
1069 1070 1071 1072 1073
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1092
		if (lva)	/* type == NE_FIT_TYPE */
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1106
	unsigned long vstart, unsigned long vend)
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1136 1137 1138 1139
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1140 1141
	return nva_start_addr;
}
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
	spin_unlock(&free_vmap_area_lock);
}

N
Nick Piggin 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1172
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1173
	unsigned long addr;
N
Nick Piggin 已提交
1174
	int purged = 0;
1175
	int ret;
N
Nick Piggin 已提交
1176

N
Nick Piggin 已提交
1177
	BUG_ON(!size);
1178
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1179
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1180

1181 1182 1183
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1184
	might_sleep();
1185
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1186

1187
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1188 1189 1190
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1191 1192 1193 1194
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1195
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1196

N
Nick Piggin 已提交
1197
retry:
1198
	/*
1199 1200 1201 1202 1203 1204
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1205 1206 1207
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1208 1209
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1210
	 *
1211
	 * Set "pva" to NULL here, because of "retry" path.
1212
	 */
1213
	pva = NULL;
1214

1215 1216 1217 1218 1219 1220
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1221
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1222

1223
	spin_lock(&free_vmap_area_lock);
1224 1225 1226

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1227

1228
	/*
1229 1230
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1231
	 */
1232
	addr = __alloc_vmap_area(size, align, vstart, vend);
1233 1234
	spin_unlock(&free_vmap_area_lock);

1235
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1236
		goto overflow;
N
Nick Piggin 已提交
1237 1238 1239

	va->va_start = addr;
	va->va_end = addr + size;
1240
	va->vm = NULL;
1241

1242

1243 1244
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1245 1246
	spin_unlock(&vmap_area_lock);

1247
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1248 1249 1250
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1251 1252 1253 1254 1255 1256
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1257
	return va;
N
Nick Piggin 已提交
1258 1259 1260 1261 1262 1263 1264

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1275
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1276 1277
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1278 1279

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1280
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1281 1282
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1320
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1321

1322 1323 1324 1325 1326
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1327
static DEFINE_MUTEX(vmap_purge_lock);
1328

1329 1330 1331
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1332 1333 1334 1335 1336 1337
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1338
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1339 1340
}

N
Nick Piggin 已提交
1341 1342 1343
/*
 * Purges all lazily-freed vmap areas.
 */
1344
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1345
{
1346
	unsigned long resched_threshold;
1347
	struct llist_node *valist;
N
Nick Piggin 已提交
1348
	struct vmap_area *va;
1349
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1350

1351
	lockdep_assert_held(&vmap_purge_lock);
1352

1353
	valist = llist_del_all(&vmap_purge_list);
1354 1355 1356 1357 1358 1359 1360
	if (unlikely(valist == NULL))
		return false;

	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1361
	llist_for_each_entry(va, valist, purge_list) {
1362 1363 1364 1365
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1366 1367
	}

1368
	flush_tlb_kernel_range(start, end);
1369
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1370

1371
	spin_lock(&free_vmap_area_lock);
1372
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1373
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1374 1375
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1376

1377 1378 1379 1380 1381
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1382 1383 1384 1385 1386 1387
		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
					    &free_vmap_area_list);

		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1388

1389
		atomic_long_sub(nr, &vmap_lazy_nr);
1390

1391
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1392
			cond_resched_lock(&free_vmap_area_lock);
1393
	}
1394
	spin_unlock(&free_vmap_area_lock);
1395
	return true;
N
Nick Piggin 已提交
1396 1397
}

N
Nick Piggin 已提交
1398 1399 1400 1401 1402 1403
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1404
	if (mutex_trylock(&vmap_purge_lock)) {
1405
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1406
		mutex_unlock(&vmap_purge_lock);
1407
	}
N
Nick Piggin 已提交
1408 1409
}

N
Nick Piggin 已提交
1410 1411 1412 1413 1414
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1415
	mutex_lock(&vmap_purge_lock);
1416 1417
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1418
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1419 1420 1421
}

/*
1422 1423 1424
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1425
 */
1426
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1427
{
1428
	unsigned long nr_lazy;
1429

1430 1431 1432 1433
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1434 1435
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1436 1437 1438 1439 1440

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1441
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1442 1443
}

1444 1445 1446 1447 1448 1449
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
C
Christoph Hellwig 已提交
1450
	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1451
	if (debug_pagealloc_enabled_static())
1452 1453
		flush_tlb_kernel_range(va->va_start, va->va_end);

1454
	free_vmap_area_noflush(va);
1455 1456
}

N
Nick Piggin 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1491 1492 1493 1494
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1507
	unsigned long dirty_min, dirty_max; /*< dirty range */
1508 1509
	struct list_head free_list;
	struct rcu_head rcu_head;
1510
	struct list_head purge;
N
Nick Piggin 已提交
1511 1512 1513 1514 1515 1516
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
1517
 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
N
Nick Piggin 已提交
1518 1519 1520
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
1521
static DEFINE_XARRAY(vmap_blocks);
N
Nick Piggin 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1552
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1553 1554
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1555 1556 1557 1558 1559 1560
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1561
	void *vaddr;
N
Nick Piggin 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1573
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1574
		kfree(vb);
J
Julia Lawall 已提交
1575
		return ERR_CAST(va);
N
Nick Piggin 已提交
1576 1577
	}

1578
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1579 1580
	spin_lock_init(&vb->lock);
	vb->va = va;
1581 1582 1583
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1584
	vb->dirty = 0;
1585 1586
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1587 1588 1589
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
1590 1591 1592 1593 1594 1595
	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
	if (err) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}
N
Nick Piggin 已提交
1596 1597 1598

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1599
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1600
	spin_unlock(&vbq->lock);
1601
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1602

1603
	return vaddr;
N
Nick Piggin 已提交
1604 1605 1606 1607 1608 1609
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;

1610
	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
N
Nick Piggin 已提交
1611 1612
	BUG_ON(tmp != vb);

1613
	free_vmap_area_noflush(vb->va);
1614
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1615 1616
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1634 1635
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1660 1661 1662 1663
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1664
	void *vaddr = NULL;
N
Nick Piggin 已提交
1665 1666
	unsigned int order;

1667
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1668
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1669 1670 1671 1672 1673 1674 1675 1676
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1677 1678 1679 1680 1681
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1682
		unsigned long pages_off;
N
Nick Piggin 已提交
1683 1684

		spin_lock(&vb->lock);
1685 1686 1687 1688
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1689

1690 1691
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1692 1693 1694 1695 1696 1697
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1698

1699 1700
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1701
	}
1702

1703
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1704 1705
	rcu_read_unlock();

1706 1707 1708
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1709

1710
	return vaddr;
N
Nick Piggin 已提交
1711 1712
}

1713
static void vb_free(unsigned long addr, unsigned long size)
N
Nick Piggin 已提交
1714 1715 1716 1717 1718
{
	unsigned long offset;
	unsigned int order;
	struct vmap_block *vb;

1719
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1720
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1721

1722
	flush_cache_vunmap(addr, addr + size);
1723

N
Nick Piggin 已提交
1724
	order = get_order(size);
1725
	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1726
	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
N
Nick Piggin 已提交
1727

1728
	unmap_kernel_range_noflush(addr, size);
1729

1730
	if (debug_pagealloc_enabled_static())
1731
		flush_tlb_kernel_range(addr, addr + size);
1732

N
Nick Piggin 已提交
1733
	spin_lock(&vb->lock);
1734 1735 1736 1737

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1738

N
Nick Piggin 已提交
1739 1740
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1741
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1742 1743 1744 1745 1746 1747
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1748
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1749 1750 1751
{
	int cpu;

1752 1753 1754
	if (unlikely(!vmap_initialized))
		return;

1755 1756
	might_sleep();

N
Nick Piggin 已提交
1757 1758 1759 1760 1761 1762 1763
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1764 1765
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1766
				unsigned long s, e;
1767

1768 1769
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1770

1771 1772
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1773

1774
				flush = 1;
N
Nick Piggin 已提交
1775 1776 1777 1778 1779 1780
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1781
	mutex_lock(&vmap_purge_lock);
1782 1783 1784
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1785
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1786
}
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1817
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1818
	unsigned long addr = (unsigned long)mem;
1819
	struct vmap_area *va;
N
Nick Piggin 已提交
1820

1821
	might_sleep();
N
Nick Piggin 已提交
1822 1823 1824
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1825
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1826

1827 1828
	kasan_poison_vmalloc(mem, size);

1829
	if (likely(count <= VMAP_MAX_ALLOC)) {
1830
		debug_check_no_locks_freed(mem, size);
1831
		vb_free(addr, size);
1832 1833 1834 1835 1836
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1837 1838
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1839
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1840 1841 1842 1843 1844 1845 1846 1847
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
1848
 *
1849 1850 1851 1852 1853 1854
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1855
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1856
 */
1857
void *vm_map_ram(struct page **pages, unsigned int count, int node)
N
Nick Piggin 已提交
1858
{
1859
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
1878 1879 1880

	kasan_unpoison_vmalloc(mem, size);

1881
	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
N
Nick Piggin 已提交
1882 1883 1884 1885 1886 1887 1888
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1889
static struct vm_struct *vmlist __initdata;
1890

N
Nicolas Pitre 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1917 1918 1919
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1920
 * @align: requested alignment
1921 1922 1923 1924 1925 1926 1927 1928
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1929
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1930 1931
{
	static size_t vm_init_off __initdata;
1932 1933 1934 1935
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1936

1937
	vm->addr = (void *)addr;
1938

N
Nicolas Pitre 已提交
1939
	vm_area_add_early(vm);
1940 1941
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1983 1984
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1985 1986
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1987 1988
	int i;

1989 1990 1991 1992 1993
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1994 1995
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1996
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1997 1998 1999 2000

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
2001 2002 2003
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
2004
	}
2005

I
Ivan Kokshaysky 已提交
2006 2007
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
2008 2009 2010 2011
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
2012 2013
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
2014
		va->vm = tmp;
2015
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
2016
	}
2017

2018 2019 2020 2021
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
2022
	vmap_initialized = true;
N
Nick Piggin 已提交
2023 2024
}

2025 2026 2027 2028 2029 2030 2031 2032
/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2033 2034 2035
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2036 2037

	flush_cache_vunmap(addr, end);
2038
	unmap_kernel_range_noflush(addr, size);
N
Nick Piggin 已提交
2039 2040 2041
	flush_tlb_kernel_range(addr, end);
}

2042 2043
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2044 2045 2046 2047 2048
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2049
	va->vm = vm;
2050 2051 2052 2053 2054 2055 2056
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2057
	spin_unlock(&vmap_area_lock);
2058
}
2059

2060
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2061
{
2062
	/*
2063
	 * Before removing VM_UNINITIALIZED,
2064 2065 2066 2067
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2068
	vm->flags &= ~VM_UNINITIALIZED;
2069 2070
}

N
Nick Piggin 已提交
2071
static struct vm_struct *__get_vm_area_node(unsigned long size,
2072
		unsigned long align, unsigned long flags, unsigned long start,
2073
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2074
{
2075
	struct vmap_area *va;
N
Nick Piggin 已提交
2076
	struct vm_struct *area;
2077
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2078

2079
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2080
	size = PAGE_ALIGN(size);
2081 2082
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2083

2084 2085 2086 2087
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2088
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2089 2090 2091
	if (unlikely(!area))
		return NULL;

2092 2093
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2094

N
Nick Piggin 已提交
2095 2096 2097 2098
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2099 2100
	}

2101
	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2102

2103
	setup_vmalloc_vm(area, va, flags, caller);
2104

L
Linus Torvalds 已提交
2105 2106 2107
	return area;
}

2108 2109
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2110
				       const void *caller)
2111
{
D
David Rientjes 已提交
2112 2113
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2114 2115
}

L
Linus Torvalds 已提交
2116
/**
2117 2118 2119
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2120
 *
2121 2122 2123
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2124 2125
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2126 2127 2128
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2129
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2130 2131
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2132 2133 2134
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2135
				const void *caller)
2136
{
2137
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2138
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2139 2140
}

2141
/**
2142 2143
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2144
 *
2145 2146 2147
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2148 2149
 *
 * Return: pointer to the found area or %NULL on faulure
2150 2151
 */
struct vm_struct *find_vm_area(const void *addr)
2152
{
N
Nick Piggin 已提交
2153
	struct vmap_area *va;
2154

N
Nick Piggin 已提交
2155
	va = find_vmap_area((unsigned long)addr);
2156 2157
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2158

2159
	return va->vm;
L
Linus Torvalds 已提交
2160 2161
}

2162
/**
2163 2164
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2165
 *
2166 2167 2168
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2169 2170
 *
 * Return: pointer to the found area or %NULL on faulure
2171
 */
2172
struct vm_struct *remove_vm_area(const void *addr)
2173
{
N
Nick Piggin 已提交
2174 2175
	struct vmap_area *va;

2176 2177
	might_sleep();

2178 2179
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2180
	if (va && va->vm) {
2181
		struct vm_struct *vm = va->vm;
2182

2183 2184 2185
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2186
		kasan_free_shadow(vm);
2187 2188
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2189 2190
		return vm;
	}
2191 2192

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2193
	return NULL;
2194 2195
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2211
	int flush_dmap = 0;
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2235 2236
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2237
			start = min(addr, start);
2238
			end = max(addr + PAGE_SIZE, end);
2239
			flush_dmap = 1;
2240 2241 2242 2243 2244 2245 2246 2247 2248
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2249
	_vm_unmap_aliases(start, end, flush_dmap);
2250 2251 2252
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2253
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2254 2255 2256 2257 2258 2259
{
	struct vm_struct *area;

	if (!addr)
		return;

2260
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2261
			addr))
L
Linus Torvalds 已提交
2262 2263
		return;

2264
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2265
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2266
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2267 2268 2269 2270
				addr);
		return;
	}

2271 2272
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2273

2274
	kasan_poison_vmalloc(area->addr, area->size);
2275

2276 2277
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2278 2279 2280 2281
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2282 2283 2284
			struct page *page = area->pages[i];

			BUG_ON(!page);
2285
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2286
		}
2287
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2288

D
David Rientjes 已提交
2289
		kvfree(area->pages);
L
Linus Torvalds 已提交
2290 2291 2292 2293 2294
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2295 2296 2297 2298 2299 2300 2301

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
2302
	 * another cpu's list. schedule_work() should be fine with this too.
A
Andrey Ryabinin 已提交
2303 2304 2305 2306 2307 2308 2309 2310
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2311 2312
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2313
 *
2314 2315
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2328 2329 2330 2331 2332 2333 2334 2335
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2336
/**
2337 2338
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2339
 *
2340 2341 2342
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2343
 *
2344 2345 2346
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2347
 *
2348
 * May sleep if called *not* from interrupt context.
2349
 *
2350
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2351
 */
2352
void vfree(const void *addr)
L
Linus Torvalds 已提交
2353
{
2354
	BUG_ON(in_nmi());
2355 2356 2357

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2358 2359
	might_sleep_if(!in_interrupt());

2360 2361
	if (!addr)
		return;
2362 2363

	__vfree(addr);
L
Linus Torvalds 已提交
2364 2365 2366 2367
}
EXPORT_SYMBOL(vfree);

/**
2368 2369
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2370
 *
2371 2372
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2373
 *
2374
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2375
 */
2376
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2377 2378
{
	BUG_ON(in_interrupt());
2379
	might_sleep();
2380 2381
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2382 2383 2384 2385
}
EXPORT_SYMBOL(vunmap);

/**
2386 2387 2388 2389 2390 2391 2392 2393
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2394 2395
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2396 2397
 */
void *vmap(struct page **pages, unsigned int count,
2398
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2399 2400
{
	struct vm_struct *area;
2401
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2402

2403 2404
	might_sleep();

2405
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2406 2407
		return NULL;

2408 2409
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2410 2411
	if (!area)
		return NULL;
2412

2413
	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
C
Christoph Hellwig 已提交
2414
			pages) < 0) {
L
Linus Torvalds 已提交
2415 2416 2417 2418 2419 2420 2421 2422
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

A
Adrian Bunk 已提交
2423
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2424
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2425 2426 2427
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2428
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2429 2430 2431 2432
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2433

2434
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2435 2436 2437
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2438
	if (array_size > PAGE_SIZE) {
2439
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2440
				node, area->caller);
2441
	} else {
2442
		pages = kmalloc_node(array_size, nested_gfp, node);
2443
	}
2444 2445

	if (!pages) {
L
Linus Torvalds 已提交
2446 2447 2448 2449 2450
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2451 2452 2453
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2454
	for (i = 0; i < area->nr_pages; i++) {
2455 2456
		struct page *page;

J
Jianguo Wu 已提交
2457
		if (node == NUMA_NO_NODE)
2458
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2459
		else
2460
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2461 2462

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2463 2464
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2465
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2466 2467
			goto fail;
		}
2468
		area->pages[i] = page;
2469
		if (gfpflags_allow_blocking(gfp_mask))
2470
			cond_resched();
L
Linus Torvalds 已提交
2471
	}
2472
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2473

C
Christoph Hellwig 已提交
2474 2475
	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
			prot, pages) < 0)
L
Linus Torvalds 已提交
2476
		goto fail;
C
Christoph Hellwig 已提交
2477

L
Linus Torvalds 已提交
2478 2479 2480
	return area->addr;

fail:
2481
	warn_alloc(gfp_mask, NULL,
2482
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2483
			  (area->nr_pages*PAGE_SIZE), area->size);
2484
	__vfree(area->addr);
L
Linus Torvalds 已提交
2485 2486 2487 2488
	return NULL;
}

/**
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2503 2504
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2505
 */
2506 2507
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2508 2509
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2510 2511
{
	struct vm_struct *area;
2512 2513
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2514 2515

	size = PAGE_ALIGN(size);
2516
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2517
		goto fail;
L
Linus Torvalds 已提交
2518

2519
	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2520
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2521
	if (!area)
2522
		goto fail;
L
Linus Torvalds 已提交
2523

2524
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2525
	if (!addr)
2526
		return NULL;
2527

2528
	/*
2529 2530
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2531
	 * Now, it is fully initialized, so remove this flag here.
2532
	 */
2533
	clear_vm_uninitialized_flag(area);
2534

2535
	kmemleak_vmalloc(area, size, gfp_mask);
2536 2537

	return addr;
2538 2539

fail:
2540
	warn_alloc(gfp_mask, NULL,
2541
			  "vmalloc: allocation failure: %lu bytes", real_size);
2542
	return NULL;
L
Linus Torvalds 已提交
2543 2544
}

2545
/**
2546 2547 2548 2549 2550 2551
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2552
 *
2553 2554
 * Allocate enough pages to cover @size from the page level allocator with
 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
M
Michal Hocko 已提交
2555
 *
2556 2557
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2558
 *
2559 2560
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2561 2562
 *
 * Return: pointer to the allocated memory or %NULL on error
2563
 */
2564
void *__vmalloc_node(unsigned long size, unsigned long align,
2565
			    gfp_t gfp_mask, int node, const void *caller)
2566 2567
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2568
				gfp_mask, PAGE_KERNEL, 0, node, caller);
2569
}
2570 2571 2572 2573 2574 2575 2576 2577
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node);
#endif
2578

2579
void *__vmalloc(unsigned long size, gfp_t gfp_mask)
C
Christoph Lameter 已提交
2580
{
2581
	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2582
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2583
}
L
Linus Torvalds 已提交
2584 2585 2586
EXPORT_SYMBOL(__vmalloc);

/**
2587 2588 2589 2590 2591
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2592
 *
2593 2594
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2595 2596
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2597 2598 2599
 */
void *vmalloc(unsigned long size)
{
2600 2601
	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
				__builtin_return_address(0));
L
Linus Torvalds 已提交
2602 2603 2604
}
EXPORT_SYMBOL(vmalloc);

2605
/**
2606 2607 2608 2609 2610 2611 2612 2613 2614
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2615 2616
 *
 * Return: pointer to the allocated memory or %NULL on error
2617 2618 2619
 */
void *vzalloc(unsigned long size)
{
2620 2621
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
				__builtin_return_address(0));
2622 2623 2624
}
EXPORT_SYMBOL(vzalloc);

2625
/**
2626 2627
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2628
 *
2629 2630
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2631 2632
 *
 * Return: pointer to the allocated memory or %NULL on error
2633 2634 2635
 */
void *vmalloc_user(unsigned long size)
{
2636 2637 2638 2639
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2640 2641 2642
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2643
/**
2644 2645 2646
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2647
 *
2648 2649
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2650
 *
2651 2652
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2653 2654
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2655 2656 2657
 */
void *vmalloc_node(unsigned long size, int node)
{
2658 2659
	return __vmalloc_node(size, 1, GFP_KERNEL, node,
			__builtin_return_address(0));
C
Christoph Lameter 已提交
2660 2661 2662
}
EXPORT_SYMBOL(vmalloc_node);

2663 2664 2665 2666 2667 2668 2669 2670 2671
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
2672
 * Return: pointer to the allocated memory or %NULL on error
2673 2674 2675
 */
void *vzalloc_node(unsigned long size, int node)
{
2676 2677
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
				__builtin_return_address(0));
2678 2679 2680
}
EXPORT_SYMBOL(vzalloc_node);

2681
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2682
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2683
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2684
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2685
#else
2686 2687 2688 2689 2690
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2691 2692
#endif

L
Linus Torvalds 已提交
2693
/**
2694 2695
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2696
 *
2697 2698
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2699 2700
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2701 2702 2703
 */
void *vmalloc_32(unsigned long size)
{
2704 2705
	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
			__builtin_return_address(0));
L
Linus Torvalds 已提交
2706 2707 2708
}
EXPORT_SYMBOL(vmalloc_32);

2709
/**
2710
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2711
 * @size:	     allocation size
2712 2713 2714
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2715 2716
 *
 * Return: pointer to the allocated memory or %NULL on error
2717 2718 2719
 */
void *vmalloc_32_user(unsigned long size)
{
2720 2721 2722 2723
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2724 2725 2726
}
EXPORT_SYMBOL(vmalloc_32_user);

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2740
		offset = offset_in_page(addr);
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2757
			void *map = kmap_atomic(p);
2758
			memcpy(buf, map + offset, length);
2759
			kunmap_atomic(map);
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2779
		offset = offset_in_page(addr);
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2796
			void *map = kmap_atomic(p);
2797
			memcpy(map + offset, buf, length);
2798
			kunmap_atomic(map);
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2826
 * any information, as /dev/kmem.
2827 2828 2829 2830
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2831
 */
L
Linus Torvalds 已提交
2832 2833
long vread(char *buf, char *addr, unsigned long count)
{
2834 2835
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2836
	char *vaddr, *buf_start = buf;
2837
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842 2843
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2844 2845 2846 2847 2848
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2849
		if (!va->vm)
2850 2851 2852 2853
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2854
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2855 2856 2857 2858 2859 2860 2861 2862 2863
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2864
		n = vaddr + get_vm_area_size(vm) - addr;
2865 2866
		if (n > count)
			n = count;
2867
		if (!(vm->flags & VM_IOREMAP))
2868 2869 2870 2871 2872 2873
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2874 2875
	}
finished:
2876
	spin_unlock(&vmap_area_lock);
2877 2878 2879 2880 2881 2882 2883 2884

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2885 2886
}

2887
/**
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2905
 * any information, as /dev/kmem.
2906 2907 2908 2909
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2910
 */
L
Linus Torvalds 已提交
2911 2912
long vwrite(char *buf, char *addr, unsigned long count)
{
2913 2914
	struct vmap_area *va;
	struct vm_struct *vm;
2915 2916 2917
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2918 2919 2920 2921

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2922
	buflen = count;
L
Linus Torvalds 已提交
2923

2924 2925 2926 2927 2928
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2929
		if (!va->vm)
2930 2931 2932 2933
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2934
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2935 2936 2937 2938 2939 2940 2941 2942
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2943
		n = vaddr + get_vm_area_size(vm) - addr;
2944 2945
		if (n > count)
			n = count;
2946
		if (!(vm->flags & VM_IOREMAP)) {
2947 2948 2949 2950 2951 2952
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2953 2954
	}
finished:
2955
	spin_unlock(&vmap_area_lock);
2956 2957 2958
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2959
}
2960 2961

/**
2962 2963 2964 2965
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
2966
 * @pgoff:		offset from @kaddr to start at
2967
 * @size:		size of map area
2968
 *
2969
 * Returns:	0 for success, -Exxx on failure
2970
 *
2971 2972 2973 2974
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
2975
 *
2976
 * Similar to remap_pfn_range() (see mm/memory.c)
2977
 */
2978
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2979 2980
				void *kaddr, unsigned long pgoff,
				unsigned long size)
2981 2982
{
	struct vm_struct *area;
2983 2984 2985 2986 2987
	unsigned long off;
	unsigned long end_index;

	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
		return -EINVAL;
2988

2989 2990 2991
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2992 2993
		return -EINVAL;

2994
	area = find_vm_area(kaddr);
2995
	if (!area)
N
Nick Piggin 已提交
2996
		return -EINVAL;
2997

2998
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
2999
		return -EINVAL;
3000

3001 3002
	if (check_add_overflow(size, off, &end_index) ||
	    end_index > get_vm_area_size(area))
N
Nick Piggin 已提交
3003
		return -EINVAL;
3004
	kaddr += off;
3005 3006

	do {
3007
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3008 3009
		int ret;

3010 3011 3012 3013 3014
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3015 3016 3017
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3018

3019
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3020

N
Nick Piggin 已提交
3021
	return 0;
3022
}
3023 3024 3025
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3026 3027 3028 3029
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3030
 *
3031
 * Returns:	0 for success, -Exxx on failure
3032
 *
3033 3034 3035
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3036
 *
3037
 * Similar to remap_pfn_range() (see mm/memory.c)
3038 3039 3040 3041 3042
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
3043
					   addr, pgoff,
3044 3045
					   vma->vm_end - vma->vm_start);
}
3046 3047
EXPORT_SYMBOL(remap_vmalloc_range);

3048
static int f(pte_t *pte, unsigned long addr, void *data)
3049
{
3050 3051 3052 3053 3054 3055
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3056 3057 3058 3059
	return 0;
}

/**
3060 3061 3062
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3063
 *
3064
 * Returns:	NULL on failure, vm_struct on success
3065
 *
3066 3067 3068
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3069
 *
3070 3071
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3072
 */
3073
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3074 3075 3076
{
	struct vm_struct *area;

3077 3078
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3079 3080 3081 3082 3083 3084 3085 3086
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3087
				size, f, ptes ? &ptes : NULL)) {
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3104

3105
#ifdef CONFIG_SMP
3106 3107
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3108
	return rb_entry_safe(n, struct vmap_area, rb_node);
3109 3110 3111
}

/**
3112 3113
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3114
 *
3115 3116 3117 3118
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3119
 */
3120 3121
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3122
{
3123 3124 3125 3126 3127
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3128 3129

	while (n) {
3130 3131 3132 3133 3134 3135
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3136
			n = n->rb_right;
3137 3138 3139
		} else {
			n = n->rb_left;
		}
3140 3141
	}

3142
	return va;
3143 3144 3145
}

/**
3146 3147 3148 3149 3150
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3151
 *
3152
 * Returns: determined end address within vmap_area
3153
 */
3154 3155
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3156
{
3157
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3158 3159
	unsigned long addr;

3160 3161 3162 3163 3164 3165 3166
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3167 3168
	}

3169
	return 0;
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3184 3185 3186 3187
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3188
 *
3189 3190 3191 3192 3193 3194
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3195 3196 3197
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3198
				     size_t align)
3199 3200 3201
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3202
	struct vmap_area **vas, *va;
3203 3204
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3205
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3206
	bool purged = false;
3207
	enum fit_type type;
3208 3209

	/* verify parameters and allocate data structures */
3210
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3223
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3224 3225 3226
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3227
			BUG_ON(start2 < end && start < end2);
3228 3229 3230 3231 3232 3233 3234 3235 3236
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3237 3238
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3239
	if (!vas || !vms)
3240
		goto err_free2;
3241 3242

	for (area = 0; area < nr_vms; area++) {
3243
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3244
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3245 3246 3247 3248
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3249
	spin_lock(&free_vmap_area_lock);
3250 3251 3252 3253 3254 3255

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3256 3257
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3258 3259 3260 3261 3262 3263

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3264 3265
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3266 3267

		/*
3268
		 * Fitting base has not been found.
3269
		 */
3270 3271
		if (va == NULL)
			goto overflow;
3272

3273
		/*
Q
Qiujun Huang 已提交
3274
		 * If required width exceeds current VA block, move
3275 3276 3277 3278 3279 3280 3281 3282
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3283
		/*
3284
		 * If this VA does not fit, move base downwards and recheck.
3285
		 */
3286
		if (base + start < va->va_start) {
3287 3288
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3300

3301 3302
		start = offsets[area];
		end = start + sizes[area];
3303
		va = pvm_find_va_enclose_addr(base + end);
3304
	}
3305

3306 3307
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3308
		int ret;
3309

3310 3311
		start = base + offsets[area];
		size = sizes[area];
3312

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3332

3333
	spin_unlock(&free_vmap_area_lock);
3334

3335 3336 3337 3338 3339 3340 3341 3342 3343
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;

		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
				       sizes[area]);
	}

3344
	/* insert all vm's */
3345 3346 3347 3348 3349
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3350
				 pcpu_get_vm_areas);
3351 3352
	}
	spin_unlock(&vmap_area_lock);
3353 3354 3355 3356

	kfree(vas);
	return vms;

3357
recovery:
3358 3359 3360 3361 3362 3363
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3364
	while (area--) {
3365 3366 3367 3368 3369 3370
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
3371 3372 3373 3374
		vas[area] = NULL;
	}

overflow:
3375
	spin_unlock(&free_vmap_area_lock);
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3394 3395
err_free:
	for (area = 0; area < nr_vms; area++) {
3396 3397 3398
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3399
		kfree(vms[area]);
3400
	}
3401
err_free2:
3402 3403 3404
	kfree(vas);
	kfree(vms);
	return NULL;
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3444
#endif	/* CONFIG_SMP */
3445 3446 3447

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3448
	__acquires(&vmap_purge_lock)
3449
	__acquires(&vmap_area_lock)
3450
{
3451
	mutex_lock(&vmap_purge_lock);
3452
	spin_lock(&vmap_area_lock);
3453

3454
	return seq_list_start(&vmap_area_list, *pos);
3455 3456 3457 3458
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3459
	return seq_list_next(p, &vmap_area_list, pos);
3460 3461 3462
}

static void s_stop(struct seq_file *m, void *p)
3463
	__releases(&vmap_purge_lock)
3464
	__releases(&vmap_area_lock)
3465
{
3466
	mutex_unlock(&vmap_purge_lock);
3467
	spin_unlock(&vmap_area_lock);
3468 3469
}

E
Eric Dumazet 已提交
3470 3471
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3472
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3473 3474 3475 3476 3477
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3478 3479
		if (v->flags & VM_UNINITIALIZED)
			return;
3480 3481
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3482

E
Eric Dumazet 已提交
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3510 3511
static int s_show(struct seq_file *m, void *p)
{
3512
	struct vmap_area *va;
3513 3514
	struct vm_struct *v;

3515 3516
	va = list_entry(p, struct vmap_area, list);

3517
	/*
3518 3519
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3520
	 */
3521
	if (!va->vm) {
3522
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3523
			(void *)va->va_start, (void *)va->va_end,
3524
			va->va_end - va->va_start);
3525

3526
		return 0;
3527
	}
3528 3529

	v = va->vm;
3530

K
Kees Cook 已提交
3531
	seq_printf(m, "0x%pK-0x%pK %7ld",
3532 3533
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3534 3535
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3536

3537 3538 3539 3540
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3541
		seq_printf(m, " phys=%pa", &v->phys_addr);
3542 3543

	if (v->flags & VM_IOREMAP)
3544
		seq_puts(m, " ioremap");
3545 3546

	if (v->flags & VM_ALLOC)
3547
		seq_puts(m, " vmalloc");
3548 3549

	if (v->flags & VM_MAP)
3550
		seq_puts(m, " vmap");
3551 3552

	if (v->flags & VM_USERMAP)
3553
		seq_puts(m, " user");
3554

3555 3556 3557
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3558
	if (is_vmalloc_addr(v->pages))
3559
		seq_puts(m, " vpages");
3560

E
Eric Dumazet 已提交
3561
	show_numa_info(m, v);
3562
	seq_putc(m, '\n');
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3573 3574 3575
	return 0;
}

3576
static const struct seq_operations vmalloc_op = {
3577 3578 3579 3580 3581
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3582 3583 3584

static int __init proc_vmalloc_init(void)
{
3585
	if (IS_ENABLED(CONFIG_NUMA))
3586
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3587 3588
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3589
	else
3590
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3591 3592 3593
	return 0;
}
module_init(proc_vmalloc_init);
3594

3595
#endif