vmalloc.c 91.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37
#include <linux/overflow.h>
38

39
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
40
#include <asm/tlbflush.h>
41
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
42

43
#include "internal.h"
44
#include "pgalloc-track.h"
45

46 47 48 49 50 51 52 53
bool is_vmalloc_addr(const void *x)
{
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

54 55 56 57 58 59 60 61 62 63 64
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
65 66 67 68
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
69 70
}

N
Nick Piggin 已提交
71
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
72

73 74
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
75 76 77 78 79 80 81 82
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
83
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
84 85
}

86 87
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
88 89 90
{
	pmd_t *pmd;
	unsigned long next;
91
	int cleared;
L
Linus Torvalds 已提交
92 93 94 95

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
96 97 98 99 100 101

		cleared = pmd_clear_huge(pmd);
		if (cleared || pmd_bad(*pmd))
			*mask |= PGTBL_PMD_MODIFIED;

		if (cleared)
102
			continue;
L
Linus Torvalds 已提交
103 104
		if (pmd_none_or_clear_bad(pmd))
			continue;
105
		vunmap_pte_range(pmd, addr, next, mask);
L
Linus Torvalds 已提交
106 107 108
	} while (pmd++, addr = next, addr != end);
}

109 110
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
111 112 113
{
	pud_t *pud;
	unsigned long next;
114
	int cleared;
L
Linus Torvalds 已提交
115

116
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
117 118
	do {
		next = pud_addr_end(addr, end);
119 120 121 122 123 124

		cleared = pud_clear_huge(pud);
		if (cleared || pud_bad(*pud))
			*mask |= PGTBL_PUD_MODIFIED;

		if (cleared)
125
			continue;
L
Linus Torvalds 已提交
126 127
		if (pud_none_or_clear_bad(pud))
			continue;
128
		vunmap_pmd_range(pud, addr, next, mask);
L
Linus Torvalds 已提交
129 130 131
	} while (pud++, addr = next, addr != end);
}

132 133
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
134 135 136
{
	p4d_t *p4d;
	unsigned long next;
137
	int cleared;
138 139 140 141

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
142 143 144 145 146 147

		cleared = p4d_clear_huge(p4d);
		if (cleared || p4d_bad(*p4d))
			*mask |= PGTBL_P4D_MODIFIED;

		if (cleared)
148 149 150
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
151
		vunmap_pud_range(p4d, addr, next, mask);
152 153 154
	} while (p4d++, addr = next, addr != end);
}

155 156
/**
 * unmap_kernel_range_noflush - unmap kernel VM area
157
 * @start: start of the VM area to unmap
158 159 160 161 162 163 164 165 166 167
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 * should have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible
 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 * function and flush_tlb_kernel_range() after.
 */
168
void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
L
Linus Torvalds 已提交
169
{
170
	unsigned long end = start + size;
L
Linus Torvalds 已提交
171
	unsigned long next;
172
	pgd_t *pgd;
173 174
	unsigned long addr = start;
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
175 176

	BUG_ON(addr >= end);
177
	start = addr;
L
Linus Torvalds 已提交
178 179 180
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
181 182
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
L
Linus Torvalds 已提交
183 184
		if (pgd_none_or_clear_bad(pgd))
			continue;
185
		vunmap_p4d_range(pgd, addr, next, &mask);
L
Linus Torvalds 已提交
186
	} while (pgd++, addr = next, addr != end);
187 188 189

	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);
L
Linus Torvalds 已提交
190 191 192
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
193 194
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
195 196 197
{
	pte_t *pte;

N
Nick Piggin 已提交
198 199 200 201 202
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

203
	pte = pte_alloc_kernel_track(pmd, addr, mask);
L
Linus Torvalds 已提交
204 205 206
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
207 208 209 210 211
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
212 213
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
214
		(*nr)++;
L
Linus Torvalds 已提交
215
	} while (pte++, addr += PAGE_SIZE, addr != end);
216
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
217 218 219
	return 0;
}

N
Nick Piggin 已提交
220
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
221 222
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
223 224 225 226
{
	pmd_t *pmd;
	unsigned long next;

227
	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
L
Linus Torvalds 已提交
228 229 230 231
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
232
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
233 234 235 236 237
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

238
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
239 240
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
241 242 243 244
{
	pud_t *pud;
	unsigned long next;

245
	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
L
Linus Torvalds 已提交
246 247 248 249
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
250
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
251 252 253 254 255
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

256
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
257 258
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
259 260 261 262
{
	p4d_t *p4d;
	unsigned long next;

263
	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 265 266 267
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
268
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
269 270 271 272 273
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

274 275 276 277 278 279
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
N
Nick Piggin 已提交
280
 *
281 282 283 284 285 286 287 288 289
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 * have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible for
 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 * function.
 *
 * RETURNS:
290
 * 0 on success, -errno on failure.
N
Nick Piggin 已提交
291
 */
292 293
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
294
{
295
	unsigned long start = addr;
296
	unsigned long end = addr + size;
L
Linus Torvalds 已提交
297
	unsigned long next;
298
	pgd_t *pgd;
N
Nick Piggin 已提交
299 300
	int err = 0;
	int nr = 0;
301
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
302 303 304 305 306

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
307 308 309
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
L
Linus Torvalds 已提交
310
		if (err)
311
			return err;
L
Linus Torvalds 已提交
312
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
313

314 315 316
	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);

317
	return 0;
L
Linus Torvalds 已提交
318 319
}

C
Christoph Hellwig 已提交
320 321
int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
		struct page **pages)
322 323 324
{
	int ret;

325 326
	ret = map_kernel_range_noflush(start, size, prot, pages);
	flush_cache_vmap(start, start + size);
327 328 329
	return ret;
}

330
int is_vmalloc_or_module_addr(const void *x)
331 332
{
	/*
333
	 * ARM, x86-64 and sparc64 put modules in a special place,
334 335 336 337 338 339 340 341 342 343 344
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

345
/*
346
 * Walk a vmap address to the struct page it maps.
347
 */
348
struct page *vmalloc_to_page(const void *vmalloc_addr)
349 350
{
	unsigned long addr = (unsigned long) vmalloc_addr;
351
	struct page *page = NULL;
352
	pgd_t *pgd = pgd_offset_k(addr);
353 354 355 356
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
357

358 359 360 361
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
362
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
363

364 365 366 367 368 369
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
370 371 372 373 374 375 376 377 378 379 380

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
381 382
		return NULL;
	pmd = pmd_offset(pud, addr);
383 384
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
385 386 387 388 389 390 391
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
392
	return page;
393
}
394
EXPORT_SYMBOL(vmalloc_to_page);
395 396

/*
397
 * Map a vmalloc()-space virtual address to the physical page frame number.
398
 */
399
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
400
{
401
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
402
}
403
EXPORT_SYMBOL(vmalloc_to_pfn);
404

N
Nick Piggin 已提交
405 406 407

/*** Global kva allocator ***/

408
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
409
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
410

N
Nick Piggin 已提交
411 412

static DEFINE_SPINLOCK(vmap_area_lock);
413
static DEFINE_SPINLOCK(free_vmap_area_lock);
414 415
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
416
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
417
static struct rb_root vmap_area_root = RB_ROOT;
418
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

446 447 448 449 450 451 452
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

453 454 455 456 457 458 459 460 461 462 463 464 465 466
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
467

468 469 470 471 472 473 474 475 476 477 478
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

479 480
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
481 482 483 484

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
485

486 487 488 489 490 491 492
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
493
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
494
{
N
Nick Piggin 已提交
495 496 497 498 499 500 501 502
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
503
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
504 505 506 507 508 509 510 511
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
533

534 535 536 537 538 539 540
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
541

542 543 544 545 546 547 548 549 550 551 552
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
553 554
		else
			BUG();
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
591 592
	}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
613

614 615
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
616 617
}

618 619 620
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
621 622
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
623

624 625 626 627 628 629 630 631
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
632 633
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
725 726 727 728

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
765
static __always_inline struct vmap_area *
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

827 828
			if (merged)
				unlink_va(va, root);
829 830 831

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
832 833 834 835

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
836 837 838 839 840 841 842 843
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
844 845

	return va;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
907
			 * OK. We roll back and find the first right sub-tree,
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
1005
	struct vmap_area *lva = NULL;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
1069 1070 1071 1072 1073
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1092
		if (lva)	/* type == NE_FIT_TYPE */
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1106
	unsigned long vstart, unsigned long vend)
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1136 1137 1138 1139
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1140 1141
	return nva_start_addr;
}
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
	spin_unlock(&free_vmap_area_lock);
}

N
Nick Piggin 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1172
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1173
	unsigned long addr;
N
Nick Piggin 已提交
1174
	int purged = 0;
1175
	int ret;
N
Nick Piggin 已提交
1176

N
Nick Piggin 已提交
1177
	BUG_ON(!size);
1178
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1179
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1180

1181 1182 1183
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1184
	might_sleep();
1185
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1186

1187
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1188 1189 1190
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1191 1192 1193 1194
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1195
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1196

N
Nick Piggin 已提交
1197
retry:
1198
	/*
1199 1200 1201 1202 1203 1204
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1205 1206 1207
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1208 1209
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1210
	 *
1211
	 * Set "pva" to NULL here, because of "retry" path.
1212
	 */
1213
	pva = NULL;
1214

1215 1216 1217 1218 1219 1220
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1221
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1222

1223
	spin_lock(&free_vmap_area_lock);
1224 1225 1226

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1227

1228
	/*
1229 1230
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1231
	 */
1232
	addr = __alloc_vmap_area(size, align, vstart, vend);
1233 1234
	spin_unlock(&free_vmap_area_lock);

1235
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1236
		goto overflow;
N
Nick Piggin 已提交
1237 1238 1239

	va->va_start = addr;
	va->va_end = addr + size;
1240
	va->vm = NULL;
1241

1242

1243 1244
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1245 1246
	spin_unlock(&vmap_area_lock);

1247
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1248 1249 1250
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1251 1252 1253 1254 1255 1256
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1257
	return va;
N
Nick Piggin 已提交
1258 1259 1260 1261 1262 1263 1264

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1275
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1276 1277
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1278 1279

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1280
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1281 1282
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1320
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1321

1322 1323 1324 1325 1326
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1327
static DEFINE_MUTEX(vmap_purge_lock);
1328

1329 1330 1331
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1332 1333 1334 1335 1336 1337
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1338
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1339 1340
}

N
Nick Piggin 已提交
1341 1342 1343
/*
 * Purges all lazily-freed vmap areas.
 */
1344
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1345
{
1346
	unsigned long resched_threshold;
1347
	struct llist_node *valist;
N
Nick Piggin 已提交
1348
	struct vmap_area *va;
1349
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1350

1351
	lockdep_assert_held(&vmap_purge_lock);
1352

1353
	valist = llist_del_all(&vmap_purge_list);
1354 1355 1356 1357 1358 1359 1360
	if (unlikely(valist == NULL))
		return false;

	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1361
	llist_for_each_entry(va, valist, purge_list) {
1362 1363 1364 1365
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1366 1367
	}

1368
	flush_tlb_kernel_range(start, end);
1369
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1370

1371
	spin_lock(&free_vmap_area_lock);
1372
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1373
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1374 1375
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1376

1377 1378 1379 1380 1381
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1382 1383 1384 1385 1386 1387
		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
					    &free_vmap_area_list);

		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1388

1389
		atomic_long_sub(nr, &vmap_lazy_nr);
1390

1391
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1392
			cond_resched_lock(&free_vmap_area_lock);
1393
	}
1394
	spin_unlock(&free_vmap_area_lock);
1395
	return true;
N
Nick Piggin 已提交
1396 1397
}

N
Nick Piggin 已提交
1398 1399 1400 1401 1402 1403
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1404
	if (mutex_trylock(&vmap_purge_lock)) {
1405
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1406
		mutex_unlock(&vmap_purge_lock);
1407
	}
N
Nick Piggin 已提交
1408 1409
}

N
Nick Piggin 已提交
1410 1411 1412 1413 1414
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1415
	mutex_lock(&vmap_purge_lock);
1416 1417
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1418
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1419 1420 1421
}

/*
1422 1423 1424
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1425
 */
1426
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1427
{
1428
	unsigned long nr_lazy;
1429

1430 1431 1432 1433
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1434 1435
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1436 1437 1438 1439 1440

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1441
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1442 1443
}

1444 1445 1446 1447 1448 1449
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
C
Christoph Hellwig 已提交
1450
	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1451
	if (debug_pagealloc_enabled_static())
1452 1453
		flush_tlb_kernel_range(va->va_start, va->va_end);

1454
	free_vmap_area_noflush(va);
1455 1456
}

N
Nick Piggin 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1491 1492 1493 1494
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1507
	unsigned long dirty_min, dirty_max; /*< dirty range */
1508 1509
	struct list_head free_list;
	struct rcu_head rcu_head;
1510
	struct list_head purge;
N
Nick Piggin 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1553
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1554 1555
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1556 1557 1558 1559 1560 1561
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1562
	void *vaddr;
N
Nick Piggin 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1574
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1575
		kfree(vb);
J
Julia Lawall 已提交
1576
		return ERR_CAST(va);
N
Nick Piggin 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1586
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1587 1588
	spin_lock_init(&vb->lock);
	vb->va = va;
1589 1590 1591
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1592
	vb->dirty = 0;
1593 1594
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1606
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1607
	spin_unlock(&vbq->lock);
1608
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1609

1610
	return vaddr;
N
Nick Piggin 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1624
	free_vmap_area_noflush(vb->va);
1625
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1626 1627
}

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1645 1646
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1671 1672 1673 1674
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1675
	void *vaddr = NULL;
N
Nick Piggin 已提交
1676 1677
	unsigned int order;

1678
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1679
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1680 1681 1682 1683 1684 1685 1686 1687
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1688 1689 1690 1691 1692
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1693
		unsigned long pages_off;
N
Nick Piggin 已提交
1694 1695

		spin_lock(&vb->lock);
1696 1697 1698 1699
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1700

1701 1702
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1703 1704 1705 1706 1707 1708
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1709

1710 1711
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1712
	}
1713

1714
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1715 1716
	rcu_read_unlock();

1717 1718 1719
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1720

1721
	return vaddr;
N
Nick Piggin 已提交
1722 1723
}

1724
static void vb_free(unsigned long addr, unsigned long size)
N
Nick Piggin 已提交
1725 1726 1727 1728 1729 1730
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1731
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1732
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1733

1734
	flush_cache_vunmap(addr, addr + size);
1735

N
Nick Piggin 已提交
1736 1737
	order = get_order(size);

1738
	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
N
Nick Piggin 已提交
1739

1740
	vb_idx = addr_to_vb_idx(addr);
N
Nick Piggin 已提交
1741 1742 1743 1744 1745
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1746
	unmap_kernel_range_noflush(addr, size);
1747

1748
	if (debug_pagealloc_enabled_static())
1749
		flush_tlb_kernel_range(addr, addr + size);
1750

N
Nick Piggin 已提交
1751
	spin_lock(&vb->lock);
1752 1753 1754 1755

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1756

N
Nick Piggin 已提交
1757 1758
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1759
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1760 1761 1762 1763 1764 1765
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1766
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1767 1768 1769
{
	int cpu;

1770 1771 1772
	if (unlikely(!vmap_initialized))
		return;

1773 1774
	might_sleep();

N
Nick Piggin 已提交
1775 1776 1777 1778 1779 1780 1781
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1782 1783
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1784
				unsigned long s, e;
1785

1786 1787
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1788

1789 1790
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1791

1792
				flush = 1;
N
Nick Piggin 已提交
1793 1794 1795 1796 1797 1798
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1799
	mutex_lock(&vmap_purge_lock);
1800 1801 1802
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1803
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1804
}
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1835
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1836
	unsigned long addr = (unsigned long)mem;
1837
	struct vmap_area *va;
N
Nick Piggin 已提交
1838

1839
	might_sleep();
N
Nick Piggin 已提交
1840 1841 1842
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1843
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1844

1845 1846
	kasan_poison_vmalloc(mem, size);

1847
	if (likely(count <= VMAP_MAX_ALLOC)) {
1848
		debug_check_no_locks_freed(mem, size);
1849
		vb_free(addr, size);
1850 1851 1852 1853 1854
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1855 1856
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1857
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1858 1859 1860 1861 1862 1863 1864 1865
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
1866
 *
1867 1868 1869 1870 1871 1872
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1873
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1874
 */
1875
void *vm_map_ram(struct page **pages, unsigned int count, int node)
N
Nick Piggin 已提交
1876
{
1877
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
1896 1897 1898

	kasan_unpoison_vmalloc(mem, size);

1899
	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
N
Nick Piggin 已提交
1900 1901 1902 1903 1904 1905 1906
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1907
static struct vm_struct *vmlist __initdata;
1908

N
Nicolas Pitre 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1935 1936 1937
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1938
 * @align: requested alignment
1939 1940 1941 1942 1943 1944 1945 1946
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1947
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1948 1949
{
	static size_t vm_init_off __initdata;
1950 1951 1952 1953
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1954

1955
	vm->addr = (void *)addr;
1956

N
Nicolas Pitre 已提交
1957
	vm_area_add_early(vm);
1958 1959
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
2001 2002
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
2003 2004
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
2005 2006
	int i;

2007 2008 2009 2010 2011
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
2012 2013
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
2014
		struct vfree_deferred *p;
N
Nick Piggin 已提交
2015 2016 2017 2018

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
2019 2020 2021
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
2022
	}
2023

I
Ivan Kokshaysky 已提交
2024 2025
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
2026 2027 2028 2029
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
2030 2031
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
2032
		va->vm = tmp;
2033
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
2034
	}
2035

2036 2037 2038 2039
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
2040
	vmap_initialized = true;
N
Nick Piggin 已提交
2041 2042
}

2043 2044 2045 2046 2047 2048 2049 2050
/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2051 2052 2053
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2054 2055

	flush_cache_vunmap(addr, end);
2056
	unmap_kernel_range_noflush(addr, size);
N
Nick Piggin 已提交
2057 2058 2059
	flush_tlb_kernel_range(addr, end);
}

2060 2061
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2062 2063 2064 2065 2066
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2067
	va->vm = vm;
2068 2069 2070 2071 2072 2073 2074
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2075
	spin_unlock(&vmap_area_lock);
2076
}
2077

2078
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2079
{
2080
	/*
2081
	 * Before removing VM_UNINITIALIZED,
2082 2083 2084 2085
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2086
	vm->flags &= ~VM_UNINITIALIZED;
2087 2088
}

N
Nick Piggin 已提交
2089
static struct vm_struct *__get_vm_area_node(unsigned long size,
2090
		unsigned long align, unsigned long flags, unsigned long start,
2091
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2092
{
2093
	struct vmap_area *va;
N
Nick Piggin 已提交
2094
	struct vm_struct *area;
2095
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2096

2097
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2098
	size = PAGE_ALIGN(size);
2099 2100
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2101

2102 2103 2104 2105
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2106
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2107 2108 2109
	if (unlikely(!area))
		return NULL;

2110 2111
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2112

N
Nick Piggin 已提交
2113 2114 2115 2116
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2117 2118
	}

2119
	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2120

2121
	setup_vmalloc_vm(area, va, flags, caller);
2122

L
Linus Torvalds 已提交
2123 2124 2125
	return area;
}

2126 2127
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2128
				       const void *caller)
2129
{
D
David Rientjes 已提交
2130 2131
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2132 2133
}

L
Linus Torvalds 已提交
2134
/**
2135 2136 2137
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2138
 *
2139 2140 2141
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2142 2143
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2144 2145 2146
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2147
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2148 2149
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2150 2151 2152
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2153
				const void *caller)
2154
{
2155
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2156
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2157 2158
}

2159
/**
2160 2161
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2162
 *
2163 2164 2165
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2166 2167
 *
 * Return: pointer to the found area or %NULL on faulure
2168 2169
 */
struct vm_struct *find_vm_area(const void *addr)
2170
{
N
Nick Piggin 已提交
2171
	struct vmap_area *va;
2172

N
Nick Piggin 已提交
2173
	va = find_vmap_area((unsigned long)addr);
2174 2175
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2176

2177
	return va->vm;
L
Linus Torvalds 已提交
2178 2179
}

2180
/**
2181 2182
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2183
 *
2184 2185 2186
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2187 2188
 *
 * Return: pointer to the found area or %NULL on faulure
2189
 */
2190
struct vm_struct *remove_vm_area(const void *addr)
2191
{
N
Nick Piggin 已提交
2192 2193
	struct vmap_area *va;

2194 2195
	might_sleep();

2196 2197
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2198
	if (va && va->vm) {
2199
		struct vm_struct *vm = va->vm;
2200

2201 2202 2203
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2204
		kasan_free_shadow(vm);
2205 2206
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2207 2208
		return vm;
	}
2209 2210

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2211
	return NULL;
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2229
	int flush_dmap = 0;
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2253 2254
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2255
			start = min(addr, start);
2256
			end = max(addr + PAGE_SIZE, end);
2257
			flush_dmap = 1;
2258 2259 2260 2261 2262 2263 2264 2265 2266
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2267
	_vm_unmap_aliases(start, end, flush_dmap);
2268 2269 2270
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2271
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2272 2273 2274 2275 2276 2277
{
	struct vm_struct *area;

	if (!addr)
		return;

2278
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2279
			addr))
L
Linus Torvalds 已提交
2280 2281
		return;

2282
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2283
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2284
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2285 2286 2287 2288
				addr);
		return;
	}

2289 2290
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2291

2292
	kasan_poison_vmalloc(area->addr, area->size);
2293

2294 2295
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2296 2297 2298 2299
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2300 2301 2302
			struct page *page = area->pages[i];

			BUG_ON(!page);
2303
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2304
		}
2305
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2306

D
David Rientjes 已提交
2307
		kvfree(area->pages);
L
Linus Torvalds 已提交
2308 2309 2310 2311 2312
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2313 2314 2315 2316 2317 2318 2319

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
2320
	 * another cpu's list. schedule_work() should be fine with this too.
A
Andrey Ryabinin 已提交
2321 2322 2323 2324 2325 2326 2327 2328
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2329 2330
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2331
 *
2332 2333
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2346 2347 2348 2349 2350 2351 2352 2353
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2354
/**
2355 2356
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2357
 *
2358 2359 2360
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2361
 *
2362 2363 2364
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2365
 *
2366
 * May sleep if called *not* from interrupt context.
2367
 *
2368
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2369
 */
2370
void vfree(const void *addr)
L
Linus Torvalds 已提交
2371
{
2372
	BUG_ON(in_nmi());
2373 2374 2375

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2376 2377
	might_sleep_if(!in_interrupt());

2378 2379
	if (!addr)
		return;
2380 2381

	__vfree(addr);
L
Linus Torvalds 已提交
2382 2383 2384 2385
}
EXPORT_SYMBOL(vfree);

/**
2386 2387
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2388
 *
2389 2390
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2391
 *
2392
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2393
 */
2394
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2395 2396
{
	BUG_ON(in_interrupt());
2397
	might_sleep();
2398 2399
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2400 2401 2402 2403
}
EXPORT_SYMBOL(vunmap);

/**
2404 2405 2406 2407 2408 2409 2410 2411
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2412 2413
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2414 2415
 */
void *vmap(struct page **pages, unsigned int count,
2416
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2417 2418
{
	struct vm_struct *area;
2419
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2420

2421 2422
	might_sleep();

2423
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2424 2425
		return NULL;

2426 2427
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2428 2429
	if (!area)
		return NULL;
2430

2431
	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
C
Christoph Hellwig 已提交
2432
			pages) < 0) {
L
Linus Torvalds 已提交
2433 2434 2435 2436 2437 2438 2439 2440
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

A
Adrian Bunk 已提交
2441
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2442
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2443 2444 2445
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2446
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2447 2448 2449 2450
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2451

2452
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2453 2454 2455
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2456
	if (array_size > PAGE_SIZE) {
2457
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2458
				node, area->caller);
2459
	} else {
2460
		pages = kmalloc_node(array_size, nested_gfp, node);
2461
	}
2462 2463

	if (!pages) {
L
Linus Torvalds 已提交
2464 2465 2466 2467 2468
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2469 2470 2471
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2472
	for (i = 0; i < area->nr_pages; i++) {
2473 2474
		struct page *page;

J
Jianguo Wu 已提交
2475
		if (node == NUMA_NO_NODE)
2476
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2477
		else
2478
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2479 2480

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2481 2482
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2483
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2484 2485
			goto fail;
		}
2486
		area->pages[i] = page;
2487
		if (gfpflags_allow_blocking(gfp_mask))
2488
			cond_resched();
L
Linus Torvalds 已提交
2489
	}
2490
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2491

C
Christoph Hellwig 已提交
2492 2493
	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
			prot, pages) < 0)
L
Linus Torvalds 已提交
2494
		goto fail;
C
Christoph Hellwig 已提交
2495

L
Linus Torvalds 已提交
2496 2497 2498
	return area->addr;

fail:
2499
	warn_alloc(gfp_mask, NULL,
2500
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2501
			  (area->nr_pages*PAGE_SIZE), area->size);
2502
	__vfree(area->addr);
L
Linus Torvalds 已提交
2503 2504 2505 2506
	return NULL;
}

/**
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2521 2522
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2523
 */
2524 2525
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2526 2527
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2528 2529
{
	struct vm_struct *area;
2530 2531
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2532 2533

	size = PAGE_ALIGN(size);
2534
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2535
		goto fail;
L
Linus Torvalds 已提交
2536

2537
	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2538
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2539
	if (!area)
2540
		goto fail;
L
Linus Torvalds 已提交
2541

2542
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2543
	if (!addr)
2544
		return NULL;
2545

2546
	/*
2547 2548
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2549
	 * Now, it is fully initialized, so remove this flag here.
2550
	 */
2551
	clear_vm_uninitialized_flag(area);
2552

2553
	kmemleak_vmalloc(area, size, gfp_mask);
2554 2555

	return addr;
2556 2557

fail:
2558
	warn_alloc(gfp_mask, NULL,
2559
			  "vmalloc: allocation failure: %lu bytes", real_size);
2560
	return NULL;
L
Linus Torvalds 已提交
2561 2562
}

2563
/**
2564 2565 2566 2567 2568 2569
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2570
 *
2571 2572
 * Allocate enough pages to cover @size from the page level allocator with
 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
M
Michal Hocko 已提交
2573
 *
2574 2575
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2576
 *
2577 2578
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2579 2580
 *
 * Return: pointer to the allocated memory or %NULL on error
2581
 */
2582
void *__vmalloc_node(unsigned long size, unsigned long align,
2583
			    gfp_t gfp_mask, int node, const void *caller)
2584 2585
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2586
				gfp_mask, PAGE_KERNEL, 0, node, caller);
2587
}
2588 2589 2590 2591 2592 2593 2594 2595
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node);
#endif
2596

2597
void *__vmalloc(unsigned long size, gfp_t gfp_mask)
C
Christoph Lameter 已提交
2598
{
2599
	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2600
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2601
}
L
Linus Torvalds 已提交
2602 2603 2604
EXPORT_SYMBOL(__vmalloc);

/**
2605 2606 2607 2608 2609
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2610
 *
2611 2612
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2613 2614
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2615 2616 2617
 */
void *vmalloc(unsigned long size)
{
2618 2619
	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
				__builtin_return_address(0));
L
Linus Torvalds 已提交
2620 2621 2622
}
EXPORT_SYMBOL(vmalloc);

2623
/**
2624 2625 2626 2627 2628 2629 2630 2631 2632
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2633 2634
 *
 * Return: pointer to the allocated memory or %NULL on error
2635 2636 2637
 */
void *vzalloc(unsigned long size)
{
2638 2639
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
				__builtin_return_address(0));
2640 2641 2642
}
EXPORT_SYMBOL(vzalloc);

2643
/**
2644 2645
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2646
 *
2647 2648
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2649 2650
 *
 * Return: pointer to the allocated memory or %NULL on error
2651 2652 2653
 */
void *vmalloc_user(unsigned long size)
{
2654 2655 2656 2657
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2658 2659 2660
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2661
/**
2662 2663 2664
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2665
 *
2666 2667
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2668
 *
2669 2670
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2671 2672
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2673 2674 2675
 */
void *vmalloc_node(unsigned long size, int node)
{
2676 2677
	return __vmalloc_node(size, 1, GFP_KERNEL, node,
			__builtin_return_address(0));
C
Christoph Lameter 已提交
2678 2679 2680
}
EXPORT_SYMBOL(vmalloc_node);

2681 2682 2683 2684 2685 2686 2687 2688 2689
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
2690
 * Return: pointer to the allocated memory or %NULL on error
2691 2692 2693
 */
void *vzalloc_node(unsigned long size, int node)
{
2694 2695
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
				__builtin_return_address(0));
2696 2697 2698
}
EXPORT_SYMBOL(vzalloc_node);

2699
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2700
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2701
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2702
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2703
#else
2704 2705 2706 2707 2708
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2709 2710
#endif

L
Linus Torvalds 已提交
2711
/**
2712 2713
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2714
 *
2715 2716
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2717 2718
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2719 2720 2721
 */
void *vmalloc_32(unsigned long size)
{
2722 2723
	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
			__builtin_return_address(0));
L
Linus Torvalds 已提交
2724 2725 2726
}
EXPORT_SYMBOL(vmalloc_32);

2727
/**
2728
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2729
 * @size:	     allocation size
2730 2731 2732
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2733 2734
 *
 * Return: pointer to the allocated memory or %NULL on error
2735 2736 2737
 */
void *vmalloc_32_user(unsigned long size)
{
2738 2739 2740 2741
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2742 2743 2744
}
EXPORT_SYMBOL(vmalloc_32_user);

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2758
		offset = offset_in_page(addr);
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2775
			void *map = kmap_atomic(p);
2776
			memcpy(buf, map + offset, length);
2777
			kunmap_atomic(map);
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2797
		offset = offset_in_page(addr);
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2814
			void *map = kmap_atomic(p);
2815
			memcpy(map + offset, buf, length);
2816
			kunmap_atomic(map);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2844
 * any information, as /dev/kmem.
2845 2846 2847 2848
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2849
 */
L
Linus Torvalds 已提交
2850 2851
long vread(char *buf, char *addr, unsigned long count)
{
2852 2853
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2854
	char *vaddr, *buf_start = buf;
2855
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860 2861
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2862 2863 2864 2865 2866
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2867
		if (!va->vm)
2868 2869 2870 2871
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2872
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2873 2874 2875 2876 2877 2878 2879 2880 2881
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2882
		n = vaddr + get_vm_area_size(vm) - addr;
2883 2884
		if (n > count)
			n = count;
2885
		if (!(vm->flags & VM_IOREMAP))
2886 2887 2888 2889 2890 2891
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2892 2893
	}
finished:
2894
	spin_unlock(&vmap_area_lock);
2895 2896 2897 2898 2899 2900 2901 2902

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2903 2904
}

2905
/**
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2923
 * any information, as /dev/kmem.
2924 2925 2926 2927
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2928
 */
L
Linus Torvalds 已提交
2929 2930
long vwrite(char *buf, char *addr, unsigned long count)
{
2931 2932
	struct vmap_area *va;
	struct vm_struct *vm;
2933 2934 2935
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2936 2937 2938 2939

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2940
	buflen = count;
L
Linus Torvalds 已提交
2941

2942 2943 2944 2945 2946
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2947
		if (!va->vm)
2948 2949 2950 2951
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2952
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2953 2954 2955 2956 2957 2958 2959 2960
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2961
		n = vaddr + get_vm_area_size(vm) - addr;
2962 2963
		if (n > count)
			n = count;
2964
		if (!(vm->flags & VM_IOREMAP)) {
2965 2966 2967 2968 2969 2970
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2971 2972
	}
finished:
2973
	spin_unlock(&vmap_area_lock);
2974 2975 2976
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2977
}
2978 2979

/**
2980 2981 2982 2983
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
2984
 * @pgoff:		offset from @kaddr to start at
2985
 * @size:		size of map area
2986
 *
2987
 * Returns:	0 for success, -Exxx on failure
2988
 *
2989 2990 2991 2992
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
2993
 *
2994
 * Similar to remap_pfn_range() (see mm/memory.c)
2995
 */
2996
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2997 2998
				void *kaddr, unsigned long pgoff,
				unsigned long size)
2999 3000
{
	struct vm_struct *area;
3001 3002 3003 3004 3005
	unsigned long off;
	unsigned long end_index;

	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
		return -EINVAL;
3006

3007 3008 3009
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3010 3011
		return -EINVAL;

3012
	area = find_vm_area(kaddr);
3013
	if (!area)
N
Nick Piggin 已提交
3014
		return -EINVAL;
3015

3016
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3017
		return -EINVAL;
3018

3019 3020
	if (check_add_overflow(size, off, &end_index) ||
	    end_index > get_vm_area_size(area))
N
Nick Piggin 已提交
3021
		return -EINVAL;
3022
	kaddr += off;
3023 3024

	do {
3025
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3026 3027
		int ret;

3028 3029 3030 3031 3032
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3033 3034 3035
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3036

3037
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3038

N
Nick Piggin 已提交
3039
	return 0;
3040
}
3041 3042 3043
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3044 3045 3046 3047
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3048
 *
3049
 * Returns:	0 for success, -Exxx on failure
3050
 *
3051 3052 3053
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3054
 *
3055
 * Similar to remap_pfn_range() (see mm/memory.c)
3056 3057 3058 3059 3060
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
3061
					   addr, pgoff,
3062 3063
					   vma->vm_end - vma->vm_start);
}
3064 3065
EXPORT_SYMBOL(remap_vmalloc_range);

3066
static int f(pte_t *pte, unsigned long addr, void *data)
3067
{
3068 3069 3070 3071 3072 3073
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3074 3075 3076 3077
	return 0;
}

/**
3078 3079 3080
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3081
 *
3082
 * Returns:	NULL on failure, vm_struct on success
3083
 *
3084 3085 3086
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3087
 *
3088 3089
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3090
 */
3091
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3092 3093 3094
{
	struct vm_struct *area;

3095 3096
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3097 3098 3099 3100 3101 3102 3103 3104
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3105
				size, f, ptes ? &ptes : NULL)) {
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3122

3123
#ifdef CONFIG_SMP
3124 3125
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3126
	return rb_entry_safe(n, struct vmap_area, rb_node);
3127 3128 3129
}

/**
3130 3131
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3132
 *
3133 3134 3135 3136
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3137
 */
3138 3139
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3140
{
3141 3142 3143 3144 3145
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3146 3147

	while (n) {
3148 3149 3150 3151 3152 3153
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3154
			n = n->rb_right;
3155 3156 3157
		} else {
			n = n->rb_left;
		}
3158 3159
	}

3160
	return va;
3161 3162 3163
}

/**
3164 3165 3166 3167 3168
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3169
 *
3170
 * Returns: determined end address within vmap_area
3171
 */
3172 3173
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3174
{
3175
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3176 3177
	unsigned long addr;

3178 3179 3180 3181 3182 3183 3184
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3185 3186
	}

3187
	return 0;
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3202 3203 3204 3205
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3206
 *
3207 3208 3209 3210 3211 3212
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3213 3214 3215
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3216
				     size_t align)
3217 3218 3219
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3220
	struct vmap_area **vas, *va;
3221 3222
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3223
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3224
	bool purged = false;
3225
	enum fit_type type;
3226 3227

	/* verify parameters and allocate data structures */
3228
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3241
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3242 3243 3244
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3245
			BUG_ON(start2 < end && start < end2);
3246 3247 3248 3249 3250 3251 3252 3253 3254
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3255 3256
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3257
	if (!vas || !vms)
3258
		goto err_free2;
3259 3260

	for (area = 0; area < nr_vms; area++) {
3261
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3262
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3263 3264 3265 3266
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3267
	spin_lock(&free_vmap_area_lock);
3268 3269 3270 3271 3272 3273

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3274 3275
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3276 3277 3278 3279 3280 3281

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3282 3283
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3284 3285

		/*
3286
		 * Fitting base has not been found.
3287
		 */
3288 3289
		if (va == NULL)
			goto overflow;
3290

3291
		/*
Q
Qiujun Huang 已提交
3292
		 * If required width exceeds current VA block, move
3293 3294 3295 3296 3297 3298 3299 3300
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3301
		/*
3302
		 * If this VA does not fit, move base downwards and recheck.
3303
		 */
3304
		if (base + start < va->va_start) {
3305 3306
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3318

3319 3320
		start = offsets[area];
		end = start + sizes[area];
3321
		va = pvm_find_va_enclose_addr(base + end);
3322
	}
3323

3324 3325
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3326
		int ret;
3327

3328 3329
		start = base + offsets[area];
		size = sizes[area];
3330

3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3350

3351
	spin_unlock(&free_vmap_area_lock);
3352

3353 3354 3355 3356 3357 3358 3359 3360 3361
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;

		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
				       sizes[area]);
	}

3362
	/* insert all vm's */
3363 3364 3365 3366 3367
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3368
				 pcpu_get_vm_areas);
3369 3370
	}
	spin_unlock(&vmap_area_lock);
3371 3372 3373 3374

	kfree(vas);
	return vms;

3375
recovery:
3376 3377 3378 3379 3380 3381
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3382
	while (area--) {
3383 3384 3385 3386 3387 3388
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
3389 3390 3391 3392
		vas[area] = NULL;
	}

overflow:
3393
	spin_unlock(&free_vmap_area_lock);
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3412 3413
err_free:
	for (area = 0; area < nr_vms; area++) {
3414 3415 3416
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3417
		kfree(vms[area]);
3418
	}
3419
err_free2:
3420 3421 3422
	kfree(vas);
	kfree(vms);
	return NULL;
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3462
#endif	/* CONFIG_SMP */
3463 3464 3465

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3466
	__acquires(&vmap_purge_lock)
3467
	__acquires(&vmap_area_lock)
3468
{
3469
	mutex_lock(&vmap_purge_lock);
3470
	spin_lock(&vmap_area_lock);
3471

3472
	return seq_list_start(&vmap_area_list, *pos);
3473 3474 3475 3476
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3477
	return seq_list_next(p, &vmap_area_list, pos);
3478 3479 3480
}

static void s_stop(struct seq_file *m, void *p)
3481
	__releases(&vmap_purge_lock)
3482
	__releases(&vmap_area_lock)
3483
{
3484
	mutex_unlock(&vmap_purge_lock);
3485
	spin_unlock(&vmap_area_lock);
3486 3487
}

E
Eric Dumazet 已提交
3488 3489
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3490
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3491 3492 3493 3494 3495
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3496 3497
		if (v->flags & VM_UNINITIALIZED)
			return;
3498 3499
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3500

E
Eric Dumazet 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3528 3529
static int s_show(struct seq_file *m, void *p)
{
3530
	struct vmap_area *va;
3531 3532
	struct vm_struct *v;

3533 3534
	va = list_entry(p, struct vmap_area, list);

3535
	/*
3536 3537
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3538
	 */
3539
	if (!va->vm) {
3540
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3541
			(void *)va->va_start, (void *)va->va_end,
3542
			va->va_end - va->va_start);
3543

3544
		return 0;
3545
	}
3546 3547

	v = va->vm;
3548

K
Kees Cook 已提交
3549
	seq_printf(m, "0x%pK-0x%pK %7ld",
3550 3551
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3552 3553
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3554

3555 3556 3557 3558
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3559
		seq_printf(m, " phys=%pa", &v->phys_addr);
3560 3561

	if (v->flags & VM_IOREMAP)
3562
		seq_puts(m, " ioremap");
3563 3564

	if (v->flags & VM_ALLOC)
3565
		seq_puts(m, " vmalloc");
3566 3567

	if (v->flags & VM_MAP)
3568
		seq_puts(m, " vmap");
3569 3570

	if (v->flags & VM_USERMAP)
3571
		seq_puts(m, " user");
3572

3573 3574 3575
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3576
	if (is_vmalloc_addr(v->pages))
3577
		seq_puts(m, " vpages");
3578

E
Eric Dumazet 已提交
3579
	show_numa_info(m, v);
3580
	seq_putc(m, '\n');
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3591 3592 3593
	return 0;
}

3594
static const struct seq_operations vmalloc_op = {
3595 3596 3597 3598 3599
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3600 3601 3602

static int __init proc_vmalloc_init(void)
{
3603
	if (IS_ENABLED(CONFIG_NUMA))
3604
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3605 3606
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3607
	else
3608
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3609 3610 3611
	return 0;
}
module_init(proc_vmalloc_init);
3612

3613
#endif