vmalloc.c 67.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
8
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
9 10
 */

N
Nick Piggin 已提交
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
15
#include <linux/sched.h>
L
Linus Torvalds 已提交
16 17 18
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
19
#include <linux/proc_fs.h>
20
#include <linux/seq_file.h>
21
#include <linux/debugobjects.h>
22
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
23 24 25 26
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
27
#include <linux/pfn.h>
28
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
29
#include <linux/atomic.h>
30
#include <linux/llist.h>
L
Linus Torvalds 已提交
31 32
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
33
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
	struct llist_node *llnode = llist_del_all(&p->list);
	while (llnode) {
		void *p = llnode;
		llnode = llist_next(llnode);
		__vunmap(p, 1);
	}
}

N
Nick Piggin 已提交
54
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
55

L
Linus Torvalds 已提交
56 57 58 59 60 61 62 63 64 65 66
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
67
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

N
Nick Piggin 已提交
81
static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

N
Nick Piggin 已提交
95
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		vunmap_pud_range(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
111
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
112 113 114
{
	pte_t *pte;

N
Nick Piggin 已提交
115 116 117 118 119
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
120
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
121 122 123
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
124 125 126 127 128
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
129 130
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
131
		(*nr)++;
L
Linus Torvalds 已提交
132 133 134 135
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
136 137
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
138 139 140 141 142 143 144 145 146
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
147
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
148 149 150 151 152
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
153 154
static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
155 156 157 158 159 160 161 162 163
{
	pud_t *pud;
	unsigned long next;

	pud = pud_alloc(&init_mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
164
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
165 166 167 168 169
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
170 171 172 173 174 175
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
176 177
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
178 179 180
{
	pgd_t *pgd;
	unsigned long next;
181
	unsigned long addr = start;
N
Nick Piggin 已提交
182 183
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
184 185 186 187 188

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
N
Nick Piggin 已提交
189
		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
190
		if (err)
191
			return err;
L
Linus Torvalds 已提交
192
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
193 194

	return nr;
L
Linus Torvalds 已提交
195 196
}

197 198 199 200 201 202 203 204 205 206
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

207
int is_vmalloc_or_module_addr(const void *x)
208 209
{
	/*
210
	 * ARM, x86-64 and sparc64 put modules in a special place,
211 212 213 214 215 216 217 218 219 220 221
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

222
/*
N
Nick Piggin 已提交
223
 * Walk a vmap address to the struct page it maps.
224
 */
225
struct page *vmalloc_to_page(const void *vmalloc_addr)
226 227 228 229 230
{
	unsigned long addr = (unsigned long) vmalloc_addr;
	struct page *page = NULL;
	pgd_t *pgd = pgd_offset_k(addr);

231 232 233 234
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
235
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
236

237
	if (!pgd_none(*pgd)) {
N
Nick Piggin 已提交
238
		pud_t *pud = pud_offset(pgd, addr);
239
		if (!pud_none(*pud)) {
N
Nick Piggin 已提交
240
			pmd_t *pmd = pmd_offset(pud, addr);
241
			if (!pmd_none(*pmd)) {
N
Nick Piggin 已提交
242 243
				pte_t *ptep, pte;

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
				ptep = pte_offset_map(pmd, addr);
				pte = *ptep;
				if (pte_present(pte))
					page = pte_page(pte);
				pte_unmap(ptep);
			}
		}
	}
	return page;
}
EXPORT_SYMBOL(vmalloc_to_page);

/*
 * Map a vmalloc()-space virtual address to the physical page frame number.
 */
259
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
260 261 262 263 264
{
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
}
EXPORT_SYMBOL(vmalloc_to_pfn);

N
Nick Piggin 已提交
265 266 267 268 269 270 271 272

/*** Global kva allocator ***/

#define VM_LAZY_FREE	0x01
#define VM_LAZY_FREEING	0x02
#define VM_VM_AREA	0x04

static DEFINE_SPINLOCK(vmap_area_lock);
273 274
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
N
Nick Piggin 已提交
275 276 277 278 279 280 281 282
static struct rb_root vmap_area_root = RB_ROOT;

/* The vmap cache globals are protected by vmap_area_lock */
static struct rb_node *free_vmap_cache;
static unsigned long cached_hole_size;
static unsigned long cached_vstart;
static unsigned long cached_align;

283
static unsigned long vmap_area_pcpu_hole;
N
Nick Piggin 已提交
284 285

static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
286
{
N
Nick Piggin 已提交
287 288 289 290 291 292 293 294
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
295
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

static void __insert_vmap_area(struct vmap_area *va)
{
	struct rb_node **p = &vmap_area_root.rb_node;
	struct rb_node *parent = NULL;
	struct rb_node *tmp;

	while (*p) {
311
		struct vmap_area *tmp_va;
N
Nick Piggin 已提交
312 313

		parent = *p;
314 315
		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
		if (va->va_start < tmp_va->va_end)
N
Nick Piggin 已提交
316
			p = &(*p)->rb_left;
317
		else if (va->va_end > tmp_va->va_start)
N
Nick Piggin 已提交
318 319 320 321 322 323 324 325
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&va->rb_node, parent, p);
	rb_insert_color(&va->rb_node, &vmap_area_root);

326
	/* address-sort this list */
N
Nick Piggin 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
	tmp = rb_prev(&va->rb_node);
	if (tmp) {
		struct vmap_area *prev;
		prev = rb_entry(tmp, struct vmap_area, rb_node);
		list_add_rcu(&va->list, &prev->list);
	} else
		list_add_rcu(&va->list, &vmap_area_list);
}

static void purge_vmap_area_lazy(void);

/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
	struct vmap_area *va;
	struct rb_node *n;
L
Linus Torvalds 已提交
349
	unsigned long addr;
N
Nick Piggin 已提交
350
	int purged = 0;
N
Nick Piggin 已提交
351
	struct vmap_area *first;
N
Nick Piggin 已提交
352

N
Nick Piggin 已提交
353
	BUG_ON(!size);
N
Nick Piggin 已提交
354
	BUG_ON(size & ~PAGE_MASK);
N
Nick Piggin 已提交
355
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
356 357 358 359 360 361 362 363

	va = kmalloc_node(sizeof(struct vmap_area),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

retry:
	spin_lock(&vmap_area_lock);
N
Nick Piggin 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	/*
	 * Invalidate cache if we have more permissive parameters.
	 * cached_hole_size notes the largest hole noticed _below_
	 * the vmap_area cached in free_vmap_cache: if size fits
	 * into that hole, we want to scan from vstart to reuse
	 * the hole instead of allocating above free_vmap_cache.
	 * Note that __free_vmap_area may update free_vmap_cache
	 * without updating cached_hole_size or cached_align.
	 */
	if (!free_vmap_cache ||
			size < cached_hole_size ||
			vstart < cached_vstart ||
			align < cached_align) {
nocache:
		cached_hole_size = 0;
		free_vmap_cache = NULL;
	}
	/* record if we encounter less permissive parameters */
	cached_vstart = vstart;
	cached_align = align;

	/* find starting point for our search */
	if (free_vmap_cache) {
		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
388
		addr = ALIGN(first->va_end, align);
N
Nick Piggin 已提交
389 390
		if (addr < vstart)
			goto nocache;
391
		if (addr + size < addr)
N
Nick Piggin 已提交
392 393 394 395
			goto overflow;

	} else {
		addr = ALIGN(vstart, align);
396
		if (addr + size < addr)
N
Nick Piggin 已提交
397 398 399 400 401 402
			goto overflow;

		n = vmap_area_root.rb_node;
		first = NULL;

		while (n) {
N
Nick Piggin 已提交
403 404 405 406
			struct vmap_area *tmp;
			tmp = rb_entry(n, struct vmap_area, rb_node);
			if (tmp->va_end >= addr) {
				first = tmp;
N
Nick Piggin 已提交
407 408 409 410
				if (tmp->va_start <= addr)
					break;
				n = n->rb_left;
			} else
N
Nick Piggin 已提交
411
				n = n->rb_right;
N
Nick Piggin 已提交
412
		}
N
Nick Piggin 已提交
413 414 415 416

		if (!first)
			goto found;
	}
N
Nick Piggin 已提交
417 418

	/* from the starting point, walk areas until a suitable hole is found */
419
	while (addr + size > first->va_start && addr + size <= vend) {
N
Nick Piggin 已提交
420 421
		if (addr + cached_hole_size < first->va_start)
			cached_hole_size = first->va_start - addr;
422
		addr = ALIGN(first->va_end, align);
423
		if (addr + size < addr)
N
Nick Piggin 已提交
424 425
			goto overflow;

426
		if (list_is_last(&first->list, &vmap_area_list))
N
Nick Piggin 已提交
427
			goto found;
428 429 430

		first = list_entry(first->list.next,
				struct vmap_area, list);
N
Nick Piggin 已提交
431 432
	}

N
Nick Piggin 已提交
433 434 435
found:
	if (addr + size > vend)
		goto overflow;
N
Nick Piggin 已提交
436 437 438 439 440

	va->va_start = addr;
	va->va_end = addr + size;
	va->flags = 0;
	__insert_vmap_area(va);
N
Nick Piggin 已提交
441
	free_vmap_cache = &va->rb_node;
N
Nick Piggin 已提交
442 443
	spin_unlock(&vmap_area_lock);

N
Nick Piggin 已提交
444 445 446 447
	BUG_ON(va->va_start & (align-1));
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
448
	return va;
N
Nick Piggin 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
	if (printk_ratelimit())
		printk(KERN_WARNING
			"vmap allocation for size %lu failed: "
			"use vmalloc=<size> to increase size.\n", size);
	kfree(va);
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
463 464 465 466 467
}

static void __free_vmap_area(struct vmap_area *va)
{
	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
N
Nick Piggin 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

	if (free_vmap_cache) {
		if (va->va_end < cached_vstart) {
			free_vmap_cache = NULL;
		} else {
			struct vmap_area *cache;
			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
			if (va->va_start <= cache->va_start) {
				free_vmap_cache = rb_prev(&va->rb_node);
				/*
				 * We don't try to update cached_hole_size or
				 * cached_align, but it won't go very wrong.
				 */
			}
		}
	}
N
Nick Piggin 已提交
484 485 486 487
	rb_erase(&va->rb_node, &vmap_area_root);
	RB_CLEAR_NODE(&va->rb_node);
	list_del_rcu(&va->list);

488 489 490 491 492 493 494 495 496
	/*
	 * Track the highest possible candidate for pcpu area
	 * allocation.  Areas outside of vmalloc area can be returned
	 * here too, consider only end addresses which fall inside
	 * vmalloc area proper.
	 */
	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);

497
	kfree_rcu(va, rcu_head);
N
Nick Piggin 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static void vmap_debug_free_range(unsigned long start, unsigned long end)
{
	/*
	 * Unmap page tables and force a TLB flush immediately if
	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
	 * bugs similarly to those in linear kernel virtual address
	 * space after a page has been freed.
	 *
	 * All the lazy freeing logic is still retained, in order to
	 * minimise intrusiveness of this debugging feature.
	 *
	 * This is going to be *slow* (linear kernel virtual address
	 * debugging doesn't do a broadcast TLB flush so it is a lot
	 * faster).
	 */
#ifdef CONFIG_DEBUG_PAGEALLOC
	vunmap_page_range(start, end);
	flush_tlb_kernel_range(start, end);
#endif
}

N
Nick Piggin 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);

566 567 568
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

569 570 571 572 573 574 575 576 577
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
}

N
Nick Piggin 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * Purges all lazily-freed vmap areas.
 *
 * If sync is 0 then don't purge if there is already a purge in progress.
 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 * their own TLB flushing).
 * Returns with *start = min(*start, lowest purged address)
 *              *end = max(*end, highest purged address)
 */
static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
					int sync, int force_flush)
{
591
	static DEFINE_SPINLOCK(purge_lock);
N
Nick Piggin 已提交
592 593
	LIST_HEAD(valist);
	struct vmap_area *va;
594
	struct vmap_area *n_va;
N
Nick Piggin 已提交
595 596 597 598 599 600 601 602
	int nr = 0;

	/*
	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
	 * should not expect such behaviour. This just simplifies locking for
	 * the case that isn't actually used at the moment anyway.
	 */
	if (!sync && !force_flush) {
603
		if (!spin_trylock(&purge_lock))
N
Nick Piggin 已提交
604 605
			return;
	} else
606
		spin_lock(&purge_lock);
N
Nick Piggin 已提交
607

608 609 610
	if (sync)
		purge_fragmented_blocks_allcpus();

N
Nick Piggin 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	rcu_read_lock();
	list_for_each_entry_rcu(va, &vmap_area_list, list) {
		if (va->flags & VM_LAZY_FREE) {
			if (va->va_start < *start)
				*start = va->va_start;
			if (va->va_end > *end)
				*end = va->va_end;
			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
			list_add_tail(&va->purge_list, &valist);
			va->flags |= VM_LAZY_FREEING;
			va->flags &= ~VM_LAZY_FREE;
		}
	}
	rcu_read_unlock();

626
	if (nr)
N
Nick Piggin 已提交
627 628 629 630 631 632 633
		atomic_sub(nr, &vmap_lazy_nr);

	if (nr || force_flush)
		flush_tlb_kernel_range(*start, *end);

	if (nr) {
		spin_lock(&vmap_area_lock);
634
		list_for_each_entry_safe(va, n_va, &valist, purge_list)
N
Nick Piggin 已提交
635 636 637
			__free_vmap_area(va);
		spin_unlock(&vmap_area_lock);
	}
638
	spin_unlock(&purge_lock);
N
Nick Piggin 已提交
639 640
}

N
Nick Piggin 已提交
641 642 643 644 645 646 647 648 649 650 651
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
	unsigned long start = ULONG_MAX, end = 0;

	__purge_vmap_area_lazy(&start, &end, 0, 0);
}

N
Nick Piggin 已提交
652 653 654 655 656 657 658
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
	unsigned long start = ULONG_MAX, end = 0;

N
Nick Piggin 已提交
659
	__purge_vmap_area_lazy(&start, &end, 1, 0);
N
Nick Piggin 已提交
660 661 662
}

/*
663 664 665
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
666
 */
667
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
668 669 670 671
{
	va->flags |= VM_LAZY_FREE;
	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
N
Nick Piggin 已提交
672
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
673 674
}

675 676 677 678 679 680 681 682 683 684
/*
 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 * called for the correct range previously.
 */
static void free_unmap_vmap_area_noflush(struct vmap_area *va)
{
	unmap_vmap_area(va);
	free_vmap_area_noflush(va);
}

685 686 687 688 689 690 691 692 693
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
	free_unmap_vmap_area_noflush(va);
}

N
Nick Piggin 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

static void free_unmap_vmap_area_addr(unsigned long addr)
{
	struct vmap_area *va;

	va = find_vmap_area(addr);
	BUG_ON(!va);
	free_unmap_vmap_area(va);
}


/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
738 739 740 741
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
742 743 744

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

745 746
static bool vmap_initialized __read_mostly = false;

N
Nick Piggin 已提交
747 748 749 750 751 752 753 754 755 756
struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
757 758
	struct list_head free_list;
	struct rcu_head rcu_head;
759
	struct list_head purge;
N
Nick Piggin 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
805
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
806
		kfree(vb);
J
Julia Lawall 已提交
807
		return ERR_CAST(va);
N
Nick Piggin 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

	spin_lock_init(&vb->lock);
	vb->va = va;
	vb->free = VMAP_BBMAP_BITS;
	vb->dirty = 0;
	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
833
	list_add_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
834
	spin_unlock(&vbq->lock);
835
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850

	return vb;
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

851
	free_vmap_area_noflush(vb->va);
852
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
853 854
}

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
897 898 899 900 901 902 903 904 905
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	unsigned long addr = 0;
	unsigned int order;

	BUG_ON(size & ~PAGE_MASK);
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
906 907 908 909 910 911 912 913
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
914 915 916 917 918 919 920 921 922
	order = get_order(size);

again:
	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
		int i;

		spin_lock(&vb->lock);
923 924 925
		if (vb->free < 1UL << order)
			goto next;

926
		i = VMAP_BBMAP_BITS - vb->free;
927 928 929 930 931 932 933 934 935 936 937 938
		addr = vb->va->va_start + (i << PAGE_SHIFT);
		BUG_ON(addr_to_vb_idx(addr) !=
				addr_to_vb_idx(vb->va->va_start));
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
		spin_unlock(&vb->lock);
		break;
next:
N
Nick Piggin 已提交
939 940
		spin_unlock(&vb->lock);
	}
941

942
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	rcu_read_unlock();

	if (!addr) {
		vb = new_vmap_block(gfp_mask);
		if (IS_ERR(vb))
			return vb;
		goto again;
	}

	return (void *)addr;
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

	BUG_ON(size & ~PAGE_MASK);
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
964 965 966

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
967 968 969 970 971 972 973 974 975 976
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

977 978
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
979
	spin_lock(&vb->lock);
980
	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
981

N
Nick Piggin 已提交
982 983
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
984
		BUG_ON(vb->free);
N
Nick Piggin 已提交
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int cpu;
	int flush = 0;

1010 1011 1012
	if (unlikely(!vmap_initialized))
		return;

N
Nick Piggin 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			int i;

			spin_lock(&vb->lock);
			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
			while (i < VMAP_BBMAP_BITS) {
				unsigned long s, e;
				int j;
				j = find_next_zero_bit(vb->dirty_map,
					VMAP_BBMAP_BITS, i);

				s = vb->va->va_start + (i << PAGE_SHIFT);
				e = vb->va->va_start + (j << PAGE_SHIFT);
				flush = 1;

				if (s < start)
					start = s;
				if (e > end)
					end = e;

				i = j;
				i = find_next_bit(vb->dirty_map,
							VMAP_BBMAP_BITS, i);
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

	__purge_vmap_area_lazy(&start, &end, 1, flush);
}
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
	unsigned long size = count << PAGE_SHIFT;
	unsigned long addr = (unsigned long)mem;

	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
	BUG_ON(addr & (PAGE_SIZE-1));

	debug_check_no_locks_freed(mem, size);
1067
	vmap_debug_free_range(addr, addr+size);
N
Nick Piggin 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

	if (likely(count <= VMAP_MAX_ALLOC))
		vb_free(mem, size);
	else
		free_unmap_vmap_area_addr(addr);
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1082 1083
 *
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
	unsigned long size = count << PAGE_SHIFT;
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1114
static struct vm_struct *vmlist __initdata;
N
Nicolas Pitre 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1141 1142 1143
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1144
 * @align: requested alignment
1145 1146 1147 1148 1149 1150 1151 1152
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1153
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1154 1155
{
	static size_t vm_init_off __initdata;
1156 1157 1158 1159
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1160

1161
	vm->addr = (void *)addr;
1162

N
Nicolas Pitre 已提交
1163
	vm_area_add_early(vm);
1164 1165
}

N
Nick Piggin 已提交
1166 1167
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1168 1169
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1170 1171 1172 1173
	int i;

	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1174
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1175 1176 1177 1178

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1179 1180 1181
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1182
	}
1183

I
Ivan Kokshaysky 已提交
1184 1185
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1186
		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1187
		va->flags = VM_VM_AREA;
I
Ivan Kokshaysky 已提交
1188 1189
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1190
		va->vm = tmp;
I
Ivan Kokshaysky 已提交
1191 1192
		__insert_vmap_area(va);
	}
1193 1194 1195

	vmap_area_pcpu_hole = VMALLOC_END;

1196
	vmap_initialized = true;
N
Nick Piggin 已提交
1197 1198
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
1242
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1243 1244 1245 1246 1247 1248 1249 1250 1251

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1252 1253 1254
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
1255 1256

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}

int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
{
	unsigned long addr = (unsigned long)area->addr;
	unsigned long end = addr + area->size - PAGE_SIZE;
	int err;

	err = vmap_page_range(addr, end, prot, *pages);
	if (err > 0) {
		*pages += err;
		err = 0;
	}

	return err;
}
EXPORT_SYMBOL_GPL(map_vm_area);

1277
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1278
			      unsigned long flags, const void *caller)
1279
{
1280
	spin_lock(&vmap_area_lock);
1281 1282 1283 1284
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
1285
	va->vm = vm;
1286
	va->flags |= VM_VM_AREA;
1287
	spin_unlock(&vmap_area_lock);
1288
}
1289

1290
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1291
{
1292
	/*
1293
	 * Before removing VM_UNINITIALIZED,
1294 1295 1296 1297
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
1298
	vm->flags &= ~VM_UNINITIALIZED;
1299 1300
}

N
Nick Piggin 已提交
1301
static struct vm_struct *__get_vm_area_node(unsigned long size,
1302
		unsigned long align, unsigned long flags, unsigned long start,
1303
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
1304
{
1305
	struct vmap_area *va;
N
Nick Piggin 已提交
1306
	struct vm_struct *area;
L
Linus Torvalds 已提交
1307

1308
	BUG_ON(in_interrupt());
1309 1310
	if (flags & VM_IOREMAP)
		align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
N
Nick Piggin 已提交
1311

L
Linus Torvalds 已提交
1312
	size = PAGE_ALIGN(size);
1313 1314
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
1315

1316
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
1317 1318 1319 1320 1321 1322 1323 1324
	if (unlikely(!area))
		return NULL;

	/*
	 * We always allocate a guard page.
	 */
	size += PAGE_SIZE;

N
Nick Piggin 已提交
1325 1326 1327 1328
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
1329 1330
	}

1331
	setup_vmalloc_vm(area, va, flags, caller);
1332

L
Linus Torvalds 已提交
1333 1334 1335
	return area;
}

C
Christoph Lameter 已提交
1336 1337 1338
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
1339 1340
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
1341
}
1342
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
1343

1344 1345
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
1346
				       const void *caller)
1347
{
D
David Rientjes 已提交
1348 1349
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
1350 1351
}

L
Linus Torvalds 已提交
1352
/**
S
Simon Arlott 已提交
1353
 *	get_vm_area  -  reserve a contiguous kernel virtual area
L
Linus Torvalds 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362
 *	@size:		size of the area
 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
 *
 *	Search an area of @size in the kernel virtual mapping area,
 *	and reserved it for out purposes.  Returns the area descriptor
 *	on success or %NULL on failure.
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
1363
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
1364 1365
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
1366 1367 1368
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1369
				const void *caller)
1370
{
1371
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
1372
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
1373 1374
}

1375 1376 1377 1378 1379 1380 1381 1382 1383
/**
 *	find_vm_area  -  find a continuous kernel virtual area
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and return it.
 *	It is up to the caller to do all required locking to keep the returned
 *	pointer valid.
 */
struct vm_struct *find_vm_area(const void *addr)
1384
{
N
Nick Piggin 已提交
1385
	struct vmap_area *va;
1386

N
Nick Piggin 已提交
1387 1388
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA)
1389
		return va->vm;
L
Linus Torvalds 已提交
1390 1391 1392 1393

	return NULL;
}

1394
/**
S
Simon Arlott 已提交
1395
 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1396 1397 1398 1399 1400 1401
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and remove it.
 *	This function returns the found VM area, but using it is NOT safe
 *	on SMP machines, except for its size or flags.
 */
1402
struct vm_struct *remove_vm_area(const void *addr)
1403
{
N
Nick Piggin 已提交
1404 1405 1406 1407
	struct vmap_area *va;

	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA) {
1408
		struct vm_struct *vm = va->vm;
1409

1410 1411 1412 1413 1414
		spin_lock(&vmap_area_lock);
		va->vm = NULL;
		va->flags &= ~VM_VM_AREA;
		spin_unlock(&vmap_area_lock);

1415 1416 1417 1418
		vmap_debug_free_range(va->va_start, va->va_end);
		free_unmap_vmap_area(va);
		vm->size -= PAGE_SIZE;

N
Nick Piggin 已提交
1419 1420 1421
		return vm;
	}
	return NULL;
1422 1423
}

1424
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429 1430
{
	struct vm_struct *area;

	if (!addr)
		return;

1431
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
1432
			addr))
L
Linus Torvalds 已提交
1433 1434 1435 1436
		return;

	area = remove_vm_area(addr);
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
1437
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
1438 1439 1440 1441
				addr);
		return;
	}

1442
	debug_check_no_locks_freed(addr, area->size);
1443
	debug_check_no_obj_freed(addr, area->size);
1444

L
Linus Torvalds 已提交
1445 1446 1447 1448
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
1449 1450 1451 1452
			struct page *page = area->pages[i];

			BUG_ON(!page);
			__free_page(page);
L
Linus Torvalds 已提交
1453 1454
		}

1455
		if (area->flags & VM_VPAGES)
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460 1461 1462 1463
			vfree(area->pages);
		else
			kfree(area->pages);
	}

	kfree(area);
	return;
}
1464
 
L
Linus Torvalds 已提交
1465 1466 1467 1468
/**
 *	vfree  -  release memory allocated by vmalloc()
 *	@addr:		memory base address
 *
S
Simon Arlott 已提交
1469
 *	Free the virtually continuous memory area starting at @addr, as
1470 1471
 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 *	NULL, no operation is performed.
L
Linus Torvalds 已提交
1472
 *
1473 1474 1475
 *	Must not be called in NMI context (strictly speaking, only if we don't
 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 *	conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
1476 1477
 *
 *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
1478
 */
1479
void vfree(const void *addr)
L
Linus Torvalds 已提交
1480
{
1481
	BUG_ON(in_nmi());
1482 1483 1484

	kmemleak_free(addr);

1485 1486 1487 1488
	if (!addr)
		return;
	if (unlikely(in_interrupt())) {
		struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1489 1490
		if (llist_add((struct llist_node *)addr, &p->list))
			schedule_work(&p->wq);
1491 1492
	} else
		__vunmap(addr, 1);
L
Linus Torvalds 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
}
EXPORT_SYMBOL(vfree);

/**
 *	vunmap  -  release virtual mapping obtained by vmap()
 *	@addr:		memory base address
 *
 *	Free the virtually contiguous memory area starting at @addr,
 *	which was created from the page array passed to vmap().
 *
1503
 *	Must not be called in interrupt context.
L
Linus Torvalds 已提交
1504
 */
1505
void vunmap(const void *addr)
L
Linus Torvalds 已提交
1506 1507
{
	BUG_ON(in_interrupt());
1508
	might_sleep();
1509 1510
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
}
EXPORT_SYMBOL(vunmap);

/**
 *	vmap  -  map an array of pages into virtually contiguous space
 *	@pages:		array of page pointers
 *	@count:		number of pages to map
 *	@flags:		vm_area->flags
 *	@prot:		page protection for the mapping
 *
 *	Maps @count pages from @pages into contiguous kernel virtual
 *	space.
 */
void *vmap(struct page **pages, unsigned int count,
		unsigned long flags, pgprot_t prot)
{
	struct vm_struct *area;

1529 1530
	might_sleep();

1531
	if (count > totalram_pages)
L
Linus Torvalds 已提交
1532 1533
		return NULL;

1534 1535
	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
					__builtin_return_address(0));
L
Linus Torvalds 已提交
1536 1537
	if (!area)
		return NULL;
1538

L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547
	if (map_vm_area(area, prot, &pages)) {
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

1548 1549
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
1550
			    int node, const void *caller);
A
Adrian Bunk 已提交
1551
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1552
				 pgprot_t prot, int node, const void *caller)
L
Linus Torvalds 已提交
1553
{
1554
	const int order = 0;
L
Linus Torvalds 已提交
1555 1556
	struct page **pages;
	unsigned int nr_pages, array_size, i;
1557
	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
L
Linus Torvalds 已提交
1558 1559 1560 1561 1562 1563

	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
1564
	if (array_size > PAGE_SIZE) {
1565
		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1566
				PAGE_KERNEL, node, caller);
1567
		area->flags |= VM_VPAGES;
1568
	} else {
1569
		pages = kmalloc_node(array_size, nested_gfp, node);
1570
	}
L
Linus Torvalds 已提交
1571
	area->pages = pages;
1572
	area->caller = caller;
L
Linus Torvalds 已提交
1573 1574 1575 1576 1577 1578 1579
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
1580
		struct page *page;
1581
		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1582

C
Christoph Lameter 已提交
1583
		if (node < 0)
1584
			page = alloc_page(tmp_mask);
C
Christoph Lameter 已提交
1585
		else
1586
			page = alloc_pages_node(node, tmp_mask, order);
1587 1588

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
1589 1590 1591 1592
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
			goto fail;
		}
1593
		area->pages[i] = page;
L
Linus Torvalds 已提交
1594 1595 1596 1597 1598 1599 1600
	}

	if (map_vm_area(area, prot, &pages))
		goto fail;
	return area->addr;

fail:
J
Joe Perches 已提交
1601 1602
	warn_alloc_failed(gfp_mask, order,
			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1603
			  (area->nr_pages*PAGE_SIZE), area->size);
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608
	vfree(area->addr);
	return NULL;
}

/**
1609
 *	__vmalloc_node_range  -  allocate virtually contiguous memory
L
Linus Torvalds 已提交
1610
 *	@size:		allocation size
1611
 *	@align:		desired alignment
1612 1613
 *	@start:		vm area range start
 *	@end:		vm area range end
L
Linus Torvalds 已提交
1614 1615
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
D
David Rientjes 已提交
1616
 *	@node:		node to use for allocation or NUMA_NO_NODE
1617
 *	@caller:	caller's return address
L
Linus Torvalds 已提交
1618 1619 1620 1621 1622
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
 */
1623 1624
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
1625
			pgprot_t prot, int node, const void *caller)
L
Linus Torvalds 已提交
1626 1627
{
	struct vm_struct *area;
1628 1629
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
1630 1631

	size = PAGE_ALIGN(size);
1632
	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1633
		goto fail;
L
Linus Torvalds 已提交
1634

1635
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
1636
				  start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
1637
	if (!area)
1638
		goto fail;
L
Linus Torvalds 已提交
1639

1640
	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1641
	if (!addr)
1642
		goto fail;
1643

1644
	/*
1645 1646
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
1647
	 * Now, it is fully initialized, so remove this flag here.
1648
	 */
1649
	clear_vm_uninitialized_flag(area);
1650

1651 1652 1653 1654 1655 1656 1657 1658
	/*
	 * A ref_count = 3 is needed because the vm_struct and vmap_area
	 * structures allocated in the __get_vm_area_node() function contain
	 * references to the virtual address of the vmalloc'ed block.
	 */
	kmemleak_alloc(addr, real_size, 3, gfp_mask);

	return addr;
1659 1660 1661 1662 1663 1664

fail:
	warn_alloc_failed(gfp_mask, 0,
			  "vmalloc: allocation failure: %lu bytes\n",
			  real_size);
	return NULL;
L
Linus Torvalds 已提交
1665 1666
}

1667 1668 1669 1670 1671 1672
/**
 *	__vmalloc_node  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	@align:		desired alignment
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
D
David Rientjes 已提交
1673
 *	@node:		node to use for allocation or NUMA_NO_NODE
1674 1675 1676 1677 1678 1679 1680 1681
 *	@caller:	caller's return address
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
 */
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
1682
			    int node, const void *caller)
1683 1684 1685 1686 1687
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
				gfp_mask, prot, node, caller);
}

C
Christoph Lameter 已提交
1688 1689
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
1690
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1691
				__builtin_return_address(0));
C
Christoph Lameter 已提交
1692
}
L
Linus Torvalds 已提交
1693 1694
EXPORT_SYMBOL(__vmalloc);

1695 1696 1697 1698 1699 1700 1701
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}

L
Linus Torvalds 已提交
1702 1703 1704 1705 1706 1707
/**
 *	vmalloc  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1708
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1709 1710 1711 1712
 *	use __vmalloc() instead.
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
1713 1714
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
				    GFP_KERNEL | __GFP_HIGHMEM);
L
Linus Torvalds 已提交
1715 1716 1717
}
EXPORT_SYMBOL(vmalloc);

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
/**
 *	vzalloc - allocate virtually contiguous memory with zero fill
 *	@size:	allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *	The memory allocated is set to zero.
 *
 *	For tight control over page level allocator and protection flags
 *	use __vmalloc() instead.
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
1730
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1731 1732 1733 1734
				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
}
EXPORT_SYMBOL(vzalloc);

1735
/**
1736 1737
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
1738
 *
1739 1740
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
1741 1742 1743 1744 1745 1746
 */
void *vmalloc_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1747 1748
	ret = __vmalloc_node(size, SHMLBA,
			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
D
David Rientjes 已提交
1749 1750
			     PAGE_KERNEL, NUMA_NO_NODE,
			     __builtin_return_address(0));
1751
	if (ret) {
N
Nick Piggin 已提交
1752
		area = find_vm_area(ret);
1753 1754
		area->flags |= VM_USERMAP;
	}
1755 1756 1757 1758
	return ret;
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
1759 1760 1761
/**
 *	vmalloc_node  -  allocate memory on a specific node
 *	@size:		allocation size
1762
 *	@node:		numa node
C
Christoph Lameter 已提交
1763 1764 1765 1766
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1767
 *	For tight control over page level allocator and protection flags
C
Christoph Lameter 已提交
1768 1769 1770 1771
 *	use __vmalloc() instead.
 */
void *vmalloc_node(unsigned long size, int node)
{
1772
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1773
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1774 1775 1776
}
EXPORT_SYMBOL(vmalloc_node);

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
}
EXPORT_SYMBOL(vzalloc_node);

1796 1797 1798 1799
#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif

L
Linus Torvalds 已提交
1800 1801 1802 1803 1804 1805 1806 1807
/**
 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 *	@size:		allocation size
 *
 *	Kernel-internal function to allocate enough pages to cover @size
 *	the page level allocator and map them into contiguous and
 *	executable kernel virtual space.
 *
1808
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1809 1810 1811 1812 1813
 *	use __vmalloc() instead.
 */

void *vmalloc_exec(unsigned long size)
{
1814
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
D
David Rientjes 已提交
1815
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
1816 1817
}

1818
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1819
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1820
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1821
#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1822 1823 1824 1825
#else
#define GFP_VMALLOC32 GFP_KERNEL
#endif

L
Linus Torvalds 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834
/**
 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 *	@size:		allocation size
 *
 *	Allocate enough 32bit PA addressable pages to cover @size from the
 *	page level allocator and map them into contiguous kernel virtual space.
 */
void *vmalloc_32(unsigned long size)
{
1835
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
1836
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
1837 1838 1839
}
EXPORT_SYMBOL(vmalloc_32);

1840
/**
1841
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1842
 *	@size:		allocation size
1843 1844 1845
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
1846 1847 1848 1849 1850 1851
 */
void *vmalloc_32_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1852
	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
D
David Rientjes 已提交
1853
			     NUMA_NO_NODE, __builtin_return_address(0));
1854
	if (ret) {
N
Nick Piggin 已提交
1855
		area = find_vm_area(ret);
1856 1857
		area->flags |= VM_USERMAP;
	}
1858 1859 1860 1861
	return ret;
}
EXPORT_SYMBOL(vmalloc_32_user);

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

		offset = (unsigned long)addr & ~PAGE_MASK;
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
1892
			void *map = kmap_atomic(p);
1893
			memcpy(buf, map + offset, length);
1894
			kunmap_atomic(map);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

		offset = (unsigned long)addr & ~PAGE_MASK;
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
1931
			void *map = kmap_atomic(p);
1932
			memcpy(map + offset, buf, length);
1933
			kunmap_atomic(map);
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
 *	vread() -  read vmalloc area in a safe way.
 *	@buf:		buffer for reading data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be increased.
 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
 *	includes any intersect with alive vmalloc area.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from that area to a given buffer. If the given memory range
 *	of [addr...addr+count) includes some valid address, data is copied to
 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
1960
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
1961 1962 1963 1964 1965 1966 1967 1968
 *
 *	Note: In usual ops, vread() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 *
 */

L
Linus Torvalds 已提交
1969 1970
long vread(char *buf, char *addr, unsigned long count)
{
1971 1972
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
1973
	char *vaddr, *buf_start = buf;
1974
	unsigned long buflen = count;
L
Linus Torvalds 已提交
1975 1976 1977 1978 1979 1980
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
		if (addr >= vaddr + vm->size - PAGE_SIZE)
L
Linus Torvalds 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2001
		n = vaddr + vm->size - PAGE_SIZE - addr;
2002 2003
		if (n > count)
			n = count;
2004
		if (!(vm->flags & VM_IOREMAP))
2005 2006 2007 2008 2009 2010
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2011 2012
	}
finished:
2013
	spin_unlock(&vmap_area_lock);
2014 2015 2016 2017 2018 2019 2020 2021

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2022 2023
}

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
/**
 *	vwrite() -  write vmalloc area in a safe way.
 *	@buf:		buffer for source data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be incresed.
 *	(same number to @count).
 *	If [addr...addr+count) doesn't includes any intersect with valid
 *	vmalloc area, returns 0.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from a buffer to the given addr. If specified range of
 *	[addr...addr+count) includes some valid address, data is copied from
 *	proper area of @buf. If there are memory holes, no copy to hole.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
2042
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2043 2044 2045 2046 2047 2048 2049
 *
 *	Note: In usual ops, vwrite() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 */

L
Linus Torvalds 已提交
2050 2051
long vwrite(char *buf, char *addr, unsigned long count)
{
2052 2053
	struct vmap_area *va;
	struct vm_struct *vm;
2054 2055 2056
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2057 2058 2059 2060

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2061
	buflen = count;
L
Linus Torvalds 已提交
2062

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
		if (addr >= vaddr + vm->size - PAGE_SIZE)
L
Linus Torvalds 已提交
2074 2075 2076 2077 2078 2079 2080 2081
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2082
		n = vaddr + vm->size - PAGE_SIZE - addr;
2083 2084
		if (n > count)
			n = count;
2085
		if (!(vm->flags & VM_IOREMAP)) {
2086 2087 2088 2089 2090 2091
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2092 2093
	}
finished:
2094
	spin_unlock(&vmap_area_lock);
2095 2096 2097
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2098
}
2099 2100

/**
2101 2102 2103 2104 2105
 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
 *	@vma:		vma to cover
 *	@uaddr:		target user address to start at
 *	@kaddr:		virtual address of vmalloc kernel memory
 *	@size:		size of map area
2106 2107
 *
 *	Returns:	0 for success, -Exxx on failure
2108
 *
2109 2110 2111 2112
 *	This function checks that @kaddr is a valid vmalloc'ed area,
 *	and that it is big enough to cover the range starting at
 *	@uaddr in @vma. Will return failure if that criteria isn't
 *	met.
2113
 *
2114
 *	Similar to remap_pfn_range() (see mm/memory.c)
2115
 */
2116 2117
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
2118 2119 2120
{
	struct vm_struct *area;

2121 2122 2123
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2124 2125
		return -EINVAL;

2126
	area = find_vm_area(kaddr);
2127
	if (!area)
N
Nick Piggin 已提交
2128
		return -EINVAL;
2129 2130

	if (!(area->flags & VM_USERMAP))
N
Nick Piggin 已提交
2131
		return -EINVAL;
2132

2133
	if (kaddr + size > area->addr + area->size)
N
Nick Piggin 已提交
2134
		return -EINVAL;
2135 2136

	do {
2137
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
2138 2139
		int ret;

2140 2141 2142 2143 2144
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
2145 2146 2147
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
2148

2149
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2150

N
Nick Piggin 已提交
2151
	return 0;
2152
}
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
 *	remap_vmalloc_range  -  map vmalloc pages to userspace
 *	@vma:		vma to cover (map full range of vma)
 *	@addr:		vmalloc memory
 *	@pgoff:		number of pages into addr before first page to map
 *
 *	Returns:	0 for success, -Exxx on failure
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	that it is big enough to cover the vma. Will return failure if
 *	that criteria isn't met.
 *
 *	Similar to remap_pfn_range() (see mm/memory.c)
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
2176 2177
EXPORT_SYMBOL(remap_vmalloc_range);

2178 2179 2180 2181 2182 2183 2184
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
 */
void  __attribute__((weak)) vmalloc_sync_all(void)
{
}
2185 2186


2187
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2188
{
2189 2190 2191 2192 2193 2194
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
2195 2196 2197 2198 2199 2200
	return 0;
}

/**
 *	alloc_vm_area - allocate a range of kernel address space
 *	@size:		size of the area
2201
 *	@ptes:		returns the PTEs for the address space
2202 2203
 *
 *	Returns:	NULL on failure, vm_struct on success
2204 2205 2206
 *
 *	This function reserves a range of kernel address space, and
 *	allocates pagetables to map that range.  No actual mappings
2207 2208 2209 2210
 *	are created.
 *
 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 *	allocated for the VM area are returned.
2211
 */
2212
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2213 2214 2215
{
	struct vm_struct *area;

2216 2217
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
2218 2219 2220 2221 2222 2223 2224 2225
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2226
				size, f, ptes ? &ptes : NULL)) {
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
2243

2244
#ifdef CONFIG_SMP
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
static struct vmap_area *node_to_va(struct rb_node *n)
{
	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
}

/**
 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
 * @end: target address
 * @pnext: out arg for the next vmap_area
 * @pprev: out arg for the previous vmap_area
 *
 * Returns: %true if either or both of next and prev are found,
 *	    %false if no vmap_area exists
 *
 * Find vmap_areas end addresses of which enclose @end.  ie. if not
 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
 */
static bool pvm_find_next_prev(unsigned long end,
			       struct vmap_area **pnext,
			       struct vmap_area **pprev)
{
	struct rb_node *n = vmap_area_root.rb_node;
	struct vmap_area *va = NULL;

	while (n) {
		va = rb_entry(n, struct vmap_area, rb_node);
		if (end < va->va_end)
			n = n->rb_left;
		else if (end > va->va_end)
			n = n->rb_right;
		else
			break;
	}

	if (!va)
		return false;

	if (va->va_end > end) {
		*pnext = va;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	} else {
		*pprev = va;
		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
	}
	return true;
}

/**
 * pvm_determine_end - find the highest aligned address between two vmap_areas
 * @pnext: in/out arg for the next vmap_area
 * @pprev: in/out arg for the previous vmap_area
 * @align: alignment
 *
 * Returns: determined end address
 *
 * Find the highest aligned address between *@pnext and *@pprev below
 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
 * down address is between the end addresses of the two vmap_areas.
 *
 * Please note that the address returned by this function may fall
 * inside *@pnext vmap_area.  The caller is responsible for checking
 * that.
 */
static unsigned long pvm_determine_end(struct vmap_area **pnext,
				       struct vmap_area **pprev,
				       unsigned long align)
{
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	unsigned long addr;

	if (*pnext)
		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
	else
		addr = vmalloc_end;

	while (*pprev && (*pprev)->va_end > addr) {
		*pnext = *pprev;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	}

	return addr;
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
2340 2341 2342 2343
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
 *
 * Despite its complicated look, this allocator is rather simple.  It
 * does everything top-down and scans areas from the end looking for
 * matching slot.  While scanning, if any of the areas overlaps with
 * existing vmap_area, the base address is pulled down to fit the
 * area.  Scanning is repeated till all the areas fit and then all
 * necessary data structres are inserted and the result is returned.
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
2354
				     size_t align)
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	struct vmap_area **vas, *prev, *next;
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
	unsigned long base, start, end, last_end;
	bool purged = false;

	/* verify parameters and allocate data structures */
	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

		for (area2 = 0; area2 < nr_vms; area2++) {
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

			if (area2 == area)
				continue;

			BUG_ON(start2 >= start && start2 < end);
			BUG_ON(end2 <= end && end2 > start);
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

2396 2397
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2398
	if (!vas || !vms)
2399
		goto err_free2;
2400 2401

	for (area = 0; area < nr_vms; area++) {
2402 2403
		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
		base = vmalloc_end - last_end;
		goto found;
	}
	base = pvm_determine_end(&next, &prev, align) - end;

	while (true) {
		BUG_ON(next && next->va_end <= base + end);
		BUG_ON(prev && prev->va_end > base + end);

		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
		if (base + last_end < vmalloc_start + last_end) {
			spin_unlock(&vmap_area_lock);
			if (!purged) {
				purge_vmap_area_lazy();
				purged = true;
				goto retry;
			}
			goto err_free;
		}

		/*
		 * If next overlaps, move base downwards so that it's
		 * right below next and then recheck.
		 */
		if (next && next->va_start < base + end) {
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * If prev overlaps, shift down next and prev and move
		 * base so that it's right below new next and then
		 * recheck.
		 */
		if (prev && prev->va_end > base + start)  {
			next = prev;
			prev = node_to_va(rb_prev(&next->rb_node));
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
		start = offsets[area];
		end = start + sizes[area];
		pvm_find_next_prev(base + end, &next, &prev);
	}
found:
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
		struct vmap_area *va = vas[area];

		va->va_start = base + offsets[area];
		va->va_end = va->va_start + sizes[area];
		__insert_vmap_area(va);
	}

	vmap_area_pcpu_hole = base + offsets[last_area];

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
2489 2490
		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				 pcpu_get_vm_areas);
2491 2492 2493 2494 2495 2496

	kfree(vas);
	return vms;

err_free:
	for (area = 0; area < nr_vms; area++) {
2497 2498
		kfree(vas[area]);
		kfree(vms[area]);
2499
	}
2500
err_free2:
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
2521
#endif	/* CONFIG_SMP */
2522 2523 2524

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
2525
	__acquires(&vmap_area_lock)
2526 2527
{
	loff_t n = *pos;
2528
	struct vmap_area *va;
2529

2530 2531 2532
	spin_lock(&vmap_area_lock);
	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
	while (n > 0 && &va->list != &vmap_area_list) {
2533
		n--;
2534
		va = list_entry(va->list.next, typeof(*va), list);
2535
	}
2536 2537
	if (!n && &va->list != &vmap_area_list)
		return va;
2538 2539 2540 2541 2542 2543 2544

	return NULL;

}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
2545
	struct vmap_area *va = p, *next;
2546 2547

	++*pos;
2548 2549 2550 2551 2552
	next = list_entry(va->list.next, typeof(*va), list);
	if (&next->list != &vmap_area_list)
		return next;

	return NULL;
2553 2554 2555
}

static void s_stop(struct seq_file *m, void *p)
2556
	__releases(&vmap_area_lock)
2557
{
2558
	spin_unlock(&vmap_area_lock);
2559 2560
}

E
Eric Dumazet 已提交
2561 2562
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
2563
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

2580 2581
static int s_show(struct seq_file *m, void *p)
{
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
	struct vmap_area *va = p;
	struct vm_struct *v;

	if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
		return 0;

	if (!(va->flags & VM_VM_AREA)) {
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
			(void *)va->va_start, (void *)va->va_end,
					va->va_end - va->va_start);
		return 0;
	}

	v = va->vm;
2596

2597 2598 2599 2600 2601
	/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
	smp_rmb();
	if (v->flags & VM_UNINITIALIZED)
		return 0;

K
Kees Cook 已提交
2602
	seq_printf(m, "0x%pK-0x%pK %7ld",
2603 2604
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
2605 2606
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
2607

2608 2609 2610 2611
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
2612
		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

	if (v->flags & VM_IOREMAP)
		seq_printf(m, " ioremap");

	if (v->flags & VM_ALLOC)
		seq_printf(m, " vmalloc");

	if (v->flags & VM_MAP)
		seq_printf(m, " vmap");

	if (v->flags & VM_USERMAP)
		seq_printf(m, " user");

	if (v->flags & VM_VPAGES)
		seq_printf(m, " vpages");

E
Eric Dumazet 已提交
2629
	show_numa_info(m, v);
2630 2631 2632 2633
	seq_putc(m, '\n');
	return 0;
}

2634
static const struct seq_operations vmalloc_op = {
2635 2636 2637 2638 2639
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
2640 2641 2642 2643 2644 2645

static int vmalloc_open(struct inode *inode, struct file *file)
{
	unsigned int *ptr = NULL;
	int ret;

2646
	if (IS_ENABLED(CONFIG_NUMA)) {
2647
		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2648 2649 2650
		if (ptr == NULL)
			return -ENOMEM;
	}
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	ret = seq_open(file, &vmalloc_op);
	if (!ret) {
		struct seq_file *m = file->private_data;
		m->private = ptr;
	} else
		kfree(ptr);
	return ret;
}

static const struct file_operations proc_vmalloc_operations = {
	.open		= vmalloc_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};

static int __init proc_vmalloc_init(void)
{
	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
	return 0;
}
module_init(proc_vmalloc_init);
2673 2674 2675

void get_vmalloc_info(struct vmalloc_info *vmi)
{
2676
	struct vmap_area *va;
2677 2678 2679 2680
	unsigned long free_area_size;
	unsigned long prev_end;

	vmi->used = 0;
2681
	vmi->largest_chunk = 0;
2682

2683
	prev_end = VMALLOC_START;
2684

2685
	spin_lock(&vmap_area_lock);
2686

2687 2688 2689 2690
	if (list_empty(&vmap_area_list)) {
		vmi->largest_chunk = VMALLOC_TOTAL;
		goto out;
	}
2691

2692 2693
	list_for_each_entry(va, &vmap_area_list, list) {
		unsigned long addr = va->va_start;
2694

2695 2696 2697 2698 2699 2700 2701
		/*
		 * Some archs keep another range for modules in vmalloc space
		 */
		if (addr < VMALLOC_START)
			continue;
		if (addr >= VMALLOC_END)
			break;
2702

2703 2704
		if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
			continue;
2705

2706
		vmi->used += (va->va_end - va->va_start);
2707

2708 2709 2710
		free_area_size = addr - prev_end;
		if (vmi->largest_chunk < free_area_size)
			vmi->largest_chunk = free_area_size;
2711

2712
		prev_end = va->va_end;
2713
	}
2714 2715 2716 2717 2718 2719

	if (VMALLOC_END - prev_end > vmi->largest_chunk)
		vmi->largest_chunk = VMALLOC_END - prev_end;

out:
	spin_unlock(&vmap_area_lock);
2720
}
2721 2722
#endif