vmalloc.c 88.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37

38
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
39
#include <asm/tlbflush.h>
40
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48 49 50 51 52 53 54
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 56 57 58
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
59 60
}

N
Nick Piggin 已提交
61
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
62

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71 72 73
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
74
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
75 76 77 78 79 80 81
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
82 83
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
84 85 86 87 88 89
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

90
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
91 92 93 94
{
	pud_t *pud;
	unsigned long next;

95
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
96 97
	do {
		next = pud_addr_end(addr, end);
98 99
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
100 101 102 103 104 105
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

N
Nick Piggin 已提交
122
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
123 124 125 126 127 128 129 130 131 132
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
133
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
134 135 136 137
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
138
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
139 140 141
{
	pte_t *pte;

N
Nick Piggin 已提交
142 143 144 145 146
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
147
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
148 149 150
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
151 152 153 154 155
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
156 157
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
158
		(*nr)++;
L
Linus Torvalds 已提交
159 160 161 162
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
163 164
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
165 166 167 168 169 170 171 172 173
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
174
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
175 176 177 178 179
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

180
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
181
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
182 183 184 185
{
	pud_t *pud;
	unsigned long next;

186
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
187 188 189 190
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
191
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
192 193 194 195 196
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
214 215 216 217 218 219
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
220 221
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
222 223 224
{
	pgd_t *pgd;
	unsigned long next;
225
	unsigned long addr = start;
N
Nick Piggin 已提交
226 227
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
228 229 230 231 232

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
233
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
234
		if (err)
235
			return err;
L
Linus Torvalds 已提交
236
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
237 238

	return nr;
L
Linus Torvalds 已提交
239 240
}

241 242 243 244 245 246 247 248 249 250
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

251
int is_vmalloc_or_module_addr(const void *x)
252 253
{
	/*
254
	 * ARM, x86-64 and sparc64 put modules in a special place,
255 256 257 258 259 260 261 262 263 264 265
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

266
/*
267
 * Walk a vmap address to the struct page it maps.
268
 */
269
struct page *vmalloc_to_page(const void *vmalloc_addr)
270 271
{
	unsigned long addr = (unsigned long) vmalloc_addr;
272
	struct page *page = NULL;
273
	pgd_t *pgd = pgd_offset_k(addr);
274 275 276 277
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
278

279 280 281 282
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
283
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
284

285 286 287 288 289 290
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
291 292 293 294 295 296 297 298 299 300 301

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
302 303
		return NULL;
	pmd = pmd_offset(pud, addr);
304 305
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 307 308 309 310 311 312
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
313
	return page;
314
}
315
EXPORT_SYMBOL(vmalloc_to_page);
316 317

/*
318
 * Map a vmalloc()-space virtual address to the physical page frame number.
319
 */
320
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321
{
322
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323
}
324
EXPORT_SYMBOL(vmalloc_to_pfn);
325

N
Nick Piggin 已提交
326 327 328

/*** Global kva allocator ***/

329
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331

332
#define VM_LAZY_FREE	0x02
N
Nick Piggin 已提交
333 334 335
#define VM_VM_AREA	0x04

static DEFINE_SPINLOCK(vmap_area_lock);
336 337
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
338
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
339
static struct rb_root vmap_area_root = RB_ROOT;
340
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

368 369 370 371 372 373 374
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

375 376 377 378 379 380 381 382 383 384 385 386 387 388
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size,
	compute_subtree_max_size)

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
408 409

static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
410
{
N
Nick Piggin 已提交
411 412 413 414 415 416 417 418
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
419
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
420 421 422 423 424 425 426 427
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
449

450 451 452 453 454 455 456
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
457

458 459 460 461 462 463 464 465 466 467 468
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
469 470
		else
			BUG();
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
507 508
	}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
529

530 531
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
532 533
}

534 535 536 537 538 539 540 541 542 543 544 545 546
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
	/*
	 * During merging a VA node can be empty, therefore
	 * not linked with the tree nor list. Just check it.
	 */
	if (!RB_EMPTY_NODE(&va->rb_node)) {
		if (root == &free_vmap_area_root)
			rb_erase_augmented(&va->rb_node,
				root, &free_vmap_area_rb_augment_cb);
		else
			rb_erase(&va->rb_node, root);
N
Nick Piggin 已提交
547

548 549 550 551 552
		list_del(&va->list);
		RB_CLEAR_NODE(&va->rb_node);
	}
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
644 645 646 647

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
static __always_inline void
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

746 747
			if (merged)
				unlink_va(va, root);
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
			return;
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
821
			 * OK. We roll back and find the first right sub-tree,
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
919
	struct vmap_area *lva = NULL;
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

993
		if (lva)	/* type == NE_FIT_TYPE */
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1007
	unsigned long vstart, unsigned long vend)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1037 1038 1039 1040
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1041 1042
	return nva_start_addr;
}
1043

N
Nick Piggin 已提交
1044 1045 1046 1047 1048 1049 1050 1051 1052
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1053
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1054
	unsigned long addr;
N
Nick Piggin 已提交
1055 1056
	int purged = 0;

N
Nick Piggin 已提交
1057
	BUG_ON(!size);
1058
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1059
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1060

1061 1062 1063
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1064
	might_sleep();
1065

1066
	va = kmem_cache_alloc_node(vmap_area_cachep,
N
Nick Piggin 已提交
1067 1068 1069 1070
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1071 1072 1073 1074 1075 1076
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);

N
Nick Piggin 已提交
1077
retry:
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	/*
	 * Preload this CPU with one extra vmap_area object to ensure
	 * that we have it available when fit type of free area is
	 * NE_FIT_TYPE.
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
	 * low memory condition and high memory pressure.
	 *
	 * Even if it fails we do not really care about that. Just proceed
	 * as it is. "overflow" path will refill the cache we allocate from.
	 */
	preempt_disable();
	if (!__this_cpu_read(ne_fit_preload_node)) {
		preempt_enable();
		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
		preempt_disable();

		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
			if (pva)
				kmem_cache_free(vmap_area_cachep, pva);
		}
	}

N
Nick Piggin 已提交
1102
	spin_lock(&vmap_area_lock);
1103
	preempt_enable();
N
Nick Piggin 已提交
1104

1105
	/*
1106 1107
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1108
	 */
1109
	addr = __alloc_vmap_area(size, align, vstart, vend);
1110
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1111
		goto overflow;
N
Nick Piggin 已提交
1112 1113 1114 1115

	va->va_start = addr;
	va->va_end = addr + size;
	va->flags = 0;
1116 1117
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);

N
Nick Piggin 已提交
1118 1119
	spin_unlock(&vmap_area_lock);

1120
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1121 1122 1123
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
1124
	return va;
N
Nick Piggin 已提交
1125 1126 1127 1128 1129 1130 1131 1132

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1143
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1144 1145
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1146 1147

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1148
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1149 1150
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1163 1164 1165
static void __free_vmap_area(struct vmap_area *va)
{
	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
N
Nick Piggin 已提交
1166

1167
	/*
1168
	 * Remove from the busy tree/list.
1169
	 */
1170
	unlink_va(va, &vmap_area_root);
1171

1172 1173 1174 1175 1176
	/*
	 * Merge VA with its neighbors, otherwise just add it.
	 */
	merge_or_add_vmap_area(va,
		&free_vmap_area_root, &free_vmap_area_list);
N
Nick Piggin 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1222
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1223

1224 1225 1226 1227 1228
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1229
static DEFINE_MUTEX(vmap_purge_lock);
1230

1231 1232 1233
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1234 1235 1236 1237 1238 1239
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1240
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1241 1242
}

N
Nick Piggin 已提交
1243 1244 1245
/*
 * Purges all lazily-freed vmap areas.
 */
1246
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1247
{
1248
	unsigned long resched_threshold;
1249
	struct llist_node *valist;
N
Nick Piggin 已提交
1250
	struct vmap_area *va;
1251
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1252

1253
	lockdep_assert_held(&vmap_purge_lock);
1254

1255
	valist = llist_del_all(&vmap_purge_list);
1256 1257 1258 1259 1260 1261 1262
	if (unlikely(valist == NULL))
		return false;

	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1263
	llist_for_each_entry(va, valist, purge_list) {
1264 1265 1266 1267
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1268 1269
	}

1270
	flush_tlb_kernel_range(start, end);
1271
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1272

1273
	spin_lock(&vmap_area_lock);
1274
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1275
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1276

1277
		__free_vmap_area(va);
1278
		atomic_long_sub(nr, &vmap_lazy_nr);
1279

1280
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1281
			cond_resched_lock(&vmap_area_lock);
1282
	}
1283 1284
	spin_unlock(&vmap_area_lock);
	return true;
N
Nick Piggin 已提交
1285 1286
}

N
Nick Piggin 已提交
1287 1288 1289 1290 1291 1292
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1293
	if (mutex_trylock(&vmap_purge_lock)) {
1294
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1295
		mutex_unlock(&vmap_purge_lock);
1296
	}
N
Nick Piggin 已提交
1297 1298
}

N
Nick Piggin 已提交
1299 1300 1301 1302 1303
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1304
	mutex_lock(&vmap_purge_lock);
1305 1306
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1307
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1308 1309 1310
}

/*
1311 1312 1313
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1314
 */
1315
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1316
{
1317
	unsigned long nr_lazy;
1318

1319 1320
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1321 1322 1323 1324 1325

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1326
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1327 1328
}

1329 1330 1331 1332 1333 1334
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1335
	unmap_vmap_area(va);
1336 1337 1338
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range(va->va_start, va->va_end);

1339
	free_vmap_area_noflush(va);
1340 1341
}

N
Nick Piggin 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1376 1377 1378 1379
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1392
	unsigned long dirty_min, dirty_max; /*< dirty range */
1393 1394
	struct list_head free_list;
	struct rcu_head rcu_head;
1395
	struct list_head purge;
N
Nick Piggin 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1438
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1439 1440
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1441 1442 1443 1444 1445 1446
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1447
	void *vaddr;
N
Nick Piggin 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1459
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1460
		kfree(vb);
J
Julia Lawall 已提交
1461
		return ERR_CAST(va);
N
Nick Piggin 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1471
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1472 1473
	spin_lock_init(&vb->lock);
	vb->va = va;
1474 1475 1476
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1477
	vb->dirty = 0;
1478 1479
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1491
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1492
	spin_unlock(&vbq->lock);
1493
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1494

1495
	return vaddr;
N
Nick Piggin 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1509
	free_vmap_area_noflush(vb->va);
1510
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1511 1512
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1530 1531
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1556 1557 1558 1559
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1560
	void *vaddr = NULL;
N
Nick Piggin 已提交
1561 1562
	unsigned int order;

1563
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1564
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1565 1566 1567 1568 1569 1570 1571 1572
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1573 1574 1575 1576 1577
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1578
		unsigned long pages_off;
N
Nick Piggin 已提交
1579 1580

		spin_lock(&vb->lock);
1581 1582 1583 1584
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1585

1586 1587
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1588 1589 1590 1591 1592 1593
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1594

1595 1596
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1597
	}
1598

1599
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1600 1601
	rcu_read_unlock();

1602 1603 1604
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1605

1606
	return vaddr;
N
Nick Piggin 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1616
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1617
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1618 1619 1620

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
1621 1622 1623
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1624
	offset >>= PAGE_SHIFT;
N
Nick Piggin 已提交
1625 1626 1627 1628 1629 1630 1631

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1632 1633
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

1634 1635 1636 1637
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range((unsigned long)addr,
					(unsigned long)addr + size);

N
Nick Piggin 已提交
1638
	spin_lock(&vb->lock);
1639 1640 1641 1642

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1643

N
Nick Piggin 已提交
1644 1645
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1646
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1647 1648 1649 1650 1651 1652
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1653
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1654 1655 1656
{
	int cpu;

1657 1658 1659
	if (unlikely(!vmap_initialized))
		return;

1660 1661
	might_sleep();

N
Nick Piggin 已提交
1662 1663 1664 1665 1666 1667 1668
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1669 1670
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1671
				unsigned long s, e;
1672

1673 1674
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1675

1676 1677
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1678

1679
				flush = 1;
N
Nick Piggin 已提交
1680 1681 1682 1683 1684 1685
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1686
	mutex_lock(&vmap_purge_lock);
1687 1688 1689
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1690
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1691
}
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1722
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1723
	unsigned long addr = (unsigned long)mem;
1724
	struct vmap_area *va;
N
Nick Piggin 已提交
1725

1726
	might_sleep();
N
Nick Piggin 已提交
1727 1728 1729
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1730
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1731

1732
	if (likely(count <= VMAP_MAX_ALLOC)) {
1733
		debug_check_no_locks_freed(mem, size);
N
Nick Piggin 已提交
1734
		vb_free(mem, size);
1735 1736 1737 1738 1739
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1740 1741
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1742
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1752
 *
1753 1754 1755 1756 1757 1758
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1759
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1760 1761 1762
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1763
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1790
static struct vm_struct *vmlist __initdata;
1791

N
Nicolas Pitre 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1818 1819 1820
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1821
 * @align: requested alignment
1822 1823 1824 1825 1826 1827 1828 1829
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1830
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1831 1832
{
	static size_t vm_init_off __initdata;
1833 1834 1835 1836
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1837

1838
	vm->addr = (void *)addr;
1839

N
Nicolas Pitre 已提交
1840
	vm_area_add_early(vm);
1841 1842
}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1884 1885
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1886 1887
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1888 1889
	int i;

1890 1891 1892 1893 1894
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1895 1896
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1897
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1898 1899 1900 1901

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1902 1903 1904
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1905
	}
1906

I
Ivan Kokshaysky 已提交
1907 1908
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1909 1910 1911 1912
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

1913
		va->flags = VM_VM_AREA;
I
Ivan Kokshaysky 已提交
1914 1915
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1916
		va->vm = tmp;
1917
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1918
	}
1919

1920 1921 1922 1923
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
1924
	vmap_initialized = true;
N
Nick Piggin 已提交
1925 1926
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
1970
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1971 1972 1973 1974 1975 1976 1977 1978 1979

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1980 1981 1982
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
1983 1984

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
1985 1986 1987
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
1988
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
1989

1990
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
1991 1992
{
	unsigned long addr = (unsigned long)area->addr;
1993
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
1994 1995
	int err;

1996
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
1997

1998
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
1999 2000 2001
}
EXPORT_SYMBOL_GPL(map_vm_area);

2002
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2003
			      unsigned long flags, const void *caller)
2004
{
2005
	spin_lock(&vmap_area_lock);
2006 2007 2008 2009
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2010
	va->vm = vm;
2011
	va->flags |= VM_VM_AREA;
2012
	spin_unlock(&vmap_area_lock);
2013
}
2014

2015
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2016
{
2017
	/*
2018
	 * Before removing VM_UNINITIALIZED,
2019 2020 2021 2022
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2023
	vm->flags &= ~VM_UNINITIALIZED;
2024 2025
}

N
Nick Piggin 已提交
2026
static struct vm_struct *__get_vm_area_node(unsigned long size,
2027
		unsigned long align, unsigned long flags, unsigned long start,
2028
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2029
{
2030
	struct vmap_area *va;
N
Nick Piggin 已提交
2031
	struct vm_struct *area;
L
Linus Torvalds 已提交
2032

2033
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2034
	size = PAGE_ALIGN(size);
2035 2036
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2037

2038 2039 2040 2041
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2042
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2043 2044 2045
	if (unlikely(!area))
		return NULL;

2046 2047
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2048

N
Nick Piggin 已提交
2049 2050 2051 2052
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2053 2054
	}

2055
	setup_vmalloc_vm(area, va, flags, caller);
2056

L
Linus Torvalds 已提交
2057 2058 2059
	return area;
}

C
Christoph Lameter 已提交
2060 2061 2062
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
2063 2064
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
2065
}
2066
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
2067

2068 2069
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2070
				       const void *caller)
2071
{
D
David Rientjes 已提交
2072 2073
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2074 2075
}

L
Linus Torvalds 已提交
2076
/**
2077 2078 2079
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2080
 *
2081 2082 2083
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2084 2085
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2086 2087 2088
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2089
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2090 2091
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2092 2093 2094
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2095
				const void *caller)
2096
{
2097
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2098
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2099 2100
}

2101
/**
2102 2103
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2104
 *
2105 2106 2107
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2108 2109
 *
 * Return: pointer to the found area or %NULL on faulure
2110 2111
 */
struct vm_struct *find_vm_area(const void *addr)
2112
{
N
Nick Piggin 已提交
2113
	struct vmap_area *va;
2114

N
Nick Piggin 已提交
2115 2116
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA)
2117
		return va->vm;
L
Linus Torvalds 已提交
2118 2119 2120 2121

	return NULL;
}

2122
/**
2123 2124
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2125
 *
2126 2127 2128
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2129 2130
 *
 * Return: pointer to the found area or %NULL on faulure
2131
 */
2132
struct vm_struct *remove_vm_area(const void *addr)
2133
{
N
Nick Piggin 已提交
2134 2135
	struct vmap_area *va;

2136 2137
	might_sleep();

N
Nick Piggin 已提交
2138 2139
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA) {
2140
		struct vm_struct *vm = va->vm;
2141

2142 2143 2144
		spin_lock(&vmap_area_lock);
		va->vm = NULL;
		va->flags &= ~VM_VM_AREA;
2145
		va->flags |= VM_LAZY_FREE;
2146 2147
		spin_unlock(&vmap_area_lock);

2148
		kasan_free_shadow(vm);
2149 2150
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2151 2152 2153
		return vm;
	}
	return NULL;
2154 2155
}

2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2171
	int flush_dmap = 0;
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2195 2196
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2197
			start = min(addr, start);
2198
			end = max(addr + PAGE_SIZE, end);
2199
			flush_dmap = 1;
2200 2201 2202 2203 2204 2205 2206 2207 2208
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2209
	_vm_unmap_aliases(start, end, flush_dmap);
2210 2211 2212
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2213
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2214 2215 2216 2217 2218 2219
{
	struct vm_struct *area;

	if (!addr)
		return;

2220
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2221
			addr))
L
Linus Torvalds 已提交
2222 2223
		return;

2224
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2225
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2226
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2227 2228 2229 2230
				addr);
		return;
	}

2231 2232
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2233

2234 2235
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2236 2237 2238 2239
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2240 2241 2242
			struct page *page = area->pages[i];

			BUG_ON(!page);
2243
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2244 2245
		}

D
David Rientjes 已提交
2246
		kvfree(area->pages);
L
Linus Torvalds 已提交
2247 2248 2249 2250 2251
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2268 2269
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2270
 *
2271 2272
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2285 2286 2287 2288 2289 2290 2291 2292
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2293
/**
2294 2295
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2296
 *
2297 2298 2299
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2300
 *
2301 2302 2303
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2304
 *
2305
 * May sleep if called *not* from interrupt context.
2306
 *
2307
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2308
 */
2309
void vfree(const void *addr)
L
Linus Torvalds 已提交
2310
{
2311
	BUG_ON(in_nmi());
2312 2313 2314

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2315 2316
	might_sleep_if(!in_interrupt());

2317 2318
	if (!addr)
		return;
2319 2320

	__vfree(addr);
L
Linus Torvalds 已提交
2321 2322 2323 2324
}
EXPORT_SYMBOL(vfree);

/**
2325 2326
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2327
 *
2328 2329
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2330
 *
2331
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2332
 */
2333
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2334 2335
{
	BUG_ON(in_interrupt());
2336
	might_sleep();
2337 2338
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2339 2340 2341 2342
}
EXPORT_SYMBOL(vunmap);

/**
2343 2344 2345 2346 2347 2348 2349 2350
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2351 2352
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2353 2354
 */
void *vmap(struct page **pages, unsigned int count,
2355
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2356 2357
{
	struct vm_struct *area;
2358
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2359

2360 2361
	might_sleep();

2362
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2363 2364
		return NULL;

2365 2366
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2367 2368
	if (!area)
		return NULL;
2369

2370
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
2371 2372 2373 2374 2375 2376 2377 2378
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2379 2380 2381
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2382
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2383
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2384 2385 2386
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2387
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2388 2389 2390 2391
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2392

2393
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2394 2395 2396 2397
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
2398
	if (array_size > PAGE_SIZE) {
2399
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2400
				PAGE_KERNEL, node, area->caller);
2401
	} else {
2402
		pages = kmalloc_node(array_size, nested_gfp, node);
2403
	}
L
Linus Torvalds 已提交
2404 2405 2406 2407 2408 2409 2410 2411
	area->pages = pages;
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
2412 2413
		struct page *page;

J
Jianguo Wu 已提交
2414
		if (node == NUMA_NO_NODE)
2415
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2416
		else
2417
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2418 2419

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2420 2421 2422 2423
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
			goto fail;
		}
2424
		area->pages[i] = page;
2425
		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2426
			cond_resched();
L
Linus Torvalds 已提交
2427 2428
	}

2429
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
2430 2431 2432 2433
		goto fail;
	return area->addr;

fail:
2434
	warn_alloc(gfp_mask, NULL,
2435
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2436
			  (area->nr_pages*PAGE_SIZE), area->size);
2437
	__vfree(area->addr);
L
Linus Torvalds 已提交
2438 2439 2440 2441
	return NULL;
}

/**
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2456 2457
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2458
 */
2459 2460
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2461 2462
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2463 2464
{
	struct vm_struct *area;
2465 2466
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2467 2468

	size = PAGE_ALIGN(size);
2469
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2470
		goto fail;
L
Linus Torvalds 已提交
2471

2472 2473
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2474
	if (!area)
2475
		goto fail;
L
Linus Torvalds 已提交
2476

2477
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2478
	if (!addr)
2479
		return NULL;
2480

2481
	/*
2482 2483
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2484
	 * Now, it is fully initialized, so remove this flag here.
2485
	 */
2486
	clear_vm_uninitialized_flag(area);
2487

2488
	kmemleak_vmalloc(area, size, gfp_mask);
2489 2490

	return addr;
2491 2492

fail:
2493
	warn_alloc(gfp_mask, NULL,
2494
			  "vmalloc: allocation failure: %lu bytes", real_size);
2495
	return NULL;
L
Linus Torvalds 已提交
2496 2497
}

2498 2499 2500 2501 2502 2503 2504 2505 2506
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2507
/**
2508 2509 2510 2511 2512 2513 2514
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2515
 *
2516 2517 2518
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2519
 *
2520 2521
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2522
 *
2523 2524
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2525 2526
 *
 * Return: pointer to the allocated memory or %NULL on error
2527
 */
2528
static void *__vmalloc_node(unsigned long size, unsigned long align,
2529
			    gfp_t gfp_mask, pgprot_t prot,
2530
			    int node, const void *caller)
2531 2532
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2533
				gfp_mask, prot, 0, node, caller);
2534 2535
}

C
Christoph Lameter 已提交
2536 2537
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2538
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2539
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2540
}
L
Linus Torvalds 已提交
2541 2542
EXPORT_SYMBOL(__vmalloc);

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2557
/**
2558 2559 2560 2561 2562
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2563
 *
2564 2565
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2566 2567
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2568 2569 2570
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2571
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2572
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2573 2574 2575
}
EXPORT_SYMBOL(vmalloc);

2576
/**
2577 2578 2579 2580 2581 2582 2583 2584 2585
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2586 2587
 *
 * Return: pointer to the allocated memory or %NULL on error
2588 2589 2590
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2591
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2592
				GFP_KERNEL | __GFP_ZERO);
2593 2594 2595
}
EXPORT_SYMBOL(vzalloc);

2596
/**
2597 2598
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2599
 *
2600 2601
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2602 2603
 *
 * Return: pointer to the allocated memory or %NULL on error
2604 2605 2606
 */
void *vmalloc_user(unsigned long size)
{
2607 2608 2609 2610
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2611 2612 2613
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2614
/**
2615 2616 2617
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2618
 *
2619 2620
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2621
 *
2622 2623
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2624 2625
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2626 2627 2628
 */
void *vmalloc_node(unsigned long size, int node)
{
2629
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2630
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2631 2632 2633
}
EXPORT_SYMBOL(vmalloc_node);

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2645 2646
 *
 * Return: pointer to the allocated memory or %NULL on error
2647 2648 2649 2650
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2651
			 GFP_KERNEL | __GFP_ZERO);
2652 2653 2654
}
EXPORT_SYMBOL(vzalloc_node);

L
Linus Torvalds 已提交
2655
/**
2656 2657
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2658
 *
2659 2660 2661
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2662
 *
2663 2664
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2665 2666
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2667 2668 2669
 */
void *vmalloc_exec(unsigned long size)
{
2670 2671 2672
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2673 2674
}

2675
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2676
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2677
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2678
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2679
#else
2680 2681 2682 2683 2684
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2685 2686
#endif

L
Linus Torvalds 已提交
2687
/**
2688 2689
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2690
 *
2691 2692
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2693 2694
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2695 2696 2697
 */
void *vmalloc_32(unsigned long size)
{
2698
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2699
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2700 2701 2702
}
EXPORT_SYMBOL(vmalloc_32);

2703
/**
2704
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2705
 * @size:	     allocation size
2706 2707 2708
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2709 2710
 *
 * Return: pointer to the allocated memory or %NULL on error
2711 2712 2713
 */
void *vmalloc_32_user(unsigned long size)
{
2714 2715 2716 2717
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2718 2719 2720
}
EXPORT_SYMBOL(vmalloc_32_user);

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2734
		offset = offset_in_page(addr);
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2751
			void *map = kmap_atomic(p);
2752
			memcpy(buf, map + offset, length);
2753
			kunmap_atomic(map);
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2773
		offset = offset_in_page(addr);
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2790
			void *map = kmap_atomic(p);
2791
			memcpy(map + offset, buf, length);
2792
			kunmap_atomic(map);
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
 * any informaion, as /dev/kmem.
2821 2822 2823 2824
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2825
 */
L
Linus Torvalds 已提交
2826 2827
long vread(char *buf, char *addr, unsigned long count)
{
2828 2829
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2830
	char *vaddr, *buf_start = buf;
2831
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2832 2833 2834 2835 2836 2837
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2848
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2858
		n = vaddr + get_vm_area_size(vm) - addr;
2859 2860
		if (n > count)
			n = count;
2861
		if (!(vm->flags & VM_IOREMAP))
2862 2863 2864 2865 2866 2867
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2868 2869
	}
finished:
2870
	spin_unlock(&vmap_area_lock);
2871 2872 2873 2874 2875 2876 2877 2878

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2879 2880
}

2881
/**
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
 * any informaion, as /dev/kmem.
2900 2901 2902 2903
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2904
 */
L
Linus Torvalds 已提交
2905 2906
long vwrite(char *buf, char *addr, unsigned long count)
{
2907 2908
	struct vmap_area *va;
	struct vm_struct *vm;
2909 2910 2911
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2912 2913 2914 2915

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2916
	buflen = count;
L
Linus Torvalds 已提交
2917

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2928
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933 2934 2935 2936
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2937
		n = vaddr + get_vm_area_size(vm) - addr;
2938 2939
		if (n > count)
			n = count;
2940
		if (!(vm->flags & VM_IOREMAP)) {
2941 2942 2943 2944 2945 2946
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2947 2948
	}
finished:
2949
	spin_unlock(&vmap_area_lock);
2950 2951 2952
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2953
}
2954 2955

/**
2956 2957 2958 2959 2960
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
 * @size:		size of map area
2961
 *
2962
 * Returns:	0 for success, -Exxx on failure
2963
 *
2964 2965 2966 2967
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
2968
 *
2969
 * Similar to remap_pfn_range() (see mm/memory.c)
2970
 */
2971 2972
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
2973 2974 2975
{
	struct vm_struct *area;

2976 2977 2978
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2979 2980
		return -EINVAL;

2981
	area = find_vm_area(kaddr);
2982
	if (!area)
N
Nick Piggin 已提交
2983
		return -EINVAL;
2984 2985

	if (!(area->flags & VM_USERMAP))
N
Nick Piggin 已提交
2986
		return -EINVAL;
2987

2988
	if (kaddr + size > area->addr + get_vm_area_size(area))
N
Nick Piggin 已提交
2989
		return -EINVAL;
2990 2991

	do {
2992
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
2993 2994
		int ret;

2995 2996 2997 2998 2999
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3000 3001 3002
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3003

3004
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3005

N
Nick Piggin 已提交
3006
	return 0;
3007
}
3008 3009 3010
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3011 3012 3013 3014
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3015
 *
3016
 * Returns:	0 for success, -Exxx on failure
3017
 *
3018 3019 3020
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3021
 *
3022
 * Similar to remap_pfn_range() (see mm/memory.c)
3023 3024 3025 3026 3027 3028 3029 3030
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
3031 3032
EXPORT_SYMBOL(remap_vmalloc_range);

3033 3034 3035 3036
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
 */
3037
void __weak vmalloc_sync_all(void)
3038 3039
{
}
3040 3041


3042
static int f(pte_t *pte, unsigned long addr, void *data)
3043
{
3044 3045 3046 3047 3048 3049
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3050 3051 3052 3053
	return 0;
}

/**
3054 3055 3056
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3057
 *
3058
 * Returns:	NULL on failure, vm_struct on success
3059
 *
3060 3061 3062
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3063
 *
3064 3065
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3066
 */
3067
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3068 3069 3070
{
	struct vm_struct *area;

3071 3072
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3073 3074 3075 3076 3077 3078 3079 3080
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3081
				size, f, ptes ? &ptes : NULL)) {
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3098

3099
#ifdef CONFIG_SMP
3100 3101
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3102
	return rb_entry_safe(n, struct vmap_area, rb_node);
3103 3104 3105
}

/**
3106 3107
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3108
 *
3109 3110 3111 3112
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3113
 */
3114 3115
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3116
{
3117 3118 3119 3120 3121
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3122 3123

	while (n) {
3124 3125 3126 3127 3128 3129
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3130
			n = n->rb_right;
3131 3132 3133
		} else {
			n = n->rb_left;
		}
3134 3135
	}

3136
	return va;
3137 3138 3139
}

/**
3140 3141 3142 3143 3144
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3145
 *
3146
 * Returns: determined end address within vmap_area
3147
 */
3148 3149
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3150
{
3151
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3152 3153
	unsigned long addr;

3154 3155 3156 3157 3158 3159 3160
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3161 3162
	}

3163
	return 0;
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3178 3179 3180 3181
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3182
 *
3183 3184 3185 3186 3187 3188
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3189 3190 3191
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3192
				     size_t align)
3193 3194 3195
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3196
	struct vmap_area **vas, *va;
3197 3198
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3199
	unsigned long base, start, size, end, last_end;
3200
	bool purged = false;
3201
	enum fit_type type;
3202 3203

	/* verify parameters and allocate data structures */
3204
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3217
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3218 3219 3220
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3221
			BUG_ON(start2 < end && start < end2);
3222 3223 3224 3225 3226 3227 3228 3229 3230
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3231 3232
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3233
	if (!vas || !vms)
3234
		goto err_free2;
3235 3236

	for (area = 0; area < nr_vms; area++) {
3237
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3238
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3250 3251
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3252 3253 3254 3255 3256 3257

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3258 3259
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3260 3261

		/*
3262
		 * Fitting base has not been found.
3263
		 */
3264 3265
		if (va == NULL)
			goto overflow;
3266 3267

		/*
3268
		 * If this VA does not fit, move base downwards and recheck.
3269
		 */
3270 3271 3272
		if (base + start < va->va_start || base + end > va->va_end) {
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3284

3285 3286
		start = offsets[area];
		end = start + sizes[area];
3287
		va = pvm_find_va_enclose_addr(base + end);
3288
	}
3289

3290 3291
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3292
		int ret;
3293

3294 3295
		start = base + offsets[area];
		size = sizes[area];
3296

3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;

		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
	}
3318 3319 3320 3321 3322

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
3323 3324
		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				 pcpu_get_vm_areas);
3325 3326 3327 3328

	kfree(vas);
	return vms;

3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
recovery:
	/* Remove previously inserted areas. */
	while (area--) {
		__free_vmap_area(vas[area]);
		vas[area] = NULL;
	}

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3356 3357
err_free:
	for (area = 0; area < nr_vms; area++) {
3358 3359 3360
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3361
		kfree(vms[area]);
3362
	}
3363
err_free2:
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3384
#endif	/* CONFIG_SMP */
3385 3386 3387

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3388
	__acquires(&vmap_area_lock)
3389
{
3390
	spin_lock(&vmap_area_lock);
3391
	return seq_list_start(&vmap_area_list, *pos);
3392 3393 3394 3395
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3396
	return seq_list_next(p, &vmap_area_list, pos);
3397 3398 3399
}

static void s_stop(struct seq_file *m, void *p)
3400
	__releases(&vmap_area_lock)
3401
{
3402
	spin_unlock(&vmap_area_lock);
3403 3404
}

E
Eric Dumazet 已提交
3405 3406
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3407
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3408 3409 3410 3411 3412
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3413 3414
		if (v->flags & VM_UNINITIALIZED)
			return;
3415 3416
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3417

E
Eric Dumazet 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3429 3430
static int s_show(struct seq_file *m, void *p)
{
3431
	struct vmap_area *va;
3432 3433
	struct vm_struct *v;

3434 3435
	va = list_entry(p, struct vmap_area, list);

3436 3437 3438 3439
	/*
	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
	 * behalf of vmap area is being tear down or vm_map_ram allocation.
	 */
3440 3441 3442 3443 3444 3445
	if (!(va->flags & VM_VM_AREA)) {
		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start,
			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");

3446
		return 0;
3447
	}
3448 3449

	v = va->vm;
3450

K
Kees Cook 已提交
3451
	seq_printf(m, "0x%pK-0x%pK %7ld",
3452 3453
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3454 3455
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3456

3457 3458 3459 3460
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3461
		seq_printf(m, " phys=%pa", &v->phys_addr);
3462 3463

	if (v->flags & VM_IOREMAP)
3464
		seq_puts(m, " ioremap");
3465 3466

	if (v->flags & VM_ALLOC)
3467
		seq_puts(m, " vmalloc");
3468 3469

	if (v->flags & VM_MAP)
3470
		seq_puts(m, " vmap");
3471 3472

	if (v->flags & VM_USERMAP)
3473
		seq_puts(m, " user");
3474

D
David Rientjes 已提交
3475
	if (is_vmalloc_addr(v->pages))
3476
		seq_puts(m, " vpages");
3477

E
Eric Dumazet 已提交
3478
	show_numa_info(m, v);
3479 3480 3481 3482
	seq_putc(m, '\n');
	return 0;
}

3483
static const struct seq_operations vmalloc_op = {
3484 3485 3486 3487 3488
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3489 3490 3491

static int __init proc_vmalloc_init(void)
{
3492
	if (IS_ENABLED(CONFIG_NUMA))
3493
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3494 3495
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3496
	else
3497
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3498 3499 3500
	return 0;
}
module_init(proc_vmalloc_init);
3501

3502
#endif