vmalloc.c 91.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
10
 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
L
Linus Torvalds 已提交
11 12
 */

N
Nick Piggin 已提交
13
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
14 15 16
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
17
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
18 19 20
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
21
#include <linux/proc_fs.h>
22
#include <linux/seq_file.h>
23
#include <linux/set_memory.h>
24
#include <linux/debugobjects.h>
25
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
26
#include <linux/list.h>
27
#include <linux/notifier.h>
N
Nick Piggin 已提交
28
#include <linux/rbtree.h>
29
#include <linux/xarray.h>
N
Nick Piggin 已提交
30
#include <linux/rcupdate.h>
31
#include <linux/pfn.h>
32
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
33
#include <linux/atomic.h>
34
#include <linux/compiler.h>
35
#include <linux/llist.h>
36
#include <linux/bitops.h>
37
#include <linux/rbtree_augmented.h>
38
#include <linux/overflow.h>
39

40
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
41
#include <asm/tlbflush.h>
42
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
43

44
#include "internal.h"
45
#include "pgalloc-track.h"
46

47 48 49 50 51 52 53 54
bool is_vmalloc_addr(const void *x)
{
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

55 56 57 58 59 60 61 62 63 64 65
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
66 67 68 69
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
70 71
}

N
Nick Piggin 已提交
72
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
73

74 75
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
76 77 78 79 80 81 82 83
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
84
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
85 86
}

87 88
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
89 90 91
{
	pmd_t *pmd;
	unsigned long next;
92
	int cleared;
L
Linus Torvalds 已提交
93 94 95 96

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
97 98 99 100 101 102

		cleared = pmd_clear_huge(pmd);
		if (cleared || pmd_bad(*pmd))
			*mask |= PGTBL_PMD_MODIFIED;

		if (cleared)
103
			continue;
L
Linus Torvalds 已提交
104 105
		if (pmd_none_or_clear_bad(pmd))
			continue;
106
		vunmap_pte_range(pmd, addr, next, mask);
107 108

		cond_resched();
L
Linus Torvalds 已提交
109 110 111
	} while (pmd++, addr = next, addr != end);
}

112 113
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
114 115 116
{
	pud_t *pud;
	unsigned long next;
117
	int cleared;
L
Linus Torvalds 已提交
118

119
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
120 121
	do {
		next = pud_addr_end(addr, end);
122 123 124 125 126 127

		cleared = pud_clear_huge(pud);
		if (cleared || pud_bad(*pud))
			*mask |= PGTBL_PUD_MODIFIED;

		if (cleared)
128
			continue;
L
Linus Torvalds 已提交
129 130
		if (pud_none_or_clear_bad(pud))
			continue;
131
		vunmap_pmd_range(pud, addr, next, mask);
L
Linus Torvalds 已提交
132 133 134
	} while (pud++, addr = next, addr != end);
}

135 136
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
137 138 139
{
	p4d_t *p4d;
	unsigned long next;
140
	int cleared;
141 142 143 144

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
145 146 147 148 149 150

		cleared = p4d_clear_huge(p4d);
		if (cleared || p4d_bad(*p4d))
			*mask |= PGTBL_P4D_MODIFIED;

		if (cleared)
151 152 153
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
154
		vunmap_pud_range(p4d, addr, next, mask);
155 156 157
	} while (p4d++, addr = next, addr != end);
}

158 159
/**
 * unmap_kernel_range_noflush - unmap kernel VM area
160
 * @start: start of the VM area to unmap
161 162 163 164 165 166 167 168 169 170
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 * should have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible
 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 * function and flush_tlb_kernel_range() after.
 */
171
void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
L
Linus Torvalds 已提交
172
{
173
	unsigned long end = start + size;
L
Linus Torvalds 已提交
174
	unsigned long next;
175
	pgd_t *pgd;
176 177
	unsigned long addr = start;
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
178 179 180 181 182

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
183 184
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
L
Linus Torvalds 已提交
185 186
		if (pgd_none_or_clear_bad(pgd))
			continue;
187
		vunmap_p4d_range(pgd, addr, next, &mask);
L
Linus Torvalds 已提交
188
	} while (pgd++, addr = next, addr != end);
189 190 191

	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);
L
Linus Torvalds 已提交
192 193 194
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
195 196
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
197 198 199
{
	pte_t *pte;

N
Nick Piggin 已提交
200 201 202 203 204
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

205
	pte = pte_alloc_kernel_track(pmd, addr, mask);
L
Linus Torvalds 已提交
206 207 208
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
209 210 211 212 213
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
214 215
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
216
		(*nr)++;
L
Linus Torvalds 已提交
217
	} while (pte++, addr += PAGE_SIZE, addr != end);
218
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
219 220 221
	return 0;
}

N
Nick Piggin 已提交
222
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
223 224
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
225 226 227 228
{
	pmd_t *pmd;
	unsigned long next;

229
	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
L
Linus Torvalds 已提交
230 231 232 233
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
234
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
235 236 237 238 239
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

240
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
241 242
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
243 244 245 246
{
	pud_t *pud;
	unsigned long next;

247
	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
L
Linus Torvalds 已提交
248 249 250 251
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
252
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
253 254 255 256 257
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

258
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
259 260
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
261 262 263 264
{
	p4d_t *p4d;
	unsigned long next;

265
	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
266 267 268 269
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
270
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
271 272 273 274 275
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

276 277 278 279 280 281
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
N
Nick Piggin 已提交
282
 *
283 284 285 286 287 288 289 290 291
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 * have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible for
 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 * function.
 *
 * RETURNS:
292
 * 0 on success, -errno on failure.
N
Nick Piggin 已提交
293
 */
294 295
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
296
{
297
	unsigned long start = addr;
298
	unsigned long end = addr + size;
L
Linus Torvalds 已提交
299
	unsigned long next;
300
	pgd_t *pgd;
N
Nick Piggin 已提交
301 302
	int err = 0;
	int nr = 0;
303
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
304 305 306 307 308

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
309 310 311
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
L
Linus Torvalds 已提交
312
		if (err)
313
			return err;
L
Linus Torvalds 已提交
314
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
315

316 317 318
	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);

319
	return 0;
L
Linus Torvalds 已提交
320 321
}

C
Christoph Hellwig 已提交
322 323
int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
		struct page **pages)
324 325 326
{
	int ret;

327 328
	ret = map_kernel_range_noflush(start, size, prot, pages);
	flush_cache_vmap(start, start + size);
329 330 331
	return ret;
}

332
int is_vmalloc_or_module_addr(const void *x)
333 334
{
	/*
335
	 * ARM, x86-64 and sparc64 put modules in a special place,
336 337 338 339 340 341 342 343 344 345 346
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

347
/*
348
 * Walk a vmap address to the struct page it maps.
349
 */
350
struct page *vmalloc_to_page(const void *vmalloc_addr)
351 352
{
	unsigned long addr = (unsigned long) vmalloc_addr;
353
	struct page *page = NULL;
354
	pgd_t *pgd = pgd_offset_k(addr);
355 356 357 358
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
359

360 361 362 363
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
364
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
365

366 367 368 369 370 371
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
372 373 374 375 376 377 378 379 380 381 382

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
383 384
		return NULL;
	pmd = pmd_offset(pud, addr);
385 386
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
387 388 389 390 391 392 393
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
394
	return page;
395
}
396
EXPORT_SYMBOL(vmalloc_to_page);
397 398

/*
399
 * Map a vmalloc()-space virtual address to the physical page frame number.
400
 */
401
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
402
{
403
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
404
}
405
EXPORT_SYMBOL(vmalloc_to_pfn);
406

N
Nick Piggin 已提交
407 408 409

/*** Global kva allocator ***/

410
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
411
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
412

N
Nick Piggin 已提交
413 414

static DEFINE_SPINLOCK(vmap_area_lock);
415
static DEFINE_SPINLOCK(free_vmap_area_lock);
416 417
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
418
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
419
static struct rb_root vmap_area_root = RB_ROOT;
420
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
421

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

448 449 450 451 452 453 454
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

455 456 457 458 459 460 461 462 463 464 465 466 467 468
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
469

470 471 472 473 474 475 476 477 478 479 480
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

481 482
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
483 484 485 486

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
487

488 489 490 491 492 493 494
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
495
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
496
{
N
Nick Piggin 已提交
497 498 499 500 501 502 503 504
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
505
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
506 507 508 509 510 511 512 513
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

514 515 516
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
517 518 519 520
 *
 * Otherwise NULL is returned. In that case all further
 * steps regarding inserting of conflicting overlap range
 * have to be declined and actually considered as a bug.
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
539

540 541 542 543 544 545 546
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
547

548 549 550 551 552 553 554 555 556 557 558
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
559 560 561 562 563 564
		else {
			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);

			return NULL;
		}
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
601 602
	}

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
623

624 625
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
626 627
}

628 629 630
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
631 632
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
633

634 635 636 637 638 639 640 641
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
642 643
}

644 645
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
646
augment_tree_propagate_check(void)
647 648
{
	struct vmap_area *va;
649
	unsigned long computed_size;
650

651 652 653 654 655
	list_for_each_entry(va, &free_vmap_area_list, list) {
		computed_size = compute_subtree_max_size(va);
		if (computed_size != va->subtree_max_size)
			pr_emerg("tree is corrupted: %lu, %lu\n",
				va_size(va), va->subtree_max_size);
656 657 658 659
	}
}
#endif

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
690 691 692 693 694 695
	/*
	 * Populate the tree from bottom towards the root until
	 * the calculated maximum available size of checked node
	 * is equal to its current one.
	 */
	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
696 697

#if DEBUG_AUGMENT_PROPAGATE_CHECK
698
	augment_tree_propagate_check();
699
#endif
700 701 702 703 704 705 706 707 708 709
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
710 711
	if (link)
		link_va(va, root, parent, link, head);
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

727 728 729 730
	if (link) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
731 732 733 734 735 736 737
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
738 739 740 741 742
 *
 * Please note, it can return NULL in case of overlap
 * ranges, followed by WARN() report. Despite it is a
 * buggy behaviour, a system can be alive and keep
 * ongoing.
743
 */
744
static __always_inline struct vmap_area *
745 746 747 748 749 750 751 752 753 754 755 756 757 758
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);
759 760
	if (!link)
		return NULL;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
800 801 802 803 804 805 806
			/*
			 * If both neighbors are coalesced, it is important
			 * to unlink the "next" node first, followed by merging
			 * with "previous" one. Otherwise the tree might not be
			 * fully populated if a sibling's augmented value is
			 * "normalized" because of rotation operations.
			 */
807 808
			if (merged)
				unlink_va(va, root);
809

810 811
			sibling->va_end = va->va_end;

812 813
			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
814 815 816 817

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
818 819 820 821
		}
	}

insert:
822
	if (!merged)
823
		link_va(va, root, parent, link, head);
824

825 826 827 828
	/*
	 * Last step is to check and update the tree.
	 */
	augment_tree_propagate_from(va);
829
	return va;
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
891
			 * OK. We roll back and find the first right sub-tree,
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
989
	struct vmap_area *lva = NULL;
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
1053 1054 1055 1056 1057
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1076
		if (lva)	/* type == NE_FIT_TYPE */
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1090
	unsigned long vstart, unsigned long vend)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1120 1121 1122 1123
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1124 1125
	return nva_start_addr;
}
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
	spin_unlock(&free_vmap_area_lock);
}

N
Nick Piggin 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1156
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1157
	unsigned long addr;
N
Nick Piggin 已提交
1158
	int purged = 0;
1159
	int ret;
N
Nick Piggin 已提交
1160

N
Nick Piggin 已提交
1161
	BUG_ON(!size);
1162
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1163
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1164

1165 1166 1167
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1168
	might_sleep();
1169
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1170

1171
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1172 1173 1174
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1175 1176 1177 1178
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1179
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1180

N
Nick Piggin 已提交
1181
retry:
1182
	/*
1183 1184 1185 1186 1187 1188
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1189 1190 1191
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1192 1193
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1194
	 *
1195
	 * Set "pva" to NULL here, because of "retry" path.
1196
	 */
1197
	pva = NULL;
1198

1199 1200 1201 1202 1203 1204
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1205
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1206

1207
	spin_lock(&free_vmap_area_lock);
1208 1209 1210

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1211

1212
	/*
1213 1214
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1215
	 */
1216
	addr = __alloc_vmap_area(size, align, vstart, vend);
1217 1218
	spin_unlock(&free_vmap_area_lock);

1219
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1220
		goto overflow;
N
Nick Piggin 已提交
1221 1222 1223

	va->va_start = addr;
	va->va_end = addr + size;
1224
	va->vm = NULL;
1225

1226

1227 1228
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1229 1230
	spin_unlock(&vmap_area_lock);

1231
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1232 1233 1234
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1235 1236 1237 1238 1239 1240
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1241
	return va;
N
Nick Piggin 已提交
1242 1243 1244 1245 1246 1247 1248

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1259
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1260 1261
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1262 1263

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1264
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1265 1266
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1304
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1305

1306 1307 1308 1309 1310
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1311
static DEFINE_MUTEX(vmap_purge_lock);
1312

1313 1314 1315
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1316 1317 1318 1319 1320 1321
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1322
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1323 1324
}

N
Nick Piggin 已提交
1325 1326 1327
/*
 * Purges all lazily-freed vmap areas.
 */
1328
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1329
{
1330
	unsigned long resched_threshold;
1331
	struct llist_node *valist;
N
Nick Piggin 已提交
1332
	struct vmap_area *va;
1333
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1334

1335
	lockdep_assert_held(&vmap_purge_lock);
1336

1337
	valist = llist_del_all(&vmap_purge_list);
1338 1339 1340 1341 1342 1343 1344
	if (unlikely(valist == NULL))
		return false;

	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1345
	llist_for_each_entry(va, valist, purge_list) {
1346 1347 1348 1349
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1350 1351
	}

1352
	flush_tlb_kernel_range(start, end);
1353
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1354

1355
	spin_lock(&free_vmap_area_lock);
1356
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1357
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1358 1359
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1360

1361 1362 1363 1364 1365
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1366 1367 1368
		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
					    &free_vmap_area_list);

1369 1370 1371
		if (!va)
			continue;

1372 1373 1374
		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1375

1376
		atomic_long_sub(nr, &vmap_lazy_nr);
1377

1378
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1379
			cond_resched_lock(&free_vmap_area_lock);
1380
	}
1381
	spin_unlock(&free_vmap_area_lock);
1382
	return true;
N
Nick Piggin 已提交
1383 1384
}

N
Nick Piggin 已提交
1385 1386 1387 1388 1389 1390
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1391
	if (mutex_trylock(&vmap_purge_lock)) {
1392
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1393
		mutex_unlock(&vmap_purge_lock);
1394
	}
N
Nick Piggin 已提交
1395 1396
}

N
Nick Piggin 已提交
1397 1398 1399 1400 1401
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1402
	mutex_lock(&vmap_purge_lock);
1403 1404
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1405
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1406 1407 1408
}

/*
1409 1410 1411
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1412
 */
1413
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1414
{
1415
	unsigned long nr_lazy;
1416

1417 1418 1419 1420
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1421 1422
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1423 1424 1425 1426 1427

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1428
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1429 1430
}

1431 1432 1433 1434 1435 1436
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
C
Christoph Hellwig 已提交
1437
	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1438
	if (debug_pagealloc_enabled_static())
1439 1440
		flush_tlb_kernel_range(va->va_start, va->va_end);

1441
	free_vmap_area_noflush(va);
1442 1443
}

N
Nick Piggin 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1478 1479 1480 1481
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1494
	unsigned long dirty_min, dirty_max; /*< dirty range */
1495 1496
	struct list_head free_list;
	struct rcu_head rcu_head;
1497
	struct list_head purge;
N
Nick Piggin 已提交
1498 1499 1500 1501 1502 1503
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
1504
 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
N
Nick Piggin 已提交
1505 1506 1507
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
1508
static DEFINE_XARRAY(vmap_blocks);
N
Nick Piggin 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1539
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1540 1541
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1542 1543 1544 1545 1546 1547
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1548
	void *vaddr;
N
Nick Piggin 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1560
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1561
		kfree(vb);
J
Julia Lawall 已提交
1562
		return ERR_CAST(va);
N
Nick Piggin 已提交
1563 1564
	}

1565
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1566 1567
	spin_lock_init(&vb->lock);
	vb->va = va;
1568 1569 1570
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1571
	vb->dirty = 0;
1572 1573
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1574 1575 1576
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
1577 1578 1579 1580 1581 1582
	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
	if (err) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}
N
Nick Piggin 已提交
1583 1584 1585

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1586
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1587
	spin_unlock(&vbq->lock);
1588
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1589

1590
	return vaddr;
N
Nick Piggin 已提交
1591 1592 1593 1594 1595 1596
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;

1597
	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
N
Nick Piggin 已提交
1598 1599
	BUG_ON(tmp != vb);

1600
	free_vmap_area_noflush(vb->va);
1601
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1602 1603
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1621 1622
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1647 1648 1649 1650
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1651
	void *vaddr = NULL;
N
Nick Piggin 已提交
1652 1653
	unsigned int order;

1654
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1655
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1656 1657 1658 1659 1660 1661 1662 1663
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1664 1665 1666 1667 1668
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1669
		unsigned long pages_off;
N
Nick Piggin 已提交
1670 1671

		spin_lock(&vb->lock);
1672 1673 1674 1675
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1676

1677 1678
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1679 1680 1681 1682 1683 1684
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1685

1686 1687
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1688
	}
1689

1690
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1691 1692
	rcu_read_unlock();

1693 1694 1695
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1696

1697
	return vaddr;
N
Nick Piggin 已提交
1698 1699
}

1700
static void vb_free(unsigned long addr, unsigned long size)
N
Nick Piggin 已提交
1701 1702 1703 1704 1705
{
	unsigned long offset;
	unsigned int order;
	struct vmap_block *vb;

1706
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1707
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1708

1709
	flush_cache_vunmap(addr, addr + size);
1710

N
Nick Piggin 已提交
1711
	order = get_order(size);
1712
	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1713
	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
N
Nick Piggin 已提交
1714

1715
	unmap_kernel_range_noflush(addr, size);
1716

1717
	if (debug_pagealloc_enabled_static())
1718
		flush_tlb_kernel_range(addr, addr + size);
1719

N
Nick Piggin 已提交
1720
	spin_lock(&vb->lock);
1721 1722 1723 1724

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1725

N
Nick Piggin 已提交
1726 1727
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1728
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1729 1730 1731 1732 1733 1734
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1735
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1736 1737 1738
{
	int cpu;

1739 1740 1741
	if (unlikely(!vmap_initialized))
		return;

1742 1743
	might_sleep();

N
Nick Piggin 已提交
1744 1745 1746 1747 1748 1749 1750
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1751 1752
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1753
				unsigned long s, e;
1754

1755 1756
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1757

1758 1759
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1760

1761
				flush = 1;
N
Nick Piggin 已提交
1762 1763 1764 1765 1766 1767
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1768
	mutex_lock(&vmap_purge_lock);
1769 1770 1771
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1772
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1773
}
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1804
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1805
	unsigned long addr = (unsigned long)mem;
1806
	struct vmap_area *va;
N
Nick Piggin 已提交
1807

1808
	might_sleep();
N
Nick Piggin 已提交
1809 1810 1811
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1812
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1813

1814 1815
	kasan_poison_vmalloc(mem, size);

1816
	if (likely(count <= VMAP_MAX_ALLOC)) {
1817
		debug_check_no_locks_freed(mem, size);
1818
		vb_free(addr, size);
1819 1820 1821 1822 1823
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1824 1825
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1826
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1827 1828 1829 1830 1831 1832 1833 1834
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
1835
 *
1836 1837 1838 1839 1840 1841
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1842
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1843
 */
1844
void *vm_map_ram(struct page **pages, unsigned int count, int node)
N
Nick Piggin 已提交
1845
{
1846
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
1865 1866 1867

	kasan_unpoison_vmalloc(mem, size);

1868
	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
N
Nick Piggin 已提交
1869 1870 1871 1872 1873 1874 1875
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1876
static struct vm_struct *vmlist __initdata;
1877

N
Nicolas Pitre 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1904 1905 1906
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1907
 * @align: requested alignment
1908 1909 1910 1911 1912 1913 1914 1915
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1916
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1917 1918
{
	static size_t vm_init_off __initdata;
1919 1920 1921 1922
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1923

1924
	vm->addr = (void *)addr;
1925

N
Nicolas Pitre 已提交
1926
	vm_area_add_early(vm);
1927 1928
}

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1970 1971
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1972 1973
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1974 1975
	int i;

1976 1977 1978 1979 1980
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1981 1982
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1983
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1984 1985 1986 1987

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1988 1989 1990
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1991
	}
1992

I
Ivan Kokshaysky 已提交
1993 1994
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1995 1996 1997 1998
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
1999 2000
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
2001
		va->vm = tmp;
2002
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
2003
	}
2004

2005 2006 2007 2008
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
2009
	vmap_initialized = true;
N
Nick Piggin 已提交
2010 2011
}

2012 2013 2014 2015 2016 2017 2018 2019
/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2020 2021 2022
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2023 2024

	flush_cache_vunmap(addr, end);
2025
	unmap_kernel_range_noflush(addr, size);
N
Nick Piggin 已提交
2026 2027 2028
	flush_tlb_kernel_range(addr, end);
}

2029 2030
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2031 2032 2033 2034 2035
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2036
	va->vm = vm;
2037 2038 2039 2040 2041 2042 2043
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2044
	spin_unlock(&vmap_area_lock);
2045
}
2046

2047
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2048
{
2049
	/*
2050
	 * Before removing VM_UNINITIALIZED,
2051 2052 2053 2054
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2055
	vm->flags &= ~VM_UNINITIALIZED;
2056 2057
}

N
Nick Piggin 已提交
2058
static struct vm_struct *__get_vm_area_node(unsigned long size,
2059
		unsigned long align, unsigned long flags, unsigned long start,
2060
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2061
{
2062
	struct vmap_area *va;
N
Nick Piggin 已提交
2063
	struct vm_struct *area;
2064
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2065

2066
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2067
	size = PAGE_ALIGN(size);
2068 2069
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2070

2071 2072 2073 2074
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2075
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2076 2077 2078
	if (unlikely(!area))
		return NULL;

2079 2080
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2081

N
Nick Piggin 已提交
2082 2083 2084 2085
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2086 2087
	}

2088
	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2089

2090
	setup_vmalloc_vm(area, va, flags, caller);
2091

L
Linus Torvalds 已提交
2092 2093 2094
	return area;
}

2095 2096
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2097
				       const void *caller)
2098
{
D
David Rientjes 已提交
2099 2100
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2101 2102
}

L
Linus Torvalds 已提交
2103
/**
2104 2105 2106
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2107
 *
2108 2109 2110
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2111 2112
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2113 2114 2115
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2116
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2117 2118
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2119 2120 2121
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2122
				const void *caller)
2123
{
2124
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2125
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2126 2127
}

2128
/**
2129 2130
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2131
 *
2132 2133 2134
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2135
 *
2136
 * Return: the area descriptor on success or %NULL on failure.
2137 2138
 */
struct vm_struct *find_vm_area(const void *addr)
2139
{
N
Nick Piggin 已提交
2140
	struct vmap_area *va;
2141

N
Nick Piggin 已提交
2142
	va = find_vmap_area((unsigned long)addr);
2143 2144
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2145

2146
	return va->vm;
L
Linus Torvalds 已提交
2147 2148
}

2149
/**
2150 2151
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2152
 *
2153 2154 2155
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2156
 *
2157
 * Return: the area descriptor on success or %NULL on failure.
2158
 */
2159
struct vm_struct *remove_vm_area(const void *addr)
2160
{
N
Nick Piggin 已提交
2161 2162
	struct vmap_area *va;

2163 2164
	might_sleep();

2165 2166
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2167
	if (va && va->vm) {
2168
		struct vm_struct *vm = va->vm;
2169

2170 2171 2172
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2173
		kasan_free_shadow(vm);
2174 2175
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2176 2177
		return vm;
	}
2178 2179

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2180
	return NULL;
2181 2182
}

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2198
	int flush_dmap = 0;
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2222 2223
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2224
			start = min(addr, start);
2225
			end = max(addr + PAGE_SIZE, end);
2226
			flush_dmap = 1;
2227 2228 2229 2230 2231 2232 2233 2234 2235
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2236
	_vm_unmap_aliases(start, end, flush_dmap);
2237 2238 2239
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2240
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246
{
	struct vm_struct *area;

	if (!addr)
		return;

2247
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2248
			addr))
L
Linus Torvalds 已提交
2249 2250
		return;

2251
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2252
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2253
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2254 2255 2256 2257
				addr);
		return;
	}

2258 2259
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2260

2261
	kasan_poison_vmalloc(area->addr, area->size);
2262

2263 2264
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2265 2266 2267 2268
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2269 2270 2271
			struct page *page = area->pages[i];

			BUG_ON(!page);
2272
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2273
		}
2274
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2275

D
David Rientjes 已提交
2276
		kvfree(area->pages);
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2282 2283 2284 2285 2286 2287 2288

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
2289
	 * another cpu's list. schedule_work() should be fine with this too.
A
Andrey Ryabinin 已提交
2290 2291 2292 2293 2294 2295 2296 2297
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2298 2299
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2300
 *
2301 2302
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2315 2316 2317 2318 2319 2320 2321 2322
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2323
/**
2324 2325
 * vfree - Release memory allocated by vmalloc()
 * @addr:  Memory base address
L
Linus Torvalds 已提交
2326
 *
2327 2328 2329 2330
 * Free the virtually continuous memory area starting at @addr, as obtained
 * from one of the vmalloc() family of APIs.  This will usually also free the
 * physical memory underlying the virtual allocation, but that memory is
 * reference counted, so it will not be freed until the last user goes away.
L
Linus Torvalds 已提交
2331
 *
2332
 * If @addr is NULL, no operation is performed.
A
Andrew Morton 已提交
2333
 *
2334
 * Context:
2335
 * May sleep if called *not* from interrupt context.
2336 2337 2338
 * Must not be called in NMI context (strictly speaking, it could be
 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea).
L
Linus Torvalds 已提交
2339
 */
2340
void vfree(const void *addr)
L
Linus Torvalds 已提交
2341
{
2342
	BUG_ON(in_nmi());
2343 2344 2345

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2346 2347
	might_sleep_if(!in_interrupt());

2348 2349
	if (!addr)
		return;
2350 2351

	__vfree(addr);
L
Linus Torvalds 已提交
2352 2353 2354 2355
}
EXPORT_SYMBOL(vfree);

/**
2356 2357
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2358
 *
2359 2360
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2361
 *
2362
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2363
 */
2364
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2365 2366
{
	BUG_ON(in_interrupt());
2367
	might_sleep();
2368 2369
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2370 2371 2372 2373
}
EXPORT_SYMBOL(vunmap);

/**
2374 2375 2376 2377 2378 2379
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
2380 2381 2382 2383 2384
 * Maps @count pages from @pages into contiguous kernel virtual space.
 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
 * are transferred from the caller to vmap(), and will be freed / dropped when
 * vfree() is called on the return value.
2385 2386
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2387 2388
 */
void *vmap(struct page **pages, unsigned int count,
2389
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2390 2391
{
	struct vm_struct *area;
2392
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2393

2394 2395
	might_sleep();

2396
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2397 2398
		return NULL;

2399 2400
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2401 2402
	if (!area)
		return NULL;
2403

2404
	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
C
Christoph Hellwig 已提交
2405
			pages) < 0) {
L
Linus Torvalds 已提交
2406 2407 2408 2409
		vunmap(area->addr);
		return NULL;
	}

2410 2411
	if (flags & VM_MAP_PUT_PAGES)
		area->pages = pages;
L
Linus Torvalds 已提交
2412 2413 2414 2415
	return area->addr;
}
EXPORT_SYMBOL(vmap);

A
Adrian Bunk 已提交
2416
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2417
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2418 2419 2420
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2421
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2422 2423 2424 2425
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2426

2427
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2428 2429 2430
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2431
	if (array_size > PAGE_SIZE) {
2432
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2433
				node, area->caller);
2434
	} else {
2435
		pages = kmalloc_node(array_size, nested_gfp, node);
2436
	}
2437 2438

	if (!pages) {
L
Linus Torvalds 已提交
2439 2440 2441 2442 2443
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2444 2445 2446
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2447
	for (i = 0; i < area->nr_pages; i++) {
2448 2449
		struct page *page;

J
Jianguo Wu 已提交
2450
		if (node == NUMA_NO_NODE)
2451
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2452
		else
2453
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2454 2455

		if (unlikely(!page)) {
2456
			/* Successfully allocated i pages, free them in __vfree() */
L
Linus Torvalds 已提交
2457
			area->nr_pages = i;
2458
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2459 2460
			goto fail;
		}
2461
		area->pages[i] = page;
2462
		if (gfpflags_allow_blocking(gfp_mask))
2463
			cond_resched();
L
Linus Torvalds 已提交
2464
	}
2465
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2466

C
Christoph Hellwig 已提交
2467 2468
	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
			prot, pages) < 0)
L
Linus Torvalds 已提交
2469
		goto fail;
C
Christoph Hellwig 已提交
2470

L
Linus Torvalds 已提交
2471 2472 2473
	return area->addr;

fail:
2474
	warn_alloc(gfp_mask, NULL,
2475
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2476
			  (area->nr_pages*PAGE_SIZE), area->size);
2477
	__vfree(area->addr);
L
Linus Torvalds 已提交
2478 2479 2480 2481
	return NULL;
}

/**
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2496 2497
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2498
 */
2499 2500
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2501 2502
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2503 2504
{
	struct vm_struct *area;
2505 2506
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2507 2508

	size = PAGE_ALIGN(size);
2509
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2510
		goto fail;
L
Linus Torvalds 已提交
2511

2512
	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2513
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2514
	if (!area)
2515
		goto fail;
L
Linus Torvalds 已提交
2516

2517
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2518
	if (!addr)
2519
		return NULL;
2520

2521
	/*
2522 2523
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2524
	 * Now, it is fully initialized, so remove this flag here.
2525
	 */
2526
	clear_vm_uninitialized_flag(area);
2527

2528
	kmemleak_vmalloc(area, size, gfp_mask);
2529 2530

	return addr;
2531 2532

fail:
2533
	warn_alloc(gfp_mask, NULL,
2534
			  "vmalloc: allocation failure: %lu bytes", real_size);
2535
	return NULL;
L
Linus Torvalds 已提交
2536 2537
}

2538
/**
2539 2540 2541 2542 2543 2544
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2545
 *
2546 2547
 * Allocate enough pages to cover @size from the page level allocator with
 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
M
Michal Hocko 已提交
2548
 *
2549 2550
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2551
 *
2552 2553
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2554 2555
 *
 * Return: pointer to the allocated memory or %NULL on error
2556
 */
2557
void *__vmalloc_node(unsigned long size, unsigned long align,
2558
			    gfp_t gfp_mask, int node, const void *caller)
2559 2560
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2561
				gfp_mask, PAGE_KERNEL, 0, node, caller);
2562
}
2563 2564 2565 2566 2567 2568 2569 2570
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node);
#endif
2571

2572
void *__vmalloc(unsigned long size, gfp_t gfp_mask)
C
Christoph Lameter 已提交
2573
{
2574
	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2575
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2576
}
L
Linus Torvalds 已提交
2577 2578 2579
EXPORT_SYMBOL(__vmalloc);

/**
2580 2581 2582 2583 2584
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2585
 *
2586 2587
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2588 2589
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2590 2591 2592
 */
void *vmalloc(unsigned long size)
{
2593 2594
	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
				__builtin_return_address(0));
L
Linus Torvalds 已提交
2595 2596 2597
}
EXPORT_SYMBOL(vmalloc);

2598
/**
2599 2600 2601 2602 2603 2604 2605 2606 2607
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2608 2609
 *
 * Return: pointer to the allocated memory or %NULL on error
2610 2611 2612
 */
void *vzalloc(unsigned long size)
{
2613 2614
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
				__builtin_return_address(0));
2615 2616 2617
}
EXPORT_SYMBOL(vzalloc);

2618
/**
2619 2620
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2621
 *
2622 2623
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2624 2625
 *
 * Return: pointer to the allocated memory or %NULL on error
2626 2627 2628
 */
void *vmalloc_user(unsigned long size)
{
2629 2630 2631 2632
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2633 2634 2635
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2636
/**
2637 2638 2639
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2640
 *
2641 2642
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2643
 *
2644 2645
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2646 2647
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2648 2649 2650
 */
void *vmalloc_node(unsigned long size, int node)
{
2651 2652
	return __vmalloc_node(size, 1, GFP_KERNEL, node,
			__builtin_return_address(0));
C
Christoph Lameter 已提交
2653 2654 2655
}
EXPORT_SYMBOL(vmalloc_node);

2656 2657 2658 2659 2660 2661 2662 2663 2664
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
2665
 * Return: pointer to the allocated memory or %NULL on error
2666 2667 2668
 */
void *vzalloc_node(unsigned long size, int node)
{
2669 2670
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
				__builtin_return_address(0));
2671 2672 2673
}
EXPORT_SYMBOL(vzalloc_node);

2674
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2675
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2676
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2677
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2678
#else
2679 2680 2681 2682 2683
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2684 2685
#endif

L
Linus Torvalds 已提交
2686
/**
2687 2688
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2689
 *
2690 2691
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2692 2693
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2694 2695 2696
 */
void *vmalloc_32(unsigned long size)
{
2697 2698
	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
			__builtin_return_address(0));
L
Linus Torvalds 已提交
2699 2700 2701
}
EXPORT_SYMBOL(vmalloc_32);

2702
/**
2703
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2704
 * @size:	     allocation size
2705 2706 2707
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2708 2709
 *
 * Return: pointer to the allocated memory or %NULL on error
2710 2711 2712
 */
void *vmalloc_32_user(unsigned long size)
{
2713 2714 2715 2716
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2717 2718 2719
}
EXPORT_SYMBOL(vmalloc_32_user);

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2733
		offset = offset_in_page(addr);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2750
			void *map = kmap_atomic(p);
2751
			memcpy(buf, map + offset, length);
2752
			kunmap_atomic(map);
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2772
		offset = offset_in_page(addr);
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2789
			void *map = kmap_atomic(p);
2790
			memcpy(map + offset, buf, length);
2791
			kunmap_atomic(map);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2819
 * any information, as /dev/kmem.
2820 2821 2822 2823
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2824
 */
L
Linus Torvalds 已提交
2825 2826
long vread(char *buf, char *addr, unsigned long count)
{
2827 2828
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2829
	char *vaddr, *buf_start = buf;
2830
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2831 2832 2833 2834 2835 2836
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2837 2838 2839 2840 2841
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2842
		if (!va->vm)
2843 2844 2845 2846
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2847
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2857
		n = vaddr + get_vm_area_size(vm) - addr;
2858 2859
		if (n > count)
			n = count;
2860
		if (!(vm->flags & VM_IOREMAP))
2861 2862 2863 2864 2865 2866
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2867 2868
	}
finished:
2869
	spin_unlock(&vmap_area_lock);
2870 2871 2872 2873 2874 2875 2876 2877

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2878 2879
}

2880
/**
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2898
 * any information, as /dev/kmem.
2899 2900 2901 2902
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2903
 */
L
Linus Torvalds 已提交
2904 2905
long vwrite(char *buf, char *addr, unsigned long count)
{
2906 2907
	struct vmap_area *va;
	struct vm_struct *vm;
2908 2909 2910
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2911 2912 2913 2914

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2915
	buflen = count;
L
Linus Torvalds 已提交
2916

2917 2918 2919 2920 2921
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2922
		if (!va->vm)
2923 2924 2925 2926
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2927
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2928 2929 2930 2931 2932 2933 2934 2935
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2936
		n = vaddr + get_vm_area_size(vm) - addr;
2937 2938
		if (n > count)
			n = count;
2939
		if (!(vm->flags & VM_IOREMAP)) {
2940 2941 2942 2943 2944 2945
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2946 2947
	}
finished:
2948
	spin_unlock(&vmap_area_lock);
2949 2950 2951
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2952
}
2953 2954

/**
2955 2956 2957 2958
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
2959
 * @pgoff:		offset from @kaddr to start at
2960
 * @size:		size of map area
2961
 *
2962
 * Returns:	0 for success, -Exxx on failure
2963
 *
2964 2965 2966 2967
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
2968
 *
2969
 * Similar to remap_pfn_range() (see mm/memory.c)
2970
 */
2971
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2972 2973
				void *kaddr, unsigned long pgoff,
				unsigned long size)
2974 2975
{
	struct vm_struct *area;
2976 2977 2978 2979 2980
	unsigned long off;
	unsigned long end_index;

	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
		return -EINVAL;
2981

2982 2983 2984
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2985 2986
		return -EINVAL;

2987
	area = find_vm_area(kaddr);
2988
	if (!area)
N
Nick Piggin 已提交
2989
		return -EINVAL;
2990

2991
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
2992
		return -EINVAL;
2993

2994 2995
	if (check_add_overflow(size, off, &end_index) ||
	    end_index > get_vm_area_size(area))
N
Nick Piggin 已提交
2996
		return -EINVAL;
2997
	kaddr += off;
2998 2999

	do {
3000
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3001 3002
		int ret;

3003 3004 3005 3006 3007
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3008 3009 3010
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3011

3012
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3013

N
Nick Piggin 已提交
3014
	return 0;
3015
}
3016 3017 3018
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3019 3020 3021 3022
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3023
 *
3024
 * Returns:	0 for success, -Exxx on failure
3025
 *
3026 3027 3028
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3029
 *
3030
 * Similar to remap_pfn_range() (see mm/memory.c)
3031 3032 3033 3034 3035
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
3036
					   addr, pgoff,
3037 3038
					   vma->vm_end - vma->vm_start);
}
3039 3040
EXPORT_SYMBOL(remap_vmalloc_range);

3041
static int f(pte_t *pte, unsigned long addr, void *data)
3042
{
3043 3044 3045 3046 3047 3048
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3049 3050 3051 3052
	return 0;
}

/**
3053 3054 3055
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3056
 *
3057
 * Returns:	NULL on failure, vm_struct on success
3058
 *
3059 3060 3061
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3062
 *
3063 3064
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3065
 */
3066
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3067 3068 3069
{
	struct vm_struct *area;

3070 3071
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3072 3073 3074 3075 3076 3077 3078 3079
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3080
				size, f, ptes ? &ptes : NULL)) {
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3097

3098
#ifdef CONFIG_SMP
3099 3100
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3101
	return rb_entry_safe(n, struct vmap_area, rb_node);
3102 3103 3104
}

/**
3105 3106
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3107
 *
3108 3109 3110 3111
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3112
 */
3113 3114
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3115
{
3116 3117 3118 3119 3120
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3121 3122

	while (n) {
3123 3124 3125 3126 3127 3128
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3129
			n = n->rb_right;
3130 3131 3132
		} else {
			n = n->rb_left;
		}
3133 3134
	}

3135
	return va;
3136 3137 3138
}

/**
3139 3140 3141 3142 3143
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3144
 *
3145
 * Returns: determined end address within vmap_area
3146
 */
3147 3148
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3149
{
3150
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3151 3152
	unsigned long addr;

3153 3154 3155 3156 3157 3158 3159
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3160 3161
	}

3162
	return 0;
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3177 3178 3179 3180
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3181
 *
3182 3183 3184 3185 3186 3187
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3188 3189 3190
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3191
				     size_t align)
3192 3193 3194
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3195
	struct vmap_area **vas, *va;
3196 3197
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3198
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3199
	bool purged = false;
3200
	enum fit_type type;
3201 3202

	/* verify parameters and allocate data structures */
3203
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3216
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3217 3218 3219
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3220
			BUG_ON(start2 < end && start < end2);
3221 3222 3223 3224 3225 3226 3227 3228 3229
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3230 3231
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3232
	if (!vas || !vms)
3233
		goto err_free2;
3234 3235

	for (area = 0; area < nr_vms; area++) {
3236
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3237
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3238 3239 3240 3241
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3242
	spin_lock(&free_vmap_area_lock);
3243 3244 3245 3246 3247 3248

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3249 3250
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3251 3252 3253 3254 3255 3256

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3257 3258
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3259 3260

		/*
3261
		 * Fitting base has not been found.
3262
		 */
3263 3264
		if (va == NULL)
			goto overflow;
3265

3266
		/*
Q
Qiujun Huang 已提交
3267
		 * If required width exceeds current VA block, move
3268 3269 3270 3271 3272 3273 3274 3275
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3276
		/*
3277
		 * If this VA does not fit, move base downwards and recheck.
3278
		 */
3279
		if (base + start < va->va_start) {
3280 3281
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3293

3294 3295
		start = offsets[area];
		end = start + sizes[area];
3296
		va = pvm_find_va_enclose_addr(base + end);
3297
	}
3298

3299 3300
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3301
		int ret;
3302

3303 3304
		start = base + offsets[area];
		size = sizes[area];
3305

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3325

3326
	spin_unlock(&free_vmap_area_lock);
3327

3328 3329 3330 3331 3332 3333 3334 3335 3336
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;

		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
				       sizes[area]);
	}

3337
	/* insert all vm's */
3338 3339 3340 3341 3342
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3343
				 pcpu_get_vm_areas);
3344 3345
	}
	spin_unlock(&vmap_area_lock);
3346 3347 3348 3349

	kfree(vas);
	return vms;

3350
recovery:
3351 3352 3353 3354 3355 3356
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3357
	while (area--) {
3358 3359 3360 3361
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
3362 3363 3364
		if (va)
			kasan_release_vmalloc(orig_start, orig_end,
				va->va_start, va->va_end);
3365 3366 3367 3368
		vas[area] = NULL;
	}

overflow:
3369
	spin_unlock(&free_vmap_area_lock);
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3388 3389
err_free:
	for (area = 0; area < nr_vms; area++) {
3390 3391 3392
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3393
		kfree(vms[area]);
3394
	}
3395
err_free2:
3396 3397 3398
	kfree(vas);
	kfree(vms);
	return NULL;
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
3412 3413 3414
		if (va)
			kasan_release_vmalloc(orig_start, orig_end,
				va->va_start, va->va_end);
3415 3416 3417 3418 3419 3420 3421
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3439
#endif	/* CONFIG_SMP */
3440 3441 3442

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3443
	__acquires(&vmap_purge_lock)
3444
	__acquires(&vmap_area_lock)
3445
{
3446
	mutex_lock(&vmap_purge_lock);
3447
	spin_lock(&vmap_area_lock);
3448

3449
	return seq_list_start(&vmap_area_list, *pos);
3450 3451 3452 3453
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3454
	return seq_list_next(p, &vmap_area_list, pos);
3455 3456 3457
}

static void s_stop(struct seq_file *m, void *p)
3458
	__releases(&vmap_purge_lock)
3459
	__releases(&vmap_area_lock)
3460
{
3461
	mutex_unlock(&vmap_purge_lock);
3462
	spin_unlock(&vmap_area_lock);
3463 3464
}

E
Eric Dumazet 已提交
3465 3466
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3467
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3468 3469 3470 3471 3472
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3473 3474
		if (v->flags & VM_UNINITIALIZED)
			return;
3475 3476
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3477

E
Eric Dumazet 已提交
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3505 3506
static int s_show(struct seq_file *m, void *p)
{
3507
	struct vmap_area *va;
3508 3509
	struct vm_struct *v;

3510 3511
	va = list_entry(p, struct vmap_area, list);

3512
	/*
3513 3514
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3515
	 */
3516
	if (!va->vm) {
3517
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3518
			(void *)va->va_start, (void *)va->va_end,
3519
			va->va_end - va->va_start);
3520

3521
		return 0;
3522
	}
3523 3524

	v = va->vm;
3525

K
Kees Cook 已提交
3526
	seq_printf(m, "0x%pK-0x%pK %7ld",
3527 3528
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3529 3530
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3531

3532 3533 3534 3535
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3536
		seq_printf(m, " phys=%pa", &v->phys_addr);
3537 3538

	if (v->flags & VM_IOREMAP)
3539
		seq_puts(m, " ioremap");
3540 3541

	if (v->flags & VM_ALLOC)
3542
		seq_puts(m, " vmalloc");
3543 3544

	if (v->flags & VM_MAP)
3545
		seq_puts(m, " vmap");
3546 3547

	if (v->flags & VM_USERMAP)
3548
		seq_puts(m, " user");
3549

3550 3551 3552
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3553
	if (is_vmalloc_addr(v->pages))
3554
		seq_puts(m, " vpages");
3555

E
Eric Dumazet 已提交
3556
	show_numa_info(m, v);
3557
	seq_putc(m, '\n');
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3568 3569 3570
	return 0;
}

3571
static const struct seq_operations vmalloc_op = {
3572 3573 3574 3575 3576
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3577 3578 3579

static int __init proc_vmalloc_init(void)
{
3580
	if (IS_ENABLED(CONFIG_NUMA))
3581
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3582 3583
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3584
	else
3585
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3586 3587 3588
	return 0;
}
module_init(proc_vmalloc_init);
3589

3590
#endif