vmalloc.c 91.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6
/*
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
7
 *  Numa awareness, Christoph Lameter, SGI, June 2005
8
 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
L
Linus Torvalds 已提交
9 10
 */

N
Nick Piggin 已提交
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
15
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
16 17 18
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
19
#include <linux/proc_fs.h>
20
#include <linux/seq_file.h>
21
#include <linux/set_memory.h>
22
#include <linux/debugobjects.h>
23
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
24
#include <linux/list.h>
25
#include <linux/notifier.h>
N
Nick Piggin 已提交
26
#include <linux/rbtree.h>
27
#include <linux/xarray.h>
N
Nick Piggin 已提交
28
#include <linux/rcupdate.h>
29
#include <linux/pfn.h>
30
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
31
#include <linux/atomic.h>
32
#include <linux/compiler.h>
33
#include <linux/llist.h>
34
#include <linux/bitops.h>
35
#include <linux/rbtree_augmented.h>
36
#include <linux/overflow.h>
37

38
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
39
#include <asm/tlbflush.h>
40
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
41

42
#include "internal.h"
43
#include "pgalloc-track.h"
44

45 46 47 48 49 50 51 52
bool is_vmalloc_addr(const void *x)
{
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

53 54 55 56 57 58 59 60 61 62 63
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 65 66 67
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
68 69
}

N
Nick Piggin 已提交
70
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
71

72 73
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
74 75 76 77 78 79 80 81
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
82
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
83 84
}

85 86
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
87 88 89
{
	pmd_t *pmd;
	unsigned long next;
90
	int cleared;
L
Linus Torvalds 已提交
91 92 93 94

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
95 96 97 98 99 100

		cleared = pmd_clear_huge(pmd);
		if (cleared || pmd_bad(*pmd))
			*mask |= PGTBL_PMD_MODIFIED;

		if (cleared)
101
			continue;
L
Linus Torvalds 已提交
102 103
		if (pmd_none_or_clear_bad(pmd))
			continue;
104
		vunmap_pte_range(pmd, addr, next, mask);
105 106

		cond_resched();
L
Linus Torvalds 已提交
107 108 109
	} while (pmd++, addr = next, addr != end);
}

110 111
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
112 113 114
{
	pud_t *pud;
	unsigned long next;
115
	int cleared;
L
Linus Torvalds 已提交
116

117
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
118 119
	do {
		next = pud_addr_end(addr, end);
120 121 122 123 124 125

		cleared = pud_clear_huge(pud);
		if (cleared || pud_bad(*pud))
			*mask |= PGTBL_PUD_MODIFIED;

		if (cleared)
126
			continue;
L
Linus Torvalds 已提交
127 128
		if (pud_none_or_clear_bad(pud))
			continue;
129
		vunmap_pmd_range(pud, addr, next, mask);
L
Linus Torvalds 已提交
130 131 132
	} while (pud++, addr = next, addr != end);
}

133 134
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
			     pgtbl_mod_mask *mask)
135 136 137
{
	p4d_t *p4d;
	unsigned long next;
138
	int cleared;
139 140 141 142

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
143 144 145 146 147 148

		cleared = p4d_clear_huge(p4d);
		if (cleared || p4d_bad(*p4d))
			*mask |= PGTBL_P4D_MODIFIED;

		if (cleared)
149 150 151
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
152
		vunmap_pud_range(p4d, addr, next, mask);
153 154 155
	} while (p4d++, addr = next, addr != end);
}

156 157
/**
 * unmap_kernel_range_noflush - unmap kernel VM area
158
 * @start: start of the VM area to unmap
159 160 161 162 163 164 165 166 167 168
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 * should have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible
 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 * function and flush_tlb_kernel_range() after.
 */
169
void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
L
Linus Torvalds 已提交
170
{
171
	unsigned long end = start + size;
L
Linus Torvalds 已提交
172
	unsigned long next;
173
	pgd_t *pgd;
174 175
	unsigned long addr = start;
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
176 177 178 179 180

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
181 182
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
L
Linus Torvalds 已提交
183 184
		if (pgd_none_or_clear_bad(pgd))
			continue;
185
		vunmap_p4d_range(pgd, addr, next, &mask);
L
Linus Torvalds 已提交
186
	} while (pgd++, addr = next, addr != end);
187 188 189

	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);
L
Linus Torvalds 已提交
190 191 192
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
193 194
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
195 196 197
{
	pte_t *pte;

N
Nick Piggin 已提交
198 199 200 201 202
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

203
	pte = pte_alloc_kernel_track(pmd, addr, mask);
L
Linus Torvalds 已提交
204 205 206
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
207 208 209 210 211
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
212 213
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
214
		(*nr)++;
L
Linus Torvalds 已提交
215
	} while (pte++, addr += PAGE_SIZE, addr != end);
216
	*mask |= PGTBL_PTE_MODIFIED;
L
Linus Torvalds 已提交
217 218 219
	return 0;
}

N
Nick Piggin 已提交
220
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
221 222
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
223 224 225 226
{
	pmd_t *pmd;
	unsigned long next;

227
	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
L
Linus Torvalds 已提交
228 229 230 231
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
232
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
233 234 235 236 237
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

238
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
239 240
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
L
Linus Torvalds 已提交
241 242 243 244
{
	pud_t *pud;
	unsigned long next;

245
	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
L
Linus Torvalds 已提交
246 247 248 249
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
250
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
L
Linus Torvalds 已提交
251 252 253 254 255
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

256
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
257 258
		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
		pgtbl_mod_mask *mask)
259 260 261 262
{
	p4d_t *p4d;
	unsigned long next;

263
	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 265 266 267
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
268
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
269 270 271 272 273
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

274 275 276 277 278 279
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
N
Nick Piggin 已提交
280
 *
281 282 283 284 285 286 287 288 289
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 * have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible for
 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 * function.
 *
 * RETURNS:
290
 * 0 on success, -errno on failure.
N
Nick Piggin 已提交
291
 */
292 293
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
294
{
295
	unsigned long start = addr;
296
	unsigned long end = addr + size;
L
Linus Torvalds 已提交
297
	unsigned long next;
298
	pgd_t *pgd;
N
Nick Piggin 已提交
299 300
	int err = 0;
	int nr = 0;
301
	pgtbl_mod_mask mask = 0;
L
Linus Torvalds 已提交
302 303 304 305 306

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
307 308 309
		if (pgd_bad(*pgd))
			mask |= PGTBL_PGD_MODIFIED;
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
L
Linus Torvalds 已提交
310
		if (err)
311
			return err;
L
Linus Torvalds 已提交
312
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
313

314 315 316
	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
		arch_sync_kernel_mappings(start, end);

317
	return 0;
L
Linus Torvalds 已提交
318 319
}

C
Christoph Hellwig 已提交
320 321
int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
		struct page **pages)
322 323 324
{
	int ret;

325 326
	ret = map_kernel_range_noflush(start, size, prot, pages);
	flush_cache_vmap(start, start + size);
327 328 329
	return ret;
}

330
int is_vmalloc_or_module_addr(const void *x)
331 332
{
	/*
333
	 * ARM, x86-64 and sparc64 put modules in a special place,
334 335 336 337 338 339 340 341 342 343 344
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

345
/*
346
 * Walk a vmap address to the struct page it maps.
347
 */
348
struct page *vmalloc_to_page(const void *vmalloc_addr)
349 350
{
	unsigned long addr = (unsigned long) vmalloc_addr;
351
	struct page *page = NULL;
352
	pgd_t *pgd = pgd_offset_k(addr);
353 354 355 356
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
357

358 359 360 361
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
362
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
363

364 365 366 367 368 369
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
370 371 372 373 374 375 376 377 378 379 380

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
381 382
		return NULL;
	pmd = pmd_offset(pud, addr);
383 384
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
385 386 387 388 389 390 391
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
392
	return page;
393
}
394
EXPORT_SYMBOL(vmalloc_to_page);
395 396

/*
397
 * Map a vmalloc()-space virtual address to the physical page frame number.
398
 */
399
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
400
{
401
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
402
}
403
EXPORT_SYMBOL(vmalloc_to_pfn);
404

N
Nick Piggin 已提交
405 406 407

/*** Global kva allocator ***/

408
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
409
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
410

N
Nick Piggin 已提交
411 412

static DEFINE_SPINLOCK(vmap_area_lock);
413
static DEFINE_SPINLOCK(free_vmap_area_lock);
414 415
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
416
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
417
static struct rb_root vmap_area_root = RB_ROOT;
418
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
419

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

446 447 448 449 450 451 452
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

453 454 455 456 457 458 459 460 461 462 463 464 465 466
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
467

468 469 470 471 472 473 474 475 476 477 478
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

479 480
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
481 482 483 484

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
485

486 487 488 489 490 491 492
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
493
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
494
{
N
Nick Piggin 已提交
495 496 497 498 499 500 501 502
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
503
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
504 505 506 507 508 509 510 511
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

512 513 514
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
515 516 517 518
 *
 * Otherwise NULL is returned. In that case all further
 * steps regarding inserting of conflicting overlap range
 * have to be declined and actually considered as a bug.
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
537

538 539 540 541 542 543 544
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
545

546 547 548 549 550 551 552 553 554 555 556
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
557 558 559 560 561 562
		else {
			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);

			return NULL;
		}
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
599 600
	}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
621

622 623
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
624 625
}

626 627 628
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
629 630
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
631

632 633 634 635 636 637 638 639
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
640 641
}

642 643
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
644
augment_tree_propagate_check(void)
645 646
{
	struct vmap_area *va;
647
	unsigned long computed_size;
648

649 650 651 652 653
	list_for_each_entry(va, &free_vmap_area_list, list) {
		computed_size = compute_subtree_max_size(va);
		if (computed_size != va->subtree_max_size)
			pr_emerg("tree is corrupted: %lu, %lu\n",
				va_size(va), va->subtree_max_size);
654 655 656 657
	}
}
#endif

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
688 689 690 691 692 693
	/*
	 * Populate the tree from bottom towards the root until
	 * the calculated maximum available size of checked node
	 * is equal to its current one.
	 */
	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
694 695

#if DEBUG_AUGMENT_PROPAGATE_CHECK
696
	augment_tree_propagate_check();
697
#endif
698 699 700 701 702 703 704 705 706 707
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
708 709
	if (link)
		link_va(va, root, parent, link, head);
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

725 726 727 728
	if (link) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
729 730 731 732 733 734 735
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
736 737 738 739 740
 *
 * Please note, it can return NULL in case of overlap
 * ranges, followed by WARN() report. Despite it is a
 * buggy behaviour, a system can be alive and keep
 * ongoing.
741
 */
742
static __always_inline struct vmap_area *
743 744 745 746 747 748 749 750 751 752 753 754 755 756
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);
757 758
	if (!link)
		return NULL;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
798 799 800 801 802 803 804
			/*
			 * If both neighbors are coalesced, it is important
			 * to unlink the "next" node first, followed by merging
			 * with "previous" one. Otherwise the tree might not be
			 * fully populated if a sibling's augmented value is
			 * "normalized" because of rotation operations.
			 */
805 806
			if (merged)
				unlink_va(va, root);
807

808 809
			sibling->va_end = va->va_end;

810 811
			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
812 813 814 815

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
816 817 818 819
		}
	}

insert:
820
	if (!merged)
821
		link_va(va, root, parent, link, head);
822

823 824 825 826
	/*
	 * Last step is to check and update the tree.
	 */
	augment_tree_propagate_from(va);
827
	return va;
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
889
			 * OK. We roll back and find the first right sub-tree,
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
987
	struct vmap_area *lva = NULL;
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
1051 1052 1053 1054 1055
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1074
		if (lva)	/* type == NE_FIT_TYPE */
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1088
	unsigned long vstart, unsigned long vend)
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1118 1119 1120 1121
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1122 1123
	return nva_start_addr;
}
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
	spin_unlock(&free_vmap_area_lock);
}

N
Nick Piggin 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1154
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1155
	unsigned long addr;
N
Nick Piggin 已提交
1156
	int purged = 0;
1157
	int ret;
N
Nick Piggin 已提交
1158

N
Nick Piggin 已提交
1159
	BUG_ON(!size);
1160
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1161
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1162

1163 1164 1165
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1166
	might_sleep();
1167
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1168

1169
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1170 1171 1172
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1173 1174 1175 1176
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1177
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1178

N
Nick Piggin 已提交
1179
retry:
1180
	/*
1181 1182 1183 1184 1185 1186
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1187 1188 1189
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1190 1191
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1192
	 *
1193
	 * Set "pva" to NULL here, because of "retry" path.
1194
	 */
1195
	pva = NULL;
1196

1197 1198 1199 1200 1201 1202
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1203
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1204

1205
	spin_lock(&free_vmap_area_lock);
1206 1207 1208

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1209

1210
	/*
1211 1212
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1213
	 */
1214
	addr = __alloc_vmap_area(size, align, vstart, vend);
1215 1216
	spin_unlock(&free_vmap_area_lock);

1217
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1218
		goto overflow;
N
Nick Piggin 已提交
1219 1220 1221

	va->va_start = addr;
	va->va_end = addr + size;
1222
	va->vm = NULL;
1223

1224

1225 1226
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1227 1228
	spin_unlock(&vmap_area_lock);

1229
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1230 1231 1232
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1233 1234 1235 1236 1237 1238
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1239
	return va;
N
Nick Piggin 已提交
1240 1241 1242 1243 1244 1245 1246

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1257
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1258 1259
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1260 1261

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1262
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1263 1264
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1302
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1303

1304 1305 1306 1307 1308
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1309
static DEFINE_MUTEX(vmap_purge_lock);
1310

1311 1312 1313
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1314 1315 1316 1317 1318 1319
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1320
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1321 1322
}

N
Nick Piggin 已提交
1323 1324 1325
/*
 * Purges all lazily-freed vmap areas.
 */
1326
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1327
{
1328
	unsigned long resched_threshold;
1329
	struct llist_node *valist;
N
Nick Piggin 已提交
1330
	struct vmap_area *va;
1331
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1332

1333
	lockdep_assert_held(&vmap_purge_lock);
1334

1335
	valist = llist_del_all(&vmap_purge_list);
1336 1337 1338 1339 1340 1341 1342
	if (unlikely(valist == NULL))
		return false;

	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1343
	llist_for_each_entry(va, valist, purge_list) {
1344 1345 1346 1347
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1348 1349
	}

1350
	flush_tlb_kernel_range(start, end);
1351
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1352

1353
	spin_lock(&free_vmap_area_lock);
1354
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1355
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1356 1357
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1358

1359 1360 1361 1362 1363
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1364 1365 1366
		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
					    &free_vmap_area_list);

1367 1368 1369
		if (!va)
			continue;

1370 1371 1372
		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1373

1374
		atomic_long_sub(nr, &vmap_lazy_nr);
1375

1376
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1377
			cond_resched_lock(&free_vmap_area_lock);
1378
	}
1379
	spin_unlock(&free_vmap_area_lock);
1380
	return true;
N
Nick Piggin 已提交
1381 1382
}

N
Nick Piggin 已提交
1383 1384 1385 1386 1387 1388
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1389
	if (mutex_trylock(&vmap_purge_lock)) {
1390
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1391
		mutex_unlock(&vmap_purge_lock);
1392
	}
N
Nick Piggin 已提交
1393 1394
}

N
Nick Piggin 已提交
1395 1396 1397 1398 1399
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1400
	mutex_lock(&vmap_purge_lock);
1401 1402
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1403
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1404 1405 1406
}

/*
1407 1408 1409
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1410
 */
1411
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1412
{
1413
	unsigned long nr_lazy;
1414

1415 1416 1417 1418
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1419 1420
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1421 1422 1423 1424 1425

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1426
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1427 1428
}

1429 1430 1431 1432 1433 1434
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
C
Christoph Hellwig 已提交
1435
	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1436
	if (debug_pagealloc_enabled_static())
1437 1438
		flush_tlb_kernel_range(va->va_start, va->va_end);

1439
	free_vmap_area_noflush(va);
1440 1441
}

N
Nick Piggin 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1476 1477 1478 1479
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1492
	unsigned long dirty_min, dirty_max; /*< dirty range */
1493 1494
	struct list_head free_list;
	struct rcu_head rcu_head;
1495
	struct list_head purge;
N
Nick Piggin 已提交
1496 1497 1498 1499 1500 1501
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
1502
 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
N
Nick Piggin 已提交
1503 1504 1505
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
1506
static DEFINE_XARRAY(vmap_blocks);
N
Nick Piggin 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1537
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1538 1539
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1540 1541 1542 1543 1544 1545
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1546
	void *vaddr;
N
Nick Piggin 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1558
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1559
		kfree(vb);
J
Julia Lawall 已提交
1560
		return ERR_CAST(va);
N
Nick Piggin 已提交
1561 1562
	}

1563
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1564 1565
	spin_lock_init(&vb->lock);
	vb->va = va;
1566 1567 1568
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1569
	vb->dirty = 0;
1570 1571
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1572 1573 1574
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
1575 1576 1577 1578 1579 1580
	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
	if (err) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}
N
Nick Piggin 已提交
1581 1582 1583

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1584
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1585
	spin_unlock(&vbq->lock);
1586
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1587

1588
	return vaddr;
N
Nick Piggin 已提交
1589 1590 1591 1592 1593 1594
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;

1595
	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
N
Nick Piggin 已提交
1596 1597
	BUG_ON(tmp != vb);

1598
	free_vmap_area_noflush(vb->va);
1599
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1600 1601
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1619 1620
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1645 1646 1647 1648
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1649
	void *vaddr = NULL;
N
Nick Piggin 已提交
1650 1651
	unsigned int order;

1652
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1653
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1654 1655 1656 1657 1658 1659 1660 1661
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1662 1663 1664 1665 1666
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1667
		unsigned long pages_off;
N
Nick Piggin 已提交
1668 1669

		spin_lock(&vb->lock);
1670 1671 1672 1673
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1674

1675 1676
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1677 1678 1679 1680 1681 1682
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1683

1684 1685
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1686
	}
1687

1688
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1689 1690
	rcu_read_unlock();

1691 1692 1693
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1694

1695
	return vaddr;
N
Nick Piggin 已提交
1696 1697
}

1698
static void vb_free(unsigned long addr, unsigned long size)
N
Nick Piggin 已提交
1699 1700 1701 1702 1703
{
	unsigned long offset;
	unsigned int order;
	struct vmap_block *vb;

1704
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1705
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1706

1707
	flush_cache_vunmap(addr, addr + size);
1708

N
Nick Piggin 已提交
1709
	order = get_order(size);
1710
	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1711
	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
N
Nick Piggin 已提交
1712

1713
	unmap_kernel_range_noflush(addr, size);
1714

1715
	if (debug_pagealloc_enabled_static())
1716
		flush_tlb_kernel_range(addr, addr + size);
1717

N
Nick Piggin 已提交
1718
	spin_lock(&vb->lock);
1719 1720 1721 1722

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1723

N
Nick Piggin 已提交
1724 1725
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1726
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1727 1728 1729 1730 1731 1732
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1733
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1734 1735 1736
{
	int cpu;

1737 1738 1739
	if (unlikely(!vmap_initialized))
		return;

1740 1741
	might_sleep();

N
Nick Piggin 已提交
1742 1743 1744 1745 1746 1747 1748
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1749 1750
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1751
				unsigned long s, e;
1752

1753 1754
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1755

1756 1757
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1758

1759
				flush = 1;
N
Nick Piggin 已提交
1760 1761 1762 1763 1764 1765
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1766
	mutex_lock(&vmap_purge_lock);
1767 1768 1769
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1770
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1771
}
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1802
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1803
	unsigned long addr = (unsigned long)mem;
1804
	struct vmap_area *va;
N
Nick Piggin 已提交
1805

1806
	might_sleep();
N
Nick Piggin 已提交
1807 1808 1809
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1810
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1811

1812 1813
	kasan_poison_vmalloc(mem, size);

1814
	if (likely(count <= VMAP_MAX_ALLOC)) {
1815
		debug_check_no_locks_freed(mem, size);
1816
		vb_free(addr, size);
1817 1818 1819 1820 1821
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1822 1823
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1824
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1825 1826 1827 1828 1829 1830 1831 1832
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
1833
 *
1834 1835 1836 1837 1838 1839
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1840
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1841
 */
1842
void *vm_map_ram(struct page **pages, unsigned int count, int node)
N
Nick Piggin 已提交
1843
{
1844
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
1863 1864 1865

	kasan_unpoison_vmalloc(mem, size);

1866
	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
N
Nick Piggin 已提交
1867 1868 1869 1870 1871 1872 1873
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1874
static struct vm_struct *vmlist __initdata;
1875

N
Nicolas Pitre 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1902 1903 1904
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1905
 * @align: requested alignment
1906 1907 1908 1909 1910 1911 1912 1913
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1914
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1915 1916
{
	static size_t vm_init_off __initdata;
1917 1918 1919 1920
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1921

1922
	vm->addr = (void *)addr;
1923

N
Nicolas Pitre 已提交
1924
	vm_area_add_early(vm);
1925 1926
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1968 1969
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1970 1971
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1972 1973
	int i;

1974 1975 1976 1977 1978
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1979 1980
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1981
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1982 1983 1984 1985

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1986 1987 1988
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1989
	}
1990

I
Ivan Kokshaysky 已提交
1991 1992
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1993 1994 1995 1996
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
1997 1998
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1999
		va->vm = tmp;
2000
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
2001
	}
2002

2003 2004 2005 2006
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
2007
	vmap_initialized = true;
N
Nick Piggin 已提交
2008 2009
}

2010 2011 2012 2013 2014 2015 2016 2017
/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2018 2019 2020
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2021 2022

	flush_cache_vunmap(addr, end);
2023
	unmap_kernel_range_noflush(addr, size);
N
Nick Piggin 已提交
2024 2025 2026
	flush_tlb_kernel_range(addr, end);
}

2027 2028
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2029 2030 2031 2032 2033
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2034
	va->vm = vm;
2035 2036 2037 2038 2039 2040 2041
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2042
	spin_unlock(&vmap_area_lock);
2043
}
2044

2045
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2046
{
2047
	/*
2048
	 * Before removing VM_UNINITIALIZED,
2049 2050 2051 2052
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2053
	vm->flags &= ~VM_UNINITIALIZED;
2054 2055
}

N
Nick Piggin 已提交
2056
static struct vm_struct *__get_vm_area_node(unsigned long size,
2057
		unsigned long align, unsigned long flags, unsigned long start,
2058
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2059
{
2060
	struct vmap_area *va;
N
Nick Piggin 已提交
2061
	struct vm_struct *area;
2062
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2063

2064
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2065
	size = PAGE_ALIGN(size);
2066 2067
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2068

2069 2070 2071 2072
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2073
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2074 2075 2076
	if (unlikely(!area))
		return NULL;

2077 2078
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2079

N
Nick Piggin 已提交
2080 2081 2082 2083
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2084 2085
	}

2086
	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2087

2088
	setup_vmalloc_vm(area, va, flags, caller);
2089

L
Linus Torvalds 已提交
2090 2091 2092
	return area;
}

2093 2094
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2095
				       const void *caller)
2096
{
D
David Rientjes 已提交
2097 2098
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2099 2100
}

L
Linus Torvalds 已提交
2101
/**
2102 2103 2104
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2105
 *
2106 2107 2108
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2109 2110
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2111 2112 2113
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2114
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2115 2116
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2117 2118 2119
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2120
				const void *caller)
2121
{
2122
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2123
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2124 2125
}

2126
/**
2127 2128
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2129
 *
2130 2131 2132
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2133
 *
2134
 * Return: the area descriptor on success or %NULL on failure.
2135 2136
 */
struct vm_struct *find_vm_area(const void *addr)
2137
{
N
Nick Piggin 已提交
2138
	struct vmap_area *va;
2139

N
Nick Piggin 已提交
2140
	va = find_vmap_area((unsigned long)addr);
2141 2142
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2143

2144
	return va->vm;
L
Linus Torvalds 已提交
2145 2146
}

2147
/**
2148 2149
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2150
 *
2151 2152 2153
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2154
 *
2155
 * Return: the area descriptor on success or %NULL on failure.
2156
 */
2157
struct vm_struct *remove_vm_area(const void *addr)
2158
{
N
Nick Piggin 已提交
2159 2160
	struct vmap_area *va;

2161 2162
	might_sleep();

2163 2164
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2165
	if (va && va->vm) {
2166
		struct vm_struct *vm = va->vm;
2167

2168 2169 2170
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2171
		kasan_free_shadow(vm);
2172 2173
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2174 2175
		return vm;
	}
2176 2177

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2178
	return NULL;
2179 2180
}

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2196
	int flush_dmap = 0;
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2220 2221
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2222
			start = min(addr, start);
2223
			end = max(addr + PAGE_SIZE, end);
2224
			flush_dmap = 1;
2225 2226 2227 2228 2229 2230 2231 2232 2233
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2234
	_vm_unmap_aliases(start, end, flush_dmap);
2235 2236 2237
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2238
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2239 2240 2241 2242 2243 2244
{
	struct vm_struct *area;

	if (!addr)
		return;

2245
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2246
			addr))
L
Linus Torvalds 已提交
2247 2248
		return;

2249
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2250
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2251
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2252 2253 2254 2255
				addr);
		return;
	}

2256 2257
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2258

2259
	kasan_poison_vmalloc(area->addr, area->size);
2260

2261 2262
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2263 2264 2265 2266
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2267 2268 2269
			struct page *page = area->pages[i];

			BUG_ON(!page);
2270
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2271
		}
2272
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2273

D
David Rientjes 已提交
2274
		kvfree(area->pages);
L
Linus Torvalds 已提交
2275 2276 2277 2278 2279
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2280 2281 2282 2283 2284 2285 2286

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
2287
	 * another cpu's list. schedule_work() should be fine with this too.
A
Andrey Ryabinin 已提交
2288 2289 2290 2291 2292 2293 2294 2295
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2296 2297
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2298
 *
2299 2300
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2313 2314 2315 2316 2317 2318 2319 2320
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2321
/**
2322 2323
 * vfree - Release memory allocated by vmalloc()
 * @addr:  Memory base address
L
Linus Torvalds 已提交
2324
 *
2325 2326 2327 2328
 * Free the virtually continuous memory area starting at @addr, as obtained
 * from one of the vmalloc() family of APIs.  This will usually also free the
 * physical memory underlying the virtual allocation, but that memory is
 * reference counted, so it will not be freed until the last user goes away.
L
Linus Torvalds 已提交
2329
 *
2330
 * If @addr is NULL, no operation is performed.
A
Andrew Morton 已提交
2331
 *
2332
 * Context:
2333
 * May sleep if called *not* from interrupt context.
2334 2335 2336
 * Must not be called in NMI context (strictly speaking, it could be
 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea).
L
Linus Torvalds 已提交
2337
 */
2338
void vfree(const void *addr)
L
Linus Torvalds 已提交
2339
{
2340
	BUG_ON(in_nmi());
2341 2342 2343

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2344 2345
	might_sleep_if(!in_interrupt());

2346 2347
	if (!addr)
		return;
2348 2349

	__vfree(addr);
L
Linus Torvalds 已提交
2350 2351 2352 2353
}
EXPORT_SYMBOL(vfree);

/**
2354 2355
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2356
 *
2357 2358
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2359
 *
2360
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2361
 */
2362
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2363 2364
{
	BUG_ON(in_interrupt());
2365
	might_sleep();
2366 2367
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2368 2369 2370 2371
}
EXPORT_SYMBOL(vunmap);

/**
2372 2373 2374 2375 2376 2377
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
2378 2379 2380 2381 2382
 * Maps @count pages from @pages into contiguous kernel virtual space.
 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
 * are transferred from the caller to vmap(), and will be freed / dropped when
 * vfree() is called on the return value.
2383 2384
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2385 2386
 */
void *vmap(struct page **pages, unsigned int count,
2387
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2388 2389
{
	struct vm_struct *area;
2390
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2391

2392 2393
	might_sleep();

2394
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2395 2396
		return NULL;

2397 2398
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2399 2400
	if (!area)
		return NULL;
2401

2402
	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
C
Christoph Hellwig 已提交
2403
			pages) < 0) {
L
Linus Torvalds 已提交
2404 2405 2406 2407
		vunmap(area->addr);
		return NULL;
	}

2408 2409
	if (flags & VM_MAP_PUT_PAGES)
		area->pages = pages;
L
Linus Torvalds 已提交
2410 2411 2412 2413
	return area->addr;
}
EXPORT_SYMBOL(vmap);

C
Christoph Hellwig 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
#ifdef CONFIG_VMAP_PFN
struct vmap_pfn_data {
	unsigned long	*pfns;
	pgprot_t	prot;
	unsigned int	idx;
};

static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
{
	struct vmap_pfn_data *data = private;

	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
		return -EINVAL;
	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
	return 0;
}

/**
 * vmap_pfn - map an array of PFNs into virtually contiguous space
 * @pfns: array of PFNs
 * @count: number of pages to map
 * @prot: page protection for the mapping
 *
 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
 * the start address of the mapping.
 */
void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
{
	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
	struct vm_struct *area;

	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
			__builtin_return_address(0));
	if (!area)
		return NULL;
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
		free_vm_area(area);
		return NULL;
	}
	return area->addr;
}
EXPORT_SYMBOL_GPL(vmap_pfn);
#endif /* CONFIG_VMAP_PFN */

A
Adrian Bunk 已提交
2459
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2460
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2461
{
2462
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2463
	unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2464 2465
	unsigned long array_size;
	unsigned int i;
2466
	struct page **pages;
L
Linus Torvalds 已提交
2467

2468
	array_size = (unsigned long)nr_pages * sizeof(struct page *);
2469 2470 2471
	gfp_mask |= __GFP_NOWARN;
	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
		gfp_mask |= __GFP_HIGHMEM;
L
Linus Torvalds 已提交
2472 2473

	/* Please note that the recursion is strictly bounded. */
2474
	if (array_size > PAGE_SIZE) {
2475 2476
		pages = __vmalloc_node(array_size, 1, nested_gfp, node,
					area->caller);
2477
	} else {
2478
		pages = kmalloc_node(array_size, nested_gfp, node);
2479
	}
2480 2481

	if (!pages) {
2482
		free_vm_area(area);
L
Linus Torvalds 已提交
2483 2484 2485
		return NULL;
	}

2486 2487 2488
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2489
	for (i = 0; i < area->nr_pages; i++) {
2490 2491
		struct page *page;

J
Jianguo Wu 已提交
2492
		if (node == NUMA_NO_NODE)
2493
			page = alloc_page(gfp_mask);
C
Christoph Lameter 已提交
2494
		else
2495
			page = alloc_pages_node(node, gfp_mask, 0);
2496 2497

		if (unlikely(!page)) {
2498
			/* Successfully allocated i pages, free them in __vfree() */
L
Linus Torvalds 已提交
2499
			area->nr_pages = i;
2500
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2501 2502
			goto fail;
		}
2503
		area->pages[i] = page;
2504
		if (gfpflags_allow_blocking(gfp_mask))
2505
			cond_resched();
L
Linus Torvalds 已提交
2506
	}
2507
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2508

C
Christoph Hellwig 已提交
2509 2510
	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
			prot, pages) < 0)
L
Linus Torvalds 已提交
2511
		goto fail;
C
Christoph Hellwig 已提交
2512

L
Linus Torvalds 已提交
2513 2514 2515
	return area->addr;

fail:
2516
	warn_alloc(gfp_mask, NULL,
2517
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2518
			  (area->nr_pages*PAGE_SIZE), area->size);
2519
	__vfree(area->addr);
L
Linus Torvalds 已提交
2520 2521 2522 2523
	return NULL;
}

/**
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2538 2539
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2540
 */
2541 2542
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2543 2544
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2545 2546
{
	struct vm_struct *area;
2547 2548
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2549 2550

	size = PAGE_ALIGN(size);
2551
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2552
		goto fail;
L
Linus Torvalds 已提交
2553

2554
	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2555
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2556
	if (!area)
2557
		goto fail;
L
Linus Torvalds 已提交
2558

2559
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2560
	if (!addr)
2561
		return NULL;
2562

2563
	/*
2564 2565
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2566
	 * Now, it is fully initialized, so remove this flag here.
2567
	 */
2568
	clear_vm_uninitialized_flag(area);
2569

2570
	kmemleak_vmalloc(area, size, gfp_mask);
2571 2572

	return addr;
2573 2574

fail:
2575
	warn_alloc(gfp_mask, NULL,
2576
			  "vmalloc: allocation failure: %lu bytes", real_size);
2577
	return NULL;
L
Linus Torvalds 已提交
2578 2579
}

2580
/**
2581 2582 2583 2584 2585 2586
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2587
 *
2588 2589
 * Allocate enough pages to cover @size from the page level allocator with
 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
M
Michal Hocko 已提交
2590
 *
2591 2592
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2593
 *
2594 2595
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2596 2597
 *
 * Return: pointer to the allocated memory or %NULL on error
2598
 */
2599
void *__vmalloc_node(unsigned long size, unsigned long align,
2600
			    gfp_t gfp_mask, int node, const void *caller)
2601 2602
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2603
				gfp_mask, PAGE_KERNEL, 0, node, caller);
2604
}
2605 2606 2607 2608 2609 2610 2611 2612
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node);
#endif
2613

2614
void *__vmalloc(unsigned long size, gfp_t gfp_mask)
C
Christoph Lameter 已提交
2615
{
2616
	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2617
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2618
}
L
Linus Torvalds 已提交
2619 2620 2621
EXPORT_SYMBOL(__vmalloc);

/**
2622 2623 2624 2625 2626
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2627
 *
2628 2629
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2630 2631
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2632 2633 2634
 */
void *vmalloc(unsigned long size)
{
2635 2636
	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
				__builtin_return_address(0));
L
Linus Torvalds 已提交
2637 2638 2639
}
EXPORT_SYMBOL(vmalloc);

2640
/**
2641 2642 2643 2644 2645 2646 2647 2648 2649
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2650 2651
 *
 * Return: pointer to the allocated memory or %NULL on error
2652 2653 2654
 */
void *vzalloc(unsigned long size)
{
2655 2656
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
				__builtin_return_address(0));
2657 2658 2659
}
EXPORT_SYMBOL(vzalloc);

2660
/**
2661 2662
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2663
 *
2664 2665
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2666 2667
 *
 * Return: pointer to the allocated memory or %NULL on error
2668 2669 2670
 */
void *vmalloc_user(unsigned long size)
{
2671 2672 2673 2674
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2675 2676 2677
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2678
/**
2679 2680 2681
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2682
 *
2683 2684
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2685
 *
2686 2687
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2688 2689
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2690 2691 2692
 */
void *vmalloc_node(unsigned long size, int node)
{
2693 2694
	return __vmalloc_node(size, 1, GFP_KERNEL, node,
			__builtin_return_address(0));
C
Christoph Lameter 已提交
2695 2696 2697
}
EXPORT_SYMBOL(vmalloc_node);

2698 2699 2700 2701 2702 2703 2704 2705 2706
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
2707
 * Return: pointer to the allocated memory or %NULL on error
2708 2709 2710
 */
void *vzalloc_node(unsigned long size, int node)
{
2711 2712
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
				__builtin_return_address(0));
2713 2714 2715
}
EXPORT_SYMBOL(vzalloc_node);

2716
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2717
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2718
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2719
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2720
#else
2721 2722 2723 2724 2725
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2726 2727
#endif

L
Linus Torvalds 已提交
2728
/**
2729 2730
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2731
 *
2732 2733
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2734 2735
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2736 2737 2738
 */
void *vmalloc_32(unsigned long size)
{
2739 2740
	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
			__builtin_return_address(0));
L
Linus Torvalds 已提交
2741 2742 2743
}
EXPORT_SYMBOL(vmalloc_32);

2744
/**
2745
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2746
 * @size:	     allocation size
2747 2748 2749
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2750 2751
 *
 * Return: pointer to the allocated memory or %NULL on error
2752 2753 2754
 */
void *vmalloc_32_user(unsigned long size)
{
2755 2756 2757 2758
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2759 2760 2761
}
EXPORT_SYMBOL(vmalloc_32_user);

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2775
		offset = offset_in_page(addr);
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2792
			void *map = kmap_atomic(p);
2793
			memcpy(buf, map + offset, length);
2794
			kunmap_atomic(map);
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2814
		offset = offset_in_page(addr);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2831
			void *map = kmap_atomic(p);
2832
			memcpy(map + offset, buf, length);
2833
			kunmap_atomic(map);
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2861
 * any information, as /dev/kmem.
2862 2863 2864 2865
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2866
 */
L
Linus Torvalds 已提交
2867 2868
long vread(char *buf, char *addr, unsigned long count)
{
2869 2870
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2871
	char *vaddr, *buf_start = buf;
2872
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2873 2874 2875 2876 2877 2878
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2879 2880 2881 2882 2883
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2884
		if (!va->vm)
2885 2886 2887 2888
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2889
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2899
		n = vaddr + get_vm_area_size(vm) - addr;
2900 2901
		if (n > count)
			n = count;
2902
		if (!(vm->flags & VM_IOREMAP))
2903 2904 2905 2906 2907 2908
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2909 2910
	}
finished:
2911
	spin_unlock(&vmap_area_lock);
2912 2913 2914 2915 2916 2917 2918 2919

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2920 2921
}

2922
/**
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2940
 * any information, as /dev/kmem.
2941 2942 2943 2944
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2945
 */
L
Linus Torvalds 已提交
2946 2947
long vwrite(char *buf, char *addr, unsigned long count)
{
2948 2949
	struct vmap_area *va;
	struct vm_struct *vm;
2950 2951 2952
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2953 2954 2955 2956

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2957
	buflen = count;
L
Linus Torvalds 已提交
2958

2959 2960 2961 2962 2963
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2964
		if (!va->vm)
2965 2966 2967 2968
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2969
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2970 2971 2972 2973 2974 2975 2976 2977
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2978
		n = vaddr + get_vm_area_size(vm) - addr;
2979 2980
		if (n > count)
			n = count;
2981
		if (!(vm->flags & VM_IOREMAP)) {
2982 2983 2984 2985 2986 2987
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2988 2989
	}
finished:
2990
	spin_unlock(&vmap_area_lock);
2991 2992 2993
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2994
}
2995 2996

/**
2997 2998 2999 3000
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
3001
 * @pgoff:		offset from @kaddr to start at
3002
 * @size:		size of map area
3003
 *
3004
 * Returns:	0 for success, -Exxx on failure
3005
 *
3006 3007 3008 3009
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
3010
 *
3011
 * Similar to remap_pfn_range() (see mm/memory.c)
3012
 */
3013
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3014 3015
				void *kaddr, unsigned long pgoff,
				unsigned long size)
3016 3017
{
	struct vm_struct *area;
3018 3019 3020 3021 3022
	unsigned long off;
	unsigned long end_index;

	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
		return -EINVAL;
3023

3024 3025 3026
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3027 3028
		return -EINVAL;

3029
	area = find_vm_area(kaddr);
3030
	if (!area)
N
Nick Piggin 已提交
3031
		return -EINVAL;
3032

3033
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3034
		return -EINVAL;
3035

3036 3037
	if (check_add_overflow(size, off, &end_index) ||
	    end_index > get_vm_area_size(area))
N
Nick Piggin 已提交
3038
		return -EINVAL;
3039
	kaddr += off;
3040 3041

	do {
3042
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3043 3044
		int ret;

3045 3046 3047 3048 3049
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3050 3051 3052
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3053

3054
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3055

N
Nick Piggin 已提交
3056
	return 0;
3057
}
3058 3059 3060
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3061 3062 3063 3064
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3065
 *
3066
 * Returns:	0 for success, -Exxx on failure
3067
 *
3068 3069 3070
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3071
 *
3072
 * Similar to remap_pfn_range() (see mm/memory.c)
3073 3074 3075 3076 3077
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
3078
					   addr, pgoff,
3079 3080
					   vma->vm_end - vma->vm_start);
}
3081 3082
EXPORT_SYMBOL(remap_vmalloc_range);

3083 3084 3085 3086 3087 3088 3089 3090
void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3091

3092
#ifdef CONFIG_SMP
3093 3094
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3095
	return rb_entry_safe(n, struct vmap_area, rb_node);
3096 3097 3098
}

/**
3099 3100
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3101
 *
3102 3103 3104 3105
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3106
 */
3107 3108
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3109
{
3110 3111 3112 3113 3114
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3115 3116

	while (n) {
3117 3118 3119 3120 3121 3122
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3123
			n = n->rb_right;
3124 3125 3126
		} else {
			n = n->rb_left;
		}
3127 3128
	}

3129
	return va;
3130 3131 3132
}

/**
3133 3134 3135 3136 3137
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3138
 *
3139
 * Returns: determined end address within vmap_area
3140
 */
3141 3142
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3143
{
3144
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3145 3146
	unsigned long addr;

3147 3148 3149 3150 3151 3152 3153
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3154 3155
	}

3156
	return 0;
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3171 3172 3173 3174
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3175
 *
3176 3177 3178 3179 3180 3181
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3182 3183 3184
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3185
				     size_t align)
3186 3187 3188
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3189
	struct vmap_area **vas, *va;
3190 3191
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3192
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3193
	bool purged = false;
3194
	enum fit_type type;
3195 3196

	/* verify parameters and allocate data structures */
3197
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3210
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3211 3212 3213
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3214
			BUG_ON(start2 < end && start < end2);
3215 3216 3217 3218 3219 3220 3221 3222 3223
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3224 3225
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3226
	if (!vas || !vms)
3227
		goto err_free2;
3228 3229

	for (area = 0; area < nr_vms; area++) {
3230
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3231
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3232 3233 3234 3235
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3236
	spin_lock(&free_vmap_area_lock);
3237 3238 3239 3240 3241 3242

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3243 3244
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3245 3246 3247 3248 3249 3250

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3251 3252
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3253 3254

		/*
3255
		 * Fitting base has not been found.
3256
		 */
3257 3258
		if (va == NULL)
			goto overflow;
3259

3260
		/*
Q
Qiujun Huang 已提交
3261
		 * If required width exceeds current VA block, move
3262 3263 3264 3265 3266 3267 3268 3269
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3270
		/*
3271
		 * If this VA does not fit, move base downwards and recheck.
3272
		 */
3273
		if (base + start < va->va_start) {
3274 3275
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3287

3288 3289
		start = offsets[area];
		end = start + sizes[area];
3290
		va = pvm_find_va_enclose_addr(base + end);
3291
	}
3292

3293 3294
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3295
		int ret;
3296

3297 3298
		start = base + offsets[area];
		size = sizes[area];
3299

3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3319

3320
	spin_unlock(&free_vmap_area_lock);
3321

3322 3323 3324 3325 3326 3327 3328 3329 3330
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;

		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
				       sizes[area]);
	}

3331
	/* insert all vm's */
3332 3333 3334 3335 3336
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3337
				 pcpu_get_vm_areas);
3338 3339
	}
	spin_unlock(&vmap_area_lock);
3340 3341 3342 3343

	kfree(vas);
	return vms;

3344
recovery:
3345 3346 3347 3348 3349 3350
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3351
	while (area--) {
3352 3353 3354 3355
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
3356 3357 3358
		if (va)
			kasan_release_vmalloc(orig_start, orig_end,
				va->va_start, va->va_end);
3359 3360 3361 3362
		vas[area] = NULL;
	}

overflow:
3363
	spin_unlock(&free_vmap_area_lock);
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3382 3383
err_free:
	for (area = 0; area < nr_vms; area++) {
3384 3385 3386
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3387
		kfree(vms[area]);
3388
	}
3389
err_free2:
3390 3391 3392
	kfree(vas);
	kfree(vms);
	return NULL;
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
3406 3407 3408
		if (va)
			kasan_release_vmalloc(orig_start, orig_end,
				va->va_start, va->va_end);
3409 3410 3411 3412 3413 3414 3415
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3433
#endif	/* CONFIG_SMP */
3434 3435 3436

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3437
	__acquires(&vmap_purge_lock)
3438
	__acquires(&vmap_area_lock)
3439
{
3440
	mutex_lock(&vmap_purge_lock);
3441
	spin_lock(&vmap_area_lock);
3442

3443
	return seq_list_start(&vmap_area_list, *pos);
3444 3445 3446 3447
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3448
	return seq_list_next(p, &vmap_area_list, pos);
3449 3450 3451
}

static void s_stop(struct seq_file *m, void *p)
3452
	__releases(&vmap_purge_lock)
3453
	__releases(&vmap_area_lock)
3454
{
3455
	mutex_unlock(&vmap_purge_lock);
3456
	spin_unlock(&vmap_area_lock);
3457 3458
}

E
Eric Dumazet 已提交
3459 3460
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3461
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3462 3463 3464 3465 3466
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3467 3468
		if (v->flags & VM_UNINITIALIZED)
			return;
3469 3470
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3471

E
Eric Dumazet 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3499 3500
static int s_show(struct seq_file *m, void *p)
{
3501
	struct vmap_area *va;
3502 3503
	struct vm_struct *v;

3504 3505
	va = list_entry(p, struct vmap_area, list);

3506
	/*
3507 3508
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3509
	 */
3510
	if (!va->vm) {
3511
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3512
			(void *)va->va_start, (void *)va->va_end,
3513
			va->va_end - va->va_start);
3514

3515
		return 0;
3516
	}
3517 3518

	v = va->vm;
3519

K
Kees Cook 已提交
3520
	seq_printf(m, "0x%pK-0x%pK %7ld",
3521 3522
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3523 3524
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3525

3526 3527 3528 3529
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3530
		seq_printf(m, " phys=%pa", &v->phys_addr);
3531 3532

	if (v->flags & VM_IOREMAP)
3533
		seq_puts(m, " ioremap");
3534 3535

	if (v->flags & VM_ALLOC)
3536
		seq_puts(m, " vmalloc");
3537 3538

	if (v->flags & VM_MAP)
3539
		seq_puts(m, " vmap");
3540 3541

	if (v->flags & VM_USERMAP)
3542
		seq_puts(m, " user");
3543

3544 3545 3546
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3547
	if (is_vmalloc_addr(v->pages))
3548
		seq_puts(m, " vpages");
3549

E
Eric Dumazet 已提交
3550
	show_numa_info(m, v);
3551
	seq_putc(m, '\n');
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3562 3563 3564
	return 0;
}

3565
static const struct seq_operations vmalloc_op = {
3566 3567 3568 3569 3570
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3571 3572 3573

static int __init proc_vmalloc_init(void)
{
3574
	if (IS_ENABLED(CONFIG_NUMA))
3575
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3576 3577
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3578
	else
3579
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3580 3581 3582
	return 0;
}
module_init(proc_vmalloc_init);
3583

3584
#endif