vmalloc.c 92.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37
#include <linux/overflow.h>
38

39
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
40
#include <asm/tlbflush.h>
41
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
42

43 44
#include "internal.h"

45 46 47 48 49 50 51 52
bool is_vmalloc_addr(const void *x)
{
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

53 54 55 56 57 58 59 60 61 62 63
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 65 66 67
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
68 69
}

N
Nick Piggin 已提交
70
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
71

L
Linus Torvalds 已提交
72 73 74 75 76 77 78 79 80 81 82
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
83
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
84 85 86 87 88 89 90
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
91 92
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
93 94 95 96 97 98
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

99
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
100 101 102 103
{
	pud_t *pud;
	unsigned long next;

104
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
105 106
	do {
		next = pud_addr_end(addr, end);
107 108
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
109 110 111 112 113 114
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144
/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 * should have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible
 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 * function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
L
Linus Torvalds 已提交
145
{
146
	unsigned long end = addr + size;
L
Linus Torvalds 已提交
147
	unsigned long next;
148
	pgd_t *pgd;
L
Linus Torvalds 已提交
149 150 151 152 153 154 155

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
156
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
157 158 159 160
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
161
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
162 163 164
{
	pte_t *pte;

N
Nick Piggin 已提交
165 166 167 168 169
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
170
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
171 172 173
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
174 175 176 177 178
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
179 180
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
181
		(*nr)++;
L
Linus Torvalds 已提交
182 183 184 185
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
186 187
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
197
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
198 199 200 201 202
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

203
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
204
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
205 206 207 208
{
	pud_t *pud;
	unsigned long next;

209
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
210 211 212 213
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
214
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
215 216 217 218 219
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

237 238 239 240 241 242
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
N
Nick Piggin 已提交
243
 *
244 245 246 247 248 249 250 251 252
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 * have been allocated using get_vm_area() and its friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is responsible for
 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 * function.
 *
 * RETURNS:
253
 * 0 on success, -errno on failure.
N
Nick Piggin 已提交
254
 */
255 256
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
257
{
258
	unsigned long end = addr + size;
L
Linus Torvalds 已提交
259
	unsigned long next;
260
	pgd_t *pgd;
N
Nick Piggin 已提交
261 262
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
263 264 265 266 267

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
268
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
269
		if (err)
270
			return err;
L
Linus Torvalds 已提交
271
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
272

273
	return 0;
L
Linus Torvalds 已提交
274 275
}

C
Christoph Hellwig 已提交
276 277
int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
		struct page **pages)
278 279 280
{
	int ret;

281 282
	ret = map_kernel_range_noflush(start, size, prot, pages);
	flush_cache_vmap(start, start + size);
283 284 285
	return ret;
}

286
int is_vmalloc_or_module_addr(const void *x)
287 288
{
	/*
289
	 * ARM, x86-64 and sparc64 put modules in a special place,
290 291 292 293 294 295 296 297 298 299 300
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

301
/*
302
 * Walk a vmap address to the struct page it maps.
303
 */
304
struct page *vmalloc_to_page(const void *vmalloc_addr)
305 306
{
	unsigned long addr = (unsigned long) vmalloc_addr;
307
	struct page *page = NULL;
308
	pgd_t *pgd = pgd_offset_k(addr);
309 310 311 312
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
313

314 315 316 317
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
318
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
319

320 321 322 323 324 325
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
326 327 328 329 330 331 332 333 334 335 336

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
337 338
		return NULL;
	pmd = pmd_offset(pud, addr);
339 340
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
341 342 343 344 345 346 347
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
348
	return page;
349
}
350
EXPORT_SYMBOL(vmalloc_to_page);
351 352

/*
353
 * Map a vmalloc()-space virtual address to the physical page frame number.
354
 */
355
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
356
{
357
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
358
}
359
EXPORT_SYMBOL(vmalloc_to_pfn);
360

N
Nick Piggin 已提交
361 362 363

/*** Global kva allocator ***/

364
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
365
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
366

N
Nick Piggin 已提交
367 368

static DEFINE_SPINLOCK(vmap_area_lock);
369
static DEFINE_SPINLOCK(free_vmap_area_lock);
370 371
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
372
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
373
static struct rb_root vmap_area_root = RB_ROOT;
374
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

402 403 404 405 406 407 408
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

409 410 411 412 413 414 415 416 417 418 419 420 421 422
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
423

424 425 426 427 428 429 430 431 432 433 434
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

435 436
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
437 438 439 440

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
441

442 443 444 445 446 447 448
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
449
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
450
{
N
Nick Piggin 已提交
451 452 453 454 455 456 457 458
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
459
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
460 461 462 463 464 465 466 467
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
489

490 491 492 493 494 495 496
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
497

498 499 500 501 502 503 504 505 506 507 508
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
509 510
		else
			BUG();
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
547 548
	}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
569

570 571
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
572 573
}

574 575 576
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
577 578
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
579

580 581 582 583 584 585 586 587
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
588 589
}

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
681 682 683 684

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
721
static __always_inline struct vmap_area *
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

783 784
			if (merged)
				unlink_va(va, root);
785 786 787

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
788 789 790 791

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
792 793 794 795 796 797 798 799
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
800 801

	return va;
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
863
			 * OK. We roll back and find the first right sub-tree,
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
961
	struct vmap_area *lva = NULL;
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
1025 1026 1027 1028 1029
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1048
		if (lva)	/* type == NE_FIT_TYPE */
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1062
	unsigned long vstart, unsigned long vend)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1092 1093 1094 1095
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1096 1097
	return nva_start_addr;
}
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
	spin_unlock(&free_vmap_area_lock);
}

N
Nick Piggin 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1128
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1129
	unsigned long addr;
N
Nick Piggin 已提交
1130
	int purged = 0;
1131
	int ret;
N
Nick Piggin 已提交
1132

N
Nick Piggin 已提交
1133
	BUG_ON(!size);
1134
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1135
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1136

1137 1138 1139
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1140
	might_sleep();
1141
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1142

1143
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1144 1145 1146
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1147 1148 1149 1150
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1151
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1152

N
Nick Piggin 已提交
1153
retry:
1154
	/*
1155 1156 1157 1158 1159 1160
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1161 1162 1163
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1164 1165
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1166
	 *
1167
	 * Set "pva" to NULL here, because of "retry" path.
1168
	 */
1169
	pva = NULL;
1170

1171 1172 1173 1174 1175 1176
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1177
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1178

1179
	spin_lock(&free_vmap_area_lock);
1180 1181 1182

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1183

1184
	/*
1185 1186
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1187
	 */
1188
	addr = __alloc_vmap_area(size, align, vstart, vend);
1189 1190
	spin_unlock(&free_vmap_area_lock);

1191
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1192
		goto overflow;
N
Nick Piggin 已提交
1193 1194 1195

	va->va_start = addr;
	va->va_end = addr + size;
1196
	va->vm = NULL;
1197

1198

1199 1200
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1201 1202
	spin_unlock(&vmap_area_lock);

1203
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1204 1205 1206
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1207 1208 1209 1210 1211 1212
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1213
	return va;
N
Nick Piggin 已提交
1214 1215 1216 1217 1218 1219 1220

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1231
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1232 1233
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1234 1235

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1236
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1237 1238
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1276
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1277

1278 1279 1280 1281 1282
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1283
static DEFINE_MUTEX(vmap_purge_lock);
1284

1285 1286 1287
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1288 1289 1290 1291 1292 1293
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1294
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1295 1296
}

N
Nick Piggin 已提交
1297 1298 1299
/*
 * Purges all lazily-freed vmap areas.
 */
1300
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1301
{
1302
	unsigned long resched_threshold;
1303
	struct llist_node *valist;
N
Nick Piggin 已提交
1304
	struct vmap_area *va;
1305
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1306

1307
	lockdep_assert_held(&vmap_purge_lock);
1308

1309
	valist = llist_del_all(&vmap_purge_list);
1310 1311 1312
	if (unlikely(valist == NULL))
		return false;

1313 1314 1315 1316
	/*
	 * First make sure the mappings are removed from all page-tables
	 * before they are freed.
	 */
J
Joerg Roedel 已提交
1317
	vmalloc_sync_unmappings();
1318

1319 1320 1321 1322
	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1323
	llist_for_each_entry(va, valist, purge_list) {
1324 1325 1326 1327
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1328 1329
	}

1330
	flush_tlb_kernel_range(start, end);
1331
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1332

1333
	spin_lock(&free_vmap_area_lock);
1334
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1335
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1336 1337
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1338

1339 1340 1341 1342 1343
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1344 1345 1346 1347 1348 1349
		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
					    &free_vmap_area_list);

		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1350

1351
		atomic_long_sub(nr, &vmap_lazy_nr);
1352

1353
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1354
			cond_resched_lock(&free_vmap_area_lock);
1355
	}
1356
	spin_unlock(&free_vmap_area_lock);
1357
	return true;
N
Nick Piggin 已提交
1358 1359
}

N
Nick Piggin 已提交
1360 1361 1362 1363 1364 1365
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1366
	if (mutex_trylock(&vmap_purge_lock)) {
1367
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1368
		mutex_unlock(&vmap_purge_lock);
1369
	}
N
Nick Piggin 已提交
1370 1371
}

N
Nick Piggin 已提交
1372 1373 1374 1375 1376
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1377
	mutex_lock(&vmap_purge_lock);
1378 1379
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1380
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1381 1382 1383
}

/*
1384 1385 1386
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1387
 */
1388
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1389
{
1390
	unsigned long nr_lazy;
1391

1392 1393 1394 1395
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1396 1397
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1398 1399 1400 1401 1402

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1403
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1404 1405
}

1406 1407 1408 1409 1410 1411
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
C
Christoph Hellwig 已提交
1412
	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1413
	if (debug_pagealloc_enabled_static())
1414 1415
		flush_tlb_kernel_range(va->va_start, va->va_end);

1416
	free_vmap_area_noflush(va);
1417 1418
}

N
Nick Piggin 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1453 1454 1455 1456
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1469
	unsigned long dirty_min, dirty_max; /*< dirty range */
1470 1471
	struct list_head free_list;
	struct rcu_head rcu_head;
1472
	struct list_head purge;
N
Nick Piggin 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1515
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1516 1517
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1518 1519 1520 1521 1522 1523
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1524
	void *vaddr;
N
Nick Piggin 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1536
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1537
		kfree(vb);
J
Julia Lawall 已提交
1538
		return ERR_CAST(va);
N
Nick Piggin 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1548
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1549 1550
	spin_lock_init(&vb->lock);
	vb->va = va;
1551 1552 1553
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1554
	vb->dirty = 0;
1555 1556
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1568
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1569
	spin_unlock(&vbq->lock);
1570
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1571

1572
	return vaddr;
N
Nick Piggin 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1586
	free_vmap_area_noflush(vb->va);
1587
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1588 1589
}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1607 1608
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1633 1634 1635 1636
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1637
	void *vaddr = NULL;
N
Nick Piggin 已提交
1638 1639
	unsigned int order;

1640
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1641
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1642 1643 1644 1645 1646 1647 1648 1649
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1650 1651 1652 1653 1654
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1655
		unsigned long pages_off;
N
Nick Piggin 已提交
1656 1657

		spin_lock(&vb->lock);
1658 1659 1660 1661
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1662

1663 1664
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1665 1666 1667 1668 1669 1670
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1671

1672 1673
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1674
	}
1675

1676
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1677 1678
	rcu_read_unlock();

1679 1680 1681
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1682

1683
	return vaddr;
N
Nick Piggin 已提交
1684 1685
}

1686
static void vb_free(unsigned long addr, unsigned long size)
N
Nick Piggin 已提交
1687 1688 1689 1690 1691 1692
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1693
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1694
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1695

1696
	flush_cache_vunmap(addr, addr + size);
1697

N
Nick Piggin 已提交
1698 1699
	order = get_order(size);

1700
	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
N
Nick Piggin 已提交
1701

1702
	vb_idx = addr_to_vb_idx(addr);
N
Nick Piggin 已提交
1703 1704 1705 1706 1707
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1708
	unmap_kernel_range_noflush(addr, size);
1709

1710
	if (debug_pagealloc_enabled_static())
1711
		flush_tlb_kernel_range(addr, addr + size);
1712

N
Nick Piggin 已提交
1713
	spin_lock(&vb->lock);
1714 1715 1716 1717

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1718

N
Nick Piggin 已提交
1719 1720
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1721
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1722 1723 1724 1725 1726 1727
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1728
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1729 1730 1731
{
	int cpu;

1732 1733 1734
	if (unlikely(!vmap_initialized))
		return;

1735 1736
	might_sleep();

N
Nick Piggin 已提交
1737 1738 1739 1740 1741 1742 1743
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1744 1745
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1746
				unsigned long s, e;
1747

1748 1749
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1750

1751 1752
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1753

1754
				flush = 1;
N
Nick Piggin 已提交
1755 1756 1757 1758 1759 1760
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1761
	mutex_lock(&vmap_purge_lock);
1762 1763 1764
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1765
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1766
}
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1797
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1798
	unsigned long addr = (unsigned long)mem;
1799
	struct vmap_area *va;
N
Nick Piggin 已提交
1800

1801
	might_sleep();
N
Nick Piggin 已提交
1802 1803 1804
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1805
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1806

1807 1808
	kasan_poison_vmalloc(mem, size);

1809
	if (likely(count <= VMAP_MAX_ALLOC)) {
1810
		debug_check_no_locks_freed(mem, size);
1811
		vb_free(addr, size);
1812 1813 1814 1815 1816
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1817 1818
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1819
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1829
 *
1830 1831 1832 1833 1834 1835
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1836
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1837 1838 1839
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1840
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
1859 1860 1861

	kasan_unpoison_vmalloc(mem, size);

1862
	if (map_kernel_range(addr, size, prot, pages) < 0) {
N
Nick Piggin 已提交
1863 1864 1865 1866 1867 1868 1869
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1870
static struct vm_struct *vmlist __initdata;
1871

N
Nicolas Pitre 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1898 1899 1900
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1901
 * @align: requested alignment
1902 1903 1904 1905 1906 1907 1908 1909
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1910
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1911 1912
{
	static size_t vm_init_off __initdata;
1913 1914 1915 1916
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1917

1918
	vm->addr = (void *)addr;
1919

N
Nicolas Pitre 已提交
1920
	vm_area_add_early(vm);
1921 1922
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1964 1965
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1966 1967
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1968 1969
	int i;

1970 1971 1972 1973 1974
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1975 1976
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1977
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1978 1979 1980 1981

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1982 1983 1984
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1985
	}
1986

I
Ivan Kokshaysky 已提交
1987 1988
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1989 1990 1991 1992
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
1993 1994
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1995
		va->vm = tmp;
1996
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1997
	}
1998

1999 2000 2001 2002
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
2003
	vmap_initialized = true;
N
Nick Piggin 已提交
2004 2005
}

2006 2007 2008 2009 2010 2011 2012 2013
/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2014 2015 2016
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2017 2018

	flush_cache_vunmap(addr, end);
2019
	unmap_kernel_range_noflush(addr, size);
N
Nick Piggin 已提交
2020 2021 2022
	flush_tlb_kernel_range(addr, end);
}

2023 2024
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2025 2026 2027 2028 2029
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2030
	va->vm = vm;
2031 2032 2033 2034 2035 2036 2037
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2038
	spin_unlock(&vmap_area_lock);
2039
}
2040

2041
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2042
{
2043
	/*
2044
	 * Before removing VM_UNINITIALIZED,
2045 2046 2047 2048
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2049
	vm->flags &= ~VM_UNINITIALIZED;
2050 2051
}

N
Nick Piggin 已提交
2052
static struct vm_struct *__get_vm_area_node(unsigned long size,
2053
		unsigned long align, unsigned long flags, unsigned long start,
2054
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2055
{
2056
	struct vmap_area *va;
N
Nick Piggin 已提交
2057
	struct vm_struct *area;
2058
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2059

2060
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2061
	size = PAGE_ALIGN(size);
2062 2063
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2064

2065 2066 2067 2068
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2069
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2070 2071 2072
	if (unlikely(!area))
		return NULL;

2073 2074
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2075

N
Nick Piggin 已提交
2076 2077 2078 2079
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2080 2081
	}

2082
	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2083

2084
	setup_vmalloc_vm(area, va, flags, caller);
2085

L
Linus Torvalds 已提交
2086 2087 2088
	return area;
}

2089 2090
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2091
				       const void *caller)
2092
{
D
David Rientjes 已提交
2093 2094
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2095 2096
}

L
Linus Torvalds 已提交
2097
/**
2098 2099 2100
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2101
 *
2102 2103 2104
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2105 2106
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2107 2108 2109
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2110
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2111 2112
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2113 2114 2115
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2116
				const void *caller)
2117
{
2118
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2119
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2120 2121
}

2122
/**
2123 2124
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2125
 *
2126 2127 2128
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2129 2130
 *
 * Return: pointer to the found area or %NULL on faulure
2131 2132
 */
struct vm_struct *find_vm_area(const void *addr)
2133
{
N
Nick Piggin 已提交
2134
	struct vmap_area *va;
2135

N
Nick Piggin 已提交
2136
	va = find_vmap_area((unsigned long)addr);
2137 2138
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2139

2140
	return va->vm;
L
Linus Torvalds 已提交
2141 2142
}

2143
/**
2144 2145
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2146
 *
2147 2148 2149
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2150 2151
 *
 * Return: pointer to the found area or %NULL on faulure
2152
 */
2153
struct vm_struct *remove_vm_area(const void *addr)
2154
{
N
Nick Piggin 已提交
2155 2156
	struct vmap_area *va;

2157 2158
	might_sleep();

2159 2160
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2161
	if (va && va->vm) {
2162
		struct vm_struct *vm = va->vm;
2163

2164 2165 2166
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2167
		kasan_free_shadow(vm);
2168 2169
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2170 2171
		return vm;
	}
2172 2173

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2174
	return NULL;
2175 2176
}

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2192
	int flush_dmap = 0;
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2216 2217
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2218
			start = min(addr, start);
2219
			end = max(addr + PAGE_SIZE, end);
2220
			flush_dmap = 1;
2221 2222 2223 2224 2225 2226 2227 2228 2229
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2230
	_vm_unmap_aliases(start, end, flush_dmap);
2231 2232 2233
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2234
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239 2240
{
	struct vm_struct *area;

	if (!addr)
		return;

2241
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2242
			addr))
L
Linus Torvalds 已提交
2243 2244
		return;

2245
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2246
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2247
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2248 2249 2250 2251
				addr);
		return;
	}

2252 2253
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2254

2255
	kasan_poison_vmalloc(area->addr, area->size);
2256

2257 2258
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2259 2260 2261 2262
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2263 2264 2265
			struct page *page = area->pages[i];

			BUG_ON(!page);
2266
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2267
		}
2268
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2269

D
David Rientjes 已提交
2270
		kvfree(area->pages);
L
Linus Torvalds 已提交
2271 2272 2273 2274 2275
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2292 2293
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2294
 *
2295 2296
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2309 2310 2311 2312 2313 2314 2315 2316
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2317
/**
2318 2319
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2320
 *
2321 2322 2323
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2324
 *
2325 2326 2327
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2328
 *
2329
 * May sleep if called *not* from interrupt context.
2330
 *
2331
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2332
 */
2333
void vfree(const void *addr)
L
Linus Torvalds 已提交
2334
{
2335
	BUG_ON(in_nmi());
2336 2337 2338

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2339 2340
	might_sleep_if(!in_interrupt());

2341 2342
	if (!addr)
		return;
2343 2344

	__vfree(addr);
L
Linus Torvalds 已提交
2345 2346 2347 2348
}
EXPORT_SYMBOL(vfree);

/**
2349 2350
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2351
 *
2352 2353
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2354
 *
2355
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2356
 */
2357
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2358 2359
{
	BUG_ON(in_interrupt());
2360
	might_sleep();
2361 2362
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2363 2364 2365 2366
}
EXPORT_SYMBOL(vunmap);

/**
2367 2368 2369 2370 2371 2372 2373 2374
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2375 2376
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2377 2378
 */
void *vmap(struct page **pages, unsigned int count,
2379
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2380 2381
{
	struct vm_struct *area;
2382
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2383

2384 2385
	might_sleep();

2386
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2387 2388
		return NULL;

2389 2390
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2391 2392
	if (!area)
		return NULL;
2393

C
Christoph Hellwig 已提交
2394 2395
	if (map_kernel_range((unsigned long)area->addr, size, prot,
			pages) < 0) {
L
Linus Torvalds 已提交
2396 2397 2398 2399 2400 2401 2402 2403
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2404 2405 2406
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2407
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2408
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2409 2410 2411
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2412
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2413 2414 2415 2416
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2417

2418
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2419 2420 2421
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2422
	if (array_size > PAGE_SIZE) {
2423
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2424
				PAGE_KERNEL, node, area->caller);
2425
	} else {
2426
		pages = kmalloc_node(array_size, nested_gfp, node);
2427
	}
2428 2429

	if (!pages) {
L
Linus Torvalds 已提交
2430 2431 2432 2433 2434
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2435 2436 2437
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2438
	for (i = 0; i < area->nr_pages; i++) {
2439 2440
		struct page *page;

J
Jianguo Wu 已提交
2441
		if (node == NUMA_NO_NODE)
2442
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2443
		else
2444
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2445 2446

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2447 2448
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2449
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2450 2451
			goto fail;
		}
2452
		area->pages[i] = page;
2453
		if (gfpflags_allow_blocking(gfp_mask))
2454
			cond_resched();
L
Linus Torvalds 已提交
2455
	}
2456
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2457

C
Christoph Hellwig 已提交
2458 2459
	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
			prot, pages) < 0)
L
Linus Torvalds 已提交
2460
		goto fail;
C
Christoph Hellwig 已提交
2461

L
Linus Torvalds 已提交
2462 2463 2464
	return area->addr;

fail:
2465
	warn_alloc(gfp_mask, NULL,
2466
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2467
			  (area->nr_pages*PAGE_SIZE), area->size);
2468
	__vfree(area->addr);
L
Linus Torvalds 已提交
2469 2470 2471 2472
	return NULL;
}

/**
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2487 2488
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2489
 */
2490 2491
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2492 2493
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2494 2495
{
	struct vm_struct *area;
2496 2497
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2498 2499

	size = PAGE_ALIGN(size);
2500
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2501
		goto fail;
L
Linus Torvalds 已提交
2502

2503
	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2504
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2505
	if (!area)
2506
		goto fail;
L
Linus Torvalds 已提交
2507

2508
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2509
	if (!addr)
2510
		return NULL;
2511

2512
	/*
2513 2514
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2515
	 * Now, it is fully initialized, so remove this flag here.
2516
	 */
2517
	clear_vm_uninitialized_flag(area);
2518

2519
	kmemleak_vmalloc(area, size, gfp_mask);
2520 2521

	return addr;
2522 2523

fail:
2524
	warn_alloc(gfp_mask, NULL,
2525
			  "vmalloc: allocation failure: %lu bytes", real_size);
2526
	return NULL;
L
Linus Torvalds 已提交
2527 2528
}

2529 2530 2531 2532 2533 2534 2535 2536 2537
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2538
/**
2539 2540 2541 2542 2543 2544 2545
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2546
 *
2547 2548 2549
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2550
 *
2551 2552
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2553
 *
2554 2555
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2556 2557
 *
 * Return: pointer to the allocated memory or %NULL on error
2558
 */
2559
static void *__vmalloc_node(unsigned long size, unsigned long align,
2560
			    gfp_t gfp_mask, pgprot_t prot,
2561
			    int node, const void *caller)
2562 2563
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2564
				gfp_mask, prot, 0, node, caller);
2565 2566
}

C
Christoph Lameter 已提交
2567 2568
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2569
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2570
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2571
}
L
Linus Torvalds 已提交
2572 2573
EXPORT_SYMBOL(__vmalloc);

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2588
/**
2589 2590 2591 2592 2593
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2594
 *
2595 2596
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2597 2598
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2599 2600 2601
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2602
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2603
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2604 2605 2606
}
EXPORT_SYMBOL(vmalloc);

2607
/**
2608 2609 2610 2611 2612 2613 2614 2615 2616
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2617 2618
 *
 * Return: pointer to the allocated memory or %NULL on error
2619 2620 2621
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2622
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2623
				GFP_KERNEL | __GFP_ZERO);
2624 2625 2626
}
EXPORT_SYMBOL(vzalloc);

2627
/**
2628 2629
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2630
 *
2631 2632
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2633 2634
 *
 * Return: pointer to the allocated memory or %NULL on error
2635 2636 2637
 */
void *vmalloc_user(unsigned long size)
{
2638 2639 2640 2641
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2642 2643 2644
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2645
/**
2646 2647 2648
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2649
 *
2650 2651
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2652
 *
2653 2654
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2655 2656
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2657 2658 2659
 */
void *vmalloc_node(unsigned long size, int node)
{
2660
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2661
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2662 2663 2664
}
EXPORT_SYMBOL(vmalloc_node);

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2676 2677
 *
 * Return: pointer to the allocated memory or %NULL on error
2678 2679 2680 2681
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2682
			 GFP_KERNEL | __GFP_ZERO);
2683 2684 2685
}
EXPORT_SYMBOL(vzalloc_node);

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
/**
 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
 * @size: allocation size
 * @node: numa node
 * @flags: flags for the page level allocator
 *
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
 *
 * Return: pointer to the allocated memory or %NULL on error
 */
void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
{
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    flags | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, node,
				    __builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_user_node_flags);

L
Linus Torvalds 已提交
2706
/**
2707 2708
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2709
 *
2710 2711 2712
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2713
 *
2714 2715
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2716 2717
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2718 2719 2720
 */
void *vmalloc_exec(unsigned long size)
{
2721 2722 2723
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2724 2725
}

2726
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2727
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2728
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2729
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2730
#else
2731 2732 2733 2734 2735
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2736 2737
#endif

L
Linus Torvalds 已提交
2738
/**
2739 2740
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2741
 *
2742 2743
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2744 2745
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2746 2747 2748
 */
void *vmalloc_32(unsigned long size)
{
2749
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2750
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2751 2752 2753
}
EXPORT_SYMBOL(vmalloc_32);

2754
/**
2755
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2756
 * @size:	     allocation size
2757 2758 2759
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2760 2761
 *
 * Return: pointer to the allocated memory or %NULL on error
2762 2763 2764
 */
void *vmalloc_32_user(unsigned long size)
{
2765 2766 2767 2768
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2769 2770 2771
}
EXPORT_SYMBOL(vmalloc_32_user);

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2785
		offset = offset_in_page(addr);
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2802
			void *map = kmap_atomic(p);
2803
			memcpy(buf, map + offset, length);
2804
			kunmap_atomic(map);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2824
		offset = offset_in_page(addr);
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2841
			void *map = kmap_atomic(p);
2842
			memcpy(map + offset, buf, length);
2843
			kunmap_atomic(map);
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2871
 * any information, as /dev/kmem.
2872 2873 2874 2875
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2876
 */
L
Linus Torvalds 已提交
2877 2878
long vread(char *buf, char *addr, unsigned long count)
{
2879 2880
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2881
	char *vaddr, *buf_start = buf;
2882
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887 2888
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2889 2890 2891 2892 2893
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2894
		if (!va->vm)
2895 2896 2897 2898
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2899
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2909
		n = vaddr + get_vm_area_size(vm) - addr;
2910 2911
		if (n > count)
			n = count;
2912
		if (!(vm->flags & VM_IOREMAP))
2913 2914 2915 2916 2917 2918
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2919 2920
	}
finished:
2921
	spin_unlock(&vmap_area_lock);
2922 2923 2924 2925 2926 2927 2928 2929

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2930 2931
}

2932
/**
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2950
 * any information, as /dev/kmem.
2951 2952 2953 2954
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2955
 */
L
Linus Torvalds 已提交
2956 2957
long vwrite(char *buf, char *addr, unsigned long count)
{
2958 2959
	struct vmap_area *va;
	struct vm_struct *vm;
2960 2961 2962
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2963 2964 2965 2966

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2967
	buflen = count;
L
Linus Torvalds 已提交
2968

2969 2970 2971 2972 2973
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2974
		if (!va->vm)
2975 2976 2977 2978
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2979
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2980 2981 2982 2983 2984 2985 2986 2987
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2988
		n = vaddr + get_vm_area_size(vm) - addr;
2989 2990
		if (n > count)
			n = count;
2991
		if (!(vm->flags & VM_IOREMAP)) {
2992 2993 2994 2995 2996 2997
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2998 2999
	}
finished:
3000
	spin_unlock(&vmap_area_lock);
3001 3002 3003
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
3004
}
3005 3006

/**
3007 3008 3009 3010
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
3011
 * @pgoff:		offset from @kaddr to start at
3012
 * @size:		size of map area
3013
 *
3014
 * Returns:	0 for success, -Exxx on failure
3015
 *
3016 3017 3018 3019
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
3020
 *
3021
 * Similar to remap_pfn_range() (see mm/memory.c)
3022
 */
3023
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3024 3025
				void *kaddr, unsigned long pgoff,
				unsigned long size)
3026 3027
{
	struct vm_struct *area;
3028 3029 3030 3031 3032
	unsigned long off;
	unsigned long end_index;

	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
		return -EINVAL;
3033

3034 3035 3036
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3037 3038
		return -EINVAL;

3039
	area = find_vm_area(kaddr);
3040
	if (!area)
N
Nick Piggin 已提交
3041
		return -EINVAL;
3042

3043
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3044
		return -EINVAL;
3045

3046 3047
	if (check_add_overflow(size, off, &end_index) ||
	    end_index > get_vm_area_size(area))
N
Nick Piggin 已提交
3048
		return -EINVAL;
3049
	kaddr += off;
3050 3051

	do {
3052
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3053 3054
		int ret;

3055 3056 3057 3058 3059
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3060 3061 3062
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3063

3064
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3065

N
Nick Piggin 已提交
3066
	return 0;
3067
}
3068 3069 3070
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3071 3072 3073 3074
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3075
 *
3076
 * Returns:	0 for success, -Exxx on failure
3077
 *
3078 3079 3080
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3081
 *
3082
 * Similar to remap_pfn_range() (see mm/memory.c)
3083 3084 3085 3086 3087
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
3088
					   addr, pgoff,
3089 3090
					   vma->vm_end - vma->vm_start);
}
3091 3092
EXPORT_SYMBOL(remap_vmalloc_range);

3093
/*
J
Joerg Roedel 已提交
3094 3095
 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
 * not to have one.
3096 3097 3098
 *
 * The purpose of this function is to make sure the vmalloc area
 * mappings are identical in all page-tables in the system.
3099
 */
J
Joerg Roedel 已提交
3100
void __weak vmalloc_sync_mappings(void)
3101 3102
{
}
3103

J
Joerg Roedel 已提交
3104 3105 3106
void __weak vmalloc_sync_unmappings(void)
{
}
3107

3108
static int f(pte_t *pte, unsigned long addr, void *data)
3109
{
3110 3111 3112 3113 3114 3115
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3116 3117 3118 3119
	return 0;
}

/**
3120 3121 3122
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3123
 *
3124
 * Returns:	NULL on failure, vm_struct on success
3125
 *
3126 3127 3128
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3129
 *
3130 3131
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3132
 */
3133
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3134 3135 3136
{
	struct vm_struct *area;

3137 3138
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3139 3140 3141 3142 3143 3144 3145 3146
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3147
				size, f, ptes ? &ptes : NULL)) {
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3164

3165
#ifdef CONFIG_SMP
3166 3167
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3168
	return rb_entry_safe(n, struct vmap_area, rb_node);
3169 3170 3171
}

/**
3172 3173
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3174
 *
3175 3176 3177 3178
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3179
 */
3180 3181
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3182
{
3183 3184 3185 3186 3187
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3188 3189

	while (n) {
3190 3191 3192 3193 3194 3195
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3196
			n = n->rb_right;
3197 3198 3199
		} else {
			n = n->rb_left;
		}
3200 3201
	}

3202
	return va;
3203 3204 3205
}

/**
3206 3207 3208 3209 3210
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3211
 *
3212
 * Returns: determined end address within vmap_area
3213
 */
3214 3215
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3216
{
3217
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3218 3219
	unsigned long addr;

3220 3221 3222 3223 3224 3225 3226
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3227 3228
	}

3229
	return 0;
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3244 3245 3246 3247
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3248
 *
3249 3250 3251 3252 3253 3254
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3255 3256 3257
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3258
				     size_t align)
3259 3260 3261
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3262
	struct vmap_area **vas, *va;
3263 3264
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3265
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3266
	bool purged = false;
3267
	enum fit_type type;
3268 3269

	/* verify parameters and allocate data structures */
3270
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3283
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3284 3285 3286
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3287
			BUG_ON(start2 < end && start < end2);
3288 3289 3290 3291 3292 3293 3294 3295 3296
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3297 3298
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3299
	if (!vas || !vms)
3300
		goto err_free2;
3301 3302

	for (area = 0; area < nr_vms; area++) {
3303
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3304
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3305 3306 3307 3308
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3309
	spin_lock(&free_vmap_area_lock);
3310 3311 3312 3313 3314 3315

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3316 3317
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3318 3319 3320 3321 3322 3323

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3324 3325
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3326 3327

		/*
3328
		 * Fitting base has not been found.
3329
		 */
3330 3331
		if (va == NULL)
			goto overflow;
3332

3333
		/*
Q
Qiujun Huang 已提交
3334
		 * If required width exceeds current VA block, move
3335 3336 3337 3338 3339 3340 3341 3342
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3343
		/*
3344
		 * If this VA does not fit, move base downwards and recheck.
3345
		 */
3346
		if (base + start < va->va_start) {
3347 3348
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3360

3361 3362
		start = offsets[area];
		end = start + sizes[area];
3363
		va = pvm_find_va_enclose_addr(base + end);
3364
	}
3365

3366 3367
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3368
		int ret;
3369

3370 3371
		start = base + offsets[area];
		size = sizes[area];
3372

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3392

3393
	spin_unlock(&free_vmap_area_lock);
3394

3395 3396 3397 3398 3399 3400 3401 3402 3403
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;

		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
				       sizes[area]);
	}

3404
	/* insert all vm's */
3405 3406 3407 3408 3409
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3410
				 pcpu_get_vm_areas);
3411 3412
	}
	spin_unlock(&vmap_area_lock);
3413 3414 3415 3416

	kfree(vas);
	return vms;

3417
recovery:
3418 3419 3420 3421 3422 3423
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3424
	while (area--) {
3425 3426 3427 3428 3429 3430
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
3431 3432 3433 3434
		vas[area] = NULL;
	}

overflow:
3435
	spin_unlock(&free_vmap_area_lock);
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3454 3455
err_free:
	for (area = 0; area < nr_vms; area++) {
3456 3457 3458
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3459
		kfree(vms[area]);
3460
	}
3461
err_free2:
3462 3463 3464
	kfree(vas);
	kfree(vms);
	return NULL;
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3504
#endif	/* CONFIG_SMP */
3505 3506 3507

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3508
	__acquires(&vmap_purge_lock)
3509
	__acquires(&vmap_area_lock)
3510
{
3511
	mutex_lock(&vmap_purge_lock);
3512
	spin_lock(&vmap_area_lock);
3513

3514
	return seq_list_start(&vmap_area_list, *pos);
3515 3516 3517 3518
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3519
	return seq_list_next(p, &vmap_area_list, pos);
3520 3521 3522
}

static void s_stop(struct seq_file *m, void *p)
3523
	__releases(&vmap_purge_lock)
3524
	__releases(&vmap_area_lock)
3525
{
3526
	mutex_unlock(&vmap_purge_lock);
3527
	spin_unlock(&vmap_area_lock);
3528 3529
}

E
Eric Dumazet 已提交
3530 3531
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3532
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3533 3534 3535 3536 3537
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3538 3539
		if (v->flags & VM_UNINITIALIZED)
			return;
3540 3541
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3542

E
Eric Dumazet 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3570 3571
static int s_show(struct seq_file *m, void *p)
{
3572
	struct vmap_area *va;
3573 3574
	struct vm_struct *v;

3575 3576
	va = list_entry(p, struct vmap_area, list);

3577
	/*
3578 3579
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3580
	 */
3581
	if (!va->vm) {
3582
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3583
			(void *)va->va_start, (void *)va->va_end,
3584
			va->va_end - va->va_start);
3585

3586
		return 0;
3587
	}
3588 3589

	v = va->vm;
3590

K
Kees Cook 已提交
3591
	seq_printf(m, "0x%pK-0x%pK %7ld",
3592 3593
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3594 3595
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3596

3597 3598 3599 3600
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3601
		seq_printf(m, " phys=%pa", &v->phys_addr);
3602 3603

	if (v->flags & VM_IOREMAP)
3604
		seq_puts(m, " ioremap");
3605 3606

	if (v->flags & VM_ALLOC)
3607
		seq_puts(m, " vmalloc");
3608 3609

	if (v->flags & VM_MAP)
3610
		seq_puts(m, " vmap");
3611 3612

	if (v->flags & VM_USERMAP)
3613
		seq_puts(m, " user");
3614

3615 3616 3617
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3618
	if (is_vmalloc_addr(v->pages))
3619
		seq_puts(m, " vpages");
3620

E
Eric Dumazet 已提交
3621
	show_numa_info(m, v);
3622
	seq_putc(m, '\n');
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3633 3634 3635
	return 0;
}

3636
static const struct seq_operations vmalloc_op = {
3637 3638 3639 3640 3641
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3642 3643 3644

static int __init proc_vmalloc_init(void)
{
3645
	if (IS_ENABLED(CONFIG_NUMA))
3646
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3647 3648
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3649
	else
3650
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3651 3652 3653
	return 0;
}
module_init(proc_vmalloc_init);
3654

3655
#endif