vmalloc.c 89.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37

38
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
39
#include <asm/tlbflush.h>
40
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48 49 50 51 52 53 54
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 56 57 58
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
59 60
}

N
Nick Piggin 已提交
61
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
62

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71 72 73
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
74
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
75 76 77 78 79 80 81
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
82 83
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
84 85 86 87 88 89
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

90
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
91 92 93 94
{
	pud_t *pud;
	unsigned long next;

95
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
96 97
	do {
		next = pud_addr_end(addr, end);
98 99
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
100 101 102 103 104 105
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

N
Nick Piggin 已提交
122
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
123 124 125 126 127 128 129 130 131 132
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
133
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
134 135 136 137
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
138
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
139 140 141
{
	pte_t *pte;

N
Nick Piggin 已提交
142 143 144 145 146
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
147
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
148 149 150
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
151 152 153 154 155
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
156 157
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
158
		(*nr)++;
L
Linus Torvalds 已提交
159 160 161 162
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
163 164
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
165 166 167 168 169 170 171 172 173
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
174
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
175 176 177 178 179
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

180
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
181
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
182 183 184 185
{
	pud_t *pud;
	unsigned long next;

186
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
187 188 189 190
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
191
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
192 193 194 195 196
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
214 215 216 217 218 219
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
220 221
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
222 223 224
{
	pgd_t *pgd;
	unsigned long next;
225
	unsigned long addr = start;
N
Nick Piggin 已提交
226 227
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
228 229 230 231 232

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
233
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
234
		if (err)
235
			return err;
L
Linus Torvalds 已提交
236
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
237 238

	return nr;
L
Linus Torvalds 已提交
239 240
}

241 242 243 244 245 246 247 248 249 250
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

251
int is_vmalloc_or_module_addr(const void *x)
252 253
{
	/*
254
	 * ARM, x86-64 and sparc64 put modules in a special place,
255 256 257 258 259 260 261 262 263 264 265
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

266
/*
267
 * Walk a vmap address to the struct page it maps.
268
 */
269
struct page *vmalloc_to_page(const void *vmalloc_addr)
270 271
{
	unsigned long addr = (unsigned long) vmalloc_addr;
272
	struct page *page = NULL;
273
	pgd_t *pgd = pgd_offset_k(addr);
274 275 276 277
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
278

279 280 281 282
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
283
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
284

285 286 287 288 289 290
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
291 292 293 294 295 296 297 298 299 300 301

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
302 303
		return NULL;
	pmd = pmd_offset(pud, addr);
304 305
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 307 308 309 310 311 312
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
313
	return page;
314
}
315
EXPORT_SYMBOL(vmalloc_to_page);
316 317

/*
318
 * Map a vmalloc()-space virtual address to the physical page frame number.
319
 */
320
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321
{
322
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323
}
324
EXPORT_SYMBOL(vmalloc_to_pfn);
325

N
Nick Piggin 已提交
326 327 328

/*** Global kva allocator ***/

329
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331

N
Nick Piggin 已提交
332 333

static DEFINE_SPINLOCK(vmap_area_lock);
334 335
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
336
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
337
static struct rb_root vmap_area_root = RB_ROOT;
338
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

366 367 368 369 370 371 372
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

373 374 375 376 377 378 379 380 381 382 383 384 385 386
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
387

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

RB_DECLARE_CALLBACKS(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size,
	compute_subtree_max_size)

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
406

407 408 409 410 411 412 413
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
414
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
415
{
N
Nick Piggin 已提交
416 417 418 419 420 421 422 423
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
424
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
425 426 427 428 429 430 431 432
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
454

455 456 457 458 459 460 461
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
462

463 464 465 466 467 468 469 470 471 472 473
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
474 475
		else
			BUG();
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
512 513
	}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
534

535 536
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
537 538
}

539 540 541
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
542 543
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
544

545 546 547 548 549 550 551 552
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
646 647 648 649

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
static __always_inline void
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

748 749
			if (merged)
				unlink_va(va, root);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
			return;
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
823
			 * OK. We roll back and find the first right sub-tree,
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
921
	struct vmap_area *lva = NULL;
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

995
		if (lva)	/* type == NE_FIT_TYPE */
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1009
	unsigned long vstart, unsigned long vend)
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1039 1040 1041 1042
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1043 1044
	return nva_start_addr;
}
1045

N
Nick Piggin 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1055
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1056
	unsigned long addr;
N
Nick Piggin 已提交
1057 1058
	int purged = 0;

N
Nick Piggin 已提交
1059
	BUG_ON(!size);
1060
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1061
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1062

1063 1064 1065
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1066
	might_sleep();
1067

1068
	va = kmem_cache_alloc_node(vmap_area_cachep,
N
Nick Piggin 已提交
1069 1070 1071 1072
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1073 1074 1075 1076 1077 1078
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);

N
Nick Piggin 已提交
1079
retry:
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	/*
	 * Preload this CPU with one extra vmap_area object to ensure
	 * that we have it available when fit type of free area is
	 * NE_FIT_TYPE.
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
	 * low memory condition and high memory pressure.
	 *
	 * Even if it fails we do not really care about that. Just proceed
	 * as it is. "overflow" path will refill the cache we allocate from.
	 */
	preempt_disable();
	if (!__this_cpu_read(ne_fit_preload_node)) {
		preempt_enable();
		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
		preempt_disable();

		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
			if (pva)
				kmem_cache_free(vmap_area_cachep, pva);
		}
	}

N
Nick Piggin 已提交
1104
	spin_lock(&vmap_area_lock);
1105
	preempt_enable();
N
Nick Piggin 已提交
1106

1107
	/*
1108 1109
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1110
	 */
1111
	addr = __alloc_vmap_area(size, align, vstart, vend);
1112
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1113
		goto overflow;
N
Nick Piggin 已提交
1114 1115 1116

	va->va_start = addr;
	va->va_end = addr + size;
1117
	va->vm = NULL;
1118 1119
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);

N
Nick Piggin 已提交
1120 1121
	spin_unlock(&vmap_area_lock);

1122
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1123 1124 1125
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
1126
	return va;
N
Nick Piggin 已提交
1127 1128 1129 1130 1131 1132 1133 1134

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1145
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1146 1147
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1148 1149

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1150
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1165 1166
static void __free_vmap_area(struct vmap_area *va)
{
1167
	/*
1168
	 * Remove from the busy tree/list.
1169
	 */
1170
	unlink_va(va, &vmap_area_root);
1171

1172 1173 1174 1175 1176
	/*
	 * Merge VA with its neighbors, otherwise just add it.
	 */
	merge_or_add_vmap_area(va,
		&free_vmap_area_root, &free_vmap_area_list);
N
Nick Piggin 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1222
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1223

1224 1225 1226 1227 1228
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1229
static DEFINE_MUTEX(vmap_purge_lock);
1230

1231 1232 1233
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1234 1235 1236 1237 1238 1239
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1240
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1241 1242
}

N
Nick Piggin 已提交
1243 1244 1245
/*
 * Purges all lazily-freed vmap areas.
 */
1246
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1247
{
1248
	unsigned long resched_threshold;
1249
	struct llist_node *valist;
N
Nick Piggin 已提交
1250
	struct vmap_area *va;
1251
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1252

1253
	lockdep_assert_held(&vmap_purge_lock);
1254

1255
	valist = llist_del_all(&vmap_purge_list);
1256 1257 1258
	if (unlikely(valist == NULL))
		return false;

1259 1260 1261 1262 1263 1264
	/*
	 * First make sure the mappings are removed from all page-tables
	 * before they are freed.
	 */
	vmalloc_sync_all();

1265 1266 1267 1268
	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1269
	llist_for_each_entry(va, valist, purge_list) {
1270 1271 1272 1273
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1274 1275
	}

1276
	flush_tlb_kernel_range(start, end);
1277
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1278

1279
	spin_lock(&vmap_area_lock);
1280
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1281
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1282

1283 1284 1285 1286 1287 1288 1289 1290
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
		merge_or_add_vmap_area(va,
			&free_vmap_area_root, &free_vmap_area_list);

1291
		atomic_long_sub(nr, &vmap_lazy_nr);
1292

1293
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1294
			cond_resched_lock(&vmap_area_lock);
1295
	}
1296 1297
	spin_unlock(&vmap_area_lock);
	return true;
N
Nick Piggin 已提交
1298 1299
}

N
Nick Piggin 已提交
1300 1301 1302 1303 1304 1305
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1306
	if (mutex_trylock(&vmap_purge_lock)) {
1307
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1308
		mutex_unlock(&vmap_purge_lock);
1309
	}
N
Nick Piggin 已提交
1310 1311
}

N
Nick Piggin 已提交
1312 1313 1314 1315 1316
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1317
	mutex_lock(&vmap_purge_lock);
1318 1319
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1320
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1321 1322 1323
}

/*
1324 1325 1326
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1327
 */
1328
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1329
{
1330
	unsigned long nr_lazy;
1331

1332 1333 1334 1335
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1336 1337
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1338 1339 1340 1341 1342

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1343
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1344 1345
}

1346 1347 1348 1349 1350 1351
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1352
	unmap_vmap_area(va);
1353 1354 1355
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range(va->va_start, va->va_end);

1356
	free_vmap_area_noflush(va);
1357 1358
}

N
Nick Piggin 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1393 1394 1395 1396
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1409
	unsigned long dirty_min, dirty_max; /*< dirty range */
1410 1411
	struct list_head free_list;
	struct rcu_head rcu_head;
1412
	struct list_head purge;
N
Nick Piggin 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1455
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1456 1457
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1458 1459 1460 1461 1462 1463
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1464
	void *vaddr;
N
Nick Piggin 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1476
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1477
		kfree(vb);
J
Julia Lawall 已提交
1478
		return ERR_CAST(va);
N
Nick Piggin 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1488
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1489 1490
	spin_lock_init(&vb->lock);
	vb->va = va;
1491 1492 1493
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1494
	vb->dirty = 0;
1495 1496
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1508
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1509
	spin_unlock(&vbq->lock);
1510
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1511

1512
	return vaddr;
N
Nick Piggin 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1526
	free_vmap_area_noflush(vb->va);
1527
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1547 1548
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1573 1574 1575 1576
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1577
	void *vaddr = NULL;
N
Nick Piggin 已提交
1578 1579
	unsigned int order;

1580
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1581
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1582 1583 1584 1585 1586 1587 1588 1589
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1590 1591 1592 1593 1594
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1595
		unsigned long pages_off;
N
Nick Piggin 已提交
1596 1597

		spin_lock(&vb->lock);
1598 1599 1600 1601
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1602

1603 1604
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1605 1606 1607 1608 1609 1610
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1611

1612 1613
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1614
	}
1615

1616
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1617 1618
	rcu_read_unlock();

1619 1620 1621
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1622

1623
	return vaddr;
N
Nick Piggin 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1633
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1634
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1635 1636 1637

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
1638 1639 1640
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1641
	offset >>= PAGE_SHIFT;
N
Nick Piggin 已提交
1642 1643 1644 1645 1646 1647 1648

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1649 1650
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

1651 1652 1653 1654
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range((unsigned long)addr,
					(unsigned long)addr + size);

N
Nick Piggin 已提交
1655
	spin_lock(&vb->lock);
1656 1657 1658 1659

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1660

N
Nick Piggin 已提交
1661 1662
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1663
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1664 1665 1666 1667 1668 1669
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1670
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1671 1672 1673
{
	int cpu;

1674 1675 1676
	if (unlikely(!vmap_initialized))
		return;

1677 1678
	might_sleep();

N
Nick Piggin 已提交
1679 1680 1681 1682 1683 1684 1685
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1686 1687
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1688
				unsigned long s, e;
1689

1690 1691
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1692

1693 1694
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1695

1696
				flush = 1;
N
Nick Piggin 已提交
1697 1698 1699 1700 1701 1702
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1703
	mutex_lock(&vmap_purge_lock);
1704 1705 1706
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1707
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1708
}
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1739
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1740
	unsigned long addr = (unsigned long)mem;
1741
	struct vmap_area *va;
N
Nick Piggin 已提交
1742

1743
	might_sleep();
N
Nick Piggin 已提交
1744 1745 1746
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1747
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1748

1749
	if (likely(count <= VMAP_MAX_ALLOC)) {
1750
		debug_check_no_locks_freed(mem, size);
N
Nick Piggin 已提交
1751
		vb_free(mem, size);
1752 1753 1754 1755 1756
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1757 1758
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1759
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1769
 *
1770 1771 1772 1773 1774 1775
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1776
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1777 1778 1779
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1780
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1807
static struct vm_struct *vmlist __initdata;
1808

N
Nicolas Pitre 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1835 1836 1837
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1838
 * @align: requested alignment
1839 1840 1841 1842 1843 1844 1845 1846
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1847
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1848 1849
{
	static size_t vm_init_off __initdata;
1850 1851 1852 1853
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1854

1855
	vm->addr = (void *)addr;
1856

N
Nicolas Pitre 已提交
1857
	vm_area_add_early(vm);
1858 1859
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1901 1902
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1903 1904
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1905 1906
	int i;

1907 1908 1909 1910 1911
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1912 1913
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1914
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1915 1916 1917 1918

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1919 1920 1921
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1922
	}
1923

I
Ivan Kokshaysky 已提交
1924 1925
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1926 1927 1928 1929
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
1930 1931
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1932
		va->vm = tmp;
1933
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1934
	}
1935

1936 1937 1938 1939
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
1940
	vmap_initialized = true;
N
Nick Piggin 已提交
1941 1942
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
1986
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1987 1988 1989 1990 1991 1992 1993 1994 1995

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1996 1997 1998
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
1999 2000

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
2001 2002 2003
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
2004
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
2005

2006
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
2007 2008
{
	unsigned long addr = (unsigned long)area->addr;
2009
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
2010 2011
	int err;

2012
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
2013

2014
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
2015 2016 2017
}
EXPORT_SYMBOL_GPL(map_vm_area);

2018
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2019
			      unsigned long flags, const void *caller)
2020
{
2021
	spin_lock(&vmap_area_lock);
2022 2023 2024 2025
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2026
	va->vm = vm;
2027
	spin_unlock(&vmap_area_lock);
2028
}
2029

2030
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2031
{
2032
	/*
2033
	 * Before removing VM_UNINITIALIZED,
2034 2035 2036 2037
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2038
	vm->flags &= ~VM_UNINITIALIZED;
2039 2040
}

N
Nick Piggin 已提交
2041
static struct vm_struct *__get_vm_area_node(unsigned long size,
2042
		unsigned long align, unsigned long flags, unsigned long start,
2043
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2044
{
2045
	struct vmap_area *va;
N
Nick Piggin 已提交
2046
	struct vm_struct *area;
L
Linus Torvalds 已提交
2047

2048
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2049
	size = PAGE_ALIGN(size);
2050 2051
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2052

2053 2054 2055 2056
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2057
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2058 2059 2060
	if (unlikely(!area))
		return NULL;

2061 2062
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2063

N
Nick Piggin 已提交
2064 2065 2066 2067
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2068 2069
	}

2070
	setup_vmalloc_vm(area, va, flags, caller);
2071

L
Linus Torvalds 已提交
2072 2073 2074
	return area;
}

C
Christoph Lameter 已提交
2075 2076 2077
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
2078 2079
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
2080
}
2081
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
2082

2083 2084
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2085
				       const void *caller)
2086
{
D
David Rientjes 已提交
2087 2088
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2089 2090
}

L
Linus Torvalds 已提交
2091
/**
2092 2093 2094
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2095
 *
2096 2097 2098
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2099 2100
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2101 2102 2103
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2104
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2105 2106
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2107 2108 2109
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2110
				const void *caller)
2111
{
2112
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2113
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2114 2115
}

2116
/**
2117 2118
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2119
 *
2120 2121 2122
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2123 2124
 *
 * Return: pointer to the found area or %NULL on faulure
2125 2126
 */
struct vm_struct *find_vm_area(const void *addr)
2127
{
N
Nick Piggin 已提交
2128
	struct vmap_area *va;
2129

N
Nick Piggin 已提交
2130
	va = find_vmap_area((unsigned long)addr);
2131 2132
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2133

2134
	return va->vm;
L
Linus Torvalds 已提交
2135 2136
}

2137
/**
2138 2139
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2140
 *
2141 2142 2143
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2144 2145
 *
 * Return: pointer to the found area or %NULL on faulure
2146
 */
2147
struct vm_struct *remove_vm_area(const void *addr)
2148
{
N
Nick Piggin 已提交
2149 2150
	struct vmap_area *va;

2151 2152
	might_sleep();

2153 2154
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2155
	if (va && va->vm) {
2156
		struct vm_struct *vm = va->vm;
2157

2158 2159 2160
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2161
		kasan_free_shadow(vm);
2162 2163
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2164 2165
		return vm;
	}
2166 2167

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2168
	return NULL;
2169 2170
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2186
	int flush_dmap = 0;
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2210 2211
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2212
			start = min(addr, start);
2213
			end = max(addr + PAGE_SIZE, end);
2214
			flush_dmap = 1;
2215 2216 2217 2218 2219 2220 2221 2222 2223
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2224
	_vm_unmap_aliases(start, end, flush_dmap);
2225 2226 2227
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2228
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2229 2230 2231 2232 2233 2234
{
	struct vm_struct *area;

	if (!addr)
		return;

2235
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2236
			addr))
L
Linus Torvalds 已提交
2237 2238
		return;

2239
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2240
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2241
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2242 2243 2244 2245
				addr);
		return;
	}

2246 2247
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2248

2249 2250
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2251 2252 2253 2254
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2255 2256 2257
			struct page *page = area->pages[i];

			BUG_ON(!page);
2258
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2259
		}
2260
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2261

D
David Rientjes 已提交
2262
		kvfree(area->pages);
L
Linus Torvalds 已提交
2263 2264 2265 2266 2267
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2284 2285
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2286
 *
2287 2288
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2301 2302 2303 2304 2305 2306 2307 2308
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2309
/**
2310 2311
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2312
 *
2313 2314 2315
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2316
 *
2317 2318 2319
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2320
 *
2321
 * May sleep if called *not* from interrupt context.
2322
 *
2323
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2324
 */
2325
void vfree(const void *addr)
L
Linus Torvalds 已提交
2326
{
2327
	BUG_ON(in_nmi());
2328 2329 2330

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2331 2332
	might_sleep_if(!in_interrupt());

2333 2334
	if (!addr)
		return;
2335 2336

	__vfree(addr);
L
Linus Torvalds 已提交
2337 2338 2339 2340
}
EXPORT_SYMBOL(vfree);

/**
2341 2342
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2343
 *
2344 2345
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2346
 *
2347
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2348
 */
2349
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2350 2351
{
	BUG_ON(in_interrupt());
2352
	might_sleep();
2353 2354
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2355 2356 2357 2358
}
EXPORT_SYMBOL(vunmap);

/**
2359 2360 2361 2362 2363 2364 2365 2366
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2367 2368
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2369 2370
 */
void *vmap(struct page **pages, unsigned int count,
2371
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2372 2373
{
	struct vm_struct *area;
2374
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2375

2376 2377
	might_sleep();

2378
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2379 2380
		return NULL;

2381 2382
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2383 2384
	if (!area)
		return NULL;
2385

2386
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
2387 2388 2389 2390 2391 2392 2393 2394
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2395 2396 2397
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2398
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2399
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2400 2401 2402
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2403
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2404 2405 2406 2407
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2408

2409
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2410 2411 2412 2413
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
2414
	if (array_size > PAGE_SIZE) {
2415
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2416
				PAGE_KERNEL, node, area->caller);
2417
	} else {
2418
		pages = kmalloc_node(array_size, nested_gfp, node);
2419
	}
L
Linus Torvalds 已提交
2420 2421 2422 2423 2424 2425 2426 2427
	area->pages = pages;
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
2428 2429
		struct page *page;

J
Jianguo Wu 已提交
2430
		if (node == NUMA_NO_NODE)
2431
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2432
		else
2433
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2434 2435

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2436 2437
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2438
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2439 2440
			goto fail;
		}
2441
		area->pages[i] = page;
2442
		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2443
			cond_resched();
L
Linus Torvalds 已提交
2444
	}
2445
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2446

2447
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
2448 2449 2450 2451
		goto fail;
	return area->addr;

fail:
2452
	warn_alloc(gfp_mask, NULL,
2453
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2454
			  (area->nr_pages*PAGE_SIZE), area->size);
2455
	__vfree(area->addr);
L
Linus Torvalds 已提交
2456 2457 2458 2459
	return NULL;
}

/**
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2474 2475
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2476
 */
2477 2478
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2479 2480
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2481 2482
{
	struct vm_struct *area;
2483 2484
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2485 2486

	size = PAGE_ALIGN(size);
2487
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2488
		goto fail;
L
Linus Torvalds 已提交
2489

2490 2491
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2492
	if (!area)
2493
		goto fail;
L
Linus Torvalds 已提交
2494

2495
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2496
	if (!addr)
2497
		return NULL;
2498

2499
	/*
2500 2501
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2502
	 * Now, it is fully initialized, so remove this flag here.
2503
	 */
2504
	clear_vm_uninitialized_flag(area);
2505

2506
	kmemleak_vmalloc(area, size, gfp_mask);
2507 2508

	return addr;
2509 2510

fail:
2511
	warn_alloc(gfp_mask, NULL,
2512
			  "vmalloc: allocation failure: %lu bytes", real_size);
2513
	return NULL;
L
Linus Torvalds 已提交
2514 2515
}

2516 2517 2518 2519 2520 2521 2522 2523 2524
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2525
/**
2526 2527 2528 2529 2530 2531 2532
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2533
 *
2534 2535 2536
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2537
 *
2538 2539
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2540
 *
2541 2542
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2543 2544
 *
 * Return: pointer to the allocated memory or %NULL on error
2545
 */
2546
static void *__vmalloc_node(unsigned long size, unsigned long align,
2547
			    gfp_t gfp_mask, pgprot_t prot,
2548
			    int node, const void *caller)
2549 2550
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2551
				gfp_mask, prot, 0, node, caller);
2552 2553
}

C
Christoph Lameter 已提交
2554 2555
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2556
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2557
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2558
}
L
Linus Torvalds 已提交
2559 2560
EXPORT_SYMBOL(__vmalloc);

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2575
/**
2576 2577 2578 2579 2580
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2581
 *
2582 2583
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2584 2585
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2586 2587 2588
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2589
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2590
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2591 2592 2593
}
EXPORT_SYMBOL(vmalloc);

2594
/**
2595 2596 2597 2598 2599 2600 2601 2602 2603
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2604 2605
 *
 * Return: pointer to the allocated memory or %NULL on error
2606 2607 2608
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2609
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2610
				GFP_KERNEL | __GFP_ZERO);
2611 2612 2613
}
EXPORT_SYMBOL(vzalloc);

2614
/**
2615 2616
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2617
 *
2618 2619
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2620 2621
 *
 * Return: pointer to the allocated memory or %NULL on error
2622 2623 2624
 */
void *vmalloc_user(unsigned long size)
{
2625 2626 2627 2628
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2629 2630 2631
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2632
/**
2633 2634 2635
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2636
 *
2637 2638
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2639
 *
2640 2641
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2642 2643
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2644 2645 2646
 */
void *vmalloc_node(unsigned long size, int node)
{
2647
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2648
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2649 2650 2651
}
EXPORT_SYMBOL(vmalloc_node);

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2663 2664
 *
 * Return: pointer to the allocated memory or %NULL on error
2665 2666 2667 2668
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2669
			 GFP_KERNEL | __GFP_ZERO);
2670 2671 2672
}
EXPORT_SYMBOL(vzalloc_node);

L
Linus Torvalds 已提交
2673
/**
2674 2675
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2676
 *
2677 2678 2679
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2680
 *
2681 2682
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2683 2684
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2685 2686 2687
 */
void *vmalloc_exec(unsigned long size)
{
2688 2689 2690
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2691 2692
}

2693
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2694
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2695
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2696
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2697
#else
2698 2699 2700 2701 2702
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2703 2704
#endif

L
Linus Torvalds 已提交
2705
/**
2706 2707
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2708
 *
2709 2710
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2711 2712
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2713 2714 2715
 */
void *vmalloc_32(unsigned long size)
{
2716
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2717
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2718 2719 2720
}
EXPORT_SYMBOL(vmalloc_32);

2721
/**
2722
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2723
 * @size:	     allocation size
2724 2725 2726
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2727 2728
 *
 * Return: pointer to the allocated memory or %NULL on error
2729 2730 2731
 */
void *vmalloc_32_user(unsigned long size)
{
2732 2733 2734 2735
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2736 2737 2738
}
EXPORT_SYMBOL(vmalloc_32_user);

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2752
		offset = offset_in_page(addr);
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2769
			void *map = kmap_atomic(p);
2770
			memcpy(buf, map + offset, length);
2771
			kunmap_atomic(map);
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2791
		offset = offset_in_page(addr);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2808
			void *map = kmap_atomic(p);
2809
			memcpy(map + offset, buf, length);
2810
			kunmap_atomic(map);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2838
 * any information, as /dev/kmem.
2839 2840 2841 2842
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2843
 */
L
Linus Torvalds 已提交
2844 2845
long vread(char *buf, char *addr, unsigned long count)
{
2846 2847
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2848
	char *vaddr, *buf_start = buf;
2849
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2850 2851 2852 2853 2854 2855
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2856 2857 2858 2859 2860
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2861
		if (!va->vm)
2862 2863 2864 2865
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2866
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2876
		n = vaddr + get_vm_area_size(vm) - addr;
2877 2878
		if (n > count)
			n = count;
2879
		if (!(vm->flags & VM_IOREMAP))
2880 2881 2882 2883 2884 2885
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2886 2887
	}
finished:
2888
	spin_unlock(&vmap_area_lock);
2889 2890 2891 2892 2893 2894 2895 2896

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2897 2898
}

2899
/**
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2917
 * any information, as /dev/kmem.
2918 2919 2920 2921
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2922
 */
L
Linus Torvalds 已提交
2923 2924
long vwrite(char *buf, char *addr, unsigned long count)
{
2925 2926
	struct vmap_area *va;
	struct vm_struct *vm;
2927 2928 2929
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2930 2931 2932 2933

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2934
	buflen = count;
L
Linus Torvalds 已提交
2935

2936 2937 2938 2939 2940
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2941
		if (!va->vm)
2942 2943 2944 2945
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2946
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2947 2948 2949 2950 2951 2952 2953 2954
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2955
		n = vaddr + get_vm_area_size(vm) - addr;
2956 2957
		if (n > count)
			n = count;
2958
		if (!(vm->flags & VM_IOREMAP)) {
2959 2960 2961 2962 2963 2964
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2965 2966
	}
finished:
2967
	spin_unlock(&vmap_area_lock);
2968 2969 2970
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2971
}
2972 2973

/**
2974 2975 2976 2977 2978
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
 * @size:		size of map area
2979
 *
2980
 * Returns:	0 for success, -Exxx on failure
2981
 *
2982 2983 2984 2985
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
2986
 *
2987
 * Similar to remap_pfn_range() (see mm/memory.c)
2988
 */
2989 2990
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
2991 2992 2993
{
	struct vm_struct *area;

2994 2995 2996
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2997 2998
		return -EINVAL;

2999
	area = find_vm_area(kaddr);
3000
	if (!area)
N
Nick Piggin 已提交
3001
		return -EINVAL;
3002

3003
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3004
		return -EINVAL;
3005

3006
	if (kaddr + size > area->addr + get_vm_area_size(area))
N
Nick Piggin 已提交
3007
		return -EINVAL;
3008 3009

	do {
3010
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3011 3012
		int ret;

3013 3014 3015 3016 3017
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3018 3019 3020
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3021

3022
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3023

N
Nick Piggin 已提交
3024
	return 0;
3025
}
3026 3027 3028
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3029 3030 3031 3032
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3033
 *
3034
 * Returns:	0 for success, -Exxx on failure
3035
 *
3036 3037 3038
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3039
 *
3040
 * Similar to remap_pfn_range() (see mm/memory.c)
3041 3042 3043 3044 3045 3046 3047 3048
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
3049 3050
EXPORT_SYMBOL(remap_vmalloc_range);

3051 3052 3053
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
3054 3055 3056
 *
 * The purpose of this function is to make sure the vmalloc area
 * mappings are identical in all page-tables in the system.
3057
 */
3058
void __weak vmalloc_sync_all(void)
3059 3060
{
}
3061 3062


3063
static int f(pte_t *pte, unsigned long addr, void *data)
3064
{
3065 3066 3067 3068 3069 3070
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3071 3072 3073 3074
	return 0;
}

/**
3075 3076 3077
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3078
 *
3079
 * Returns:	NULL on failure, vm_struct on success
3080
 *
3081 3082 3083
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3084
 *
3085 3086
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3087
 */
3088
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3089 3090 3091
{
	struct vm_struct *area;

3092 3093
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3094 3095 3096 3097 3098 3099 3100 3101
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3102
				size, f, ptes ? &ptes : NULL)) {
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3119

3120
#ifdef CONFIG_SMP
3121 3122
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3123
	return rb_entry_safe(n, struct vmap_area, rb_node);
3124 3125 3126
}

/**
3127 3128
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3129
 *
3130 3131 3132 3133
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3134
 */
3135 3136
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3137
{
3138 3139 3140 3141 3142
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3143 3144

	while (n) {
3145 3146 3147 3148 3149 3150
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3151
			n = n->rb_right;
3152 3153 3154
		} else {
			n = n->rb_left;
		}
3155 3156
	}

3157
	return va;
3158 3159 3160
}

/**
3161 3162 3163 3164 3165
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3166
 *
3167
 * Returns: determined end address within vmap_area
3168
 */
3169 3170
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3171
{
3172
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3173 3174
	unsigned long addr;

3175 3176 3177 3178 3179 3180 3181
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3182 3183
	}

3184
	return 0;
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3199 3200 3201 3202
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3203
 *
3204 3205 3206 3207 3208 3209
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3210 3211 3212
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3213
				     size_t align)
3214 3215 3216
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3217
	struct vmap_area **vas, *va;
3218 3219
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3220
	unsigned long base, start, size, end, last_end;
3221
	bool purged = false;
3222
	enum fit_type type;
3223 3224

	/* verify parameters and allocate data structures */
3225
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3238
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3239 3240 3241
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3242
			BUG_ON(start2 < end && start < end2);
3243 3244 3245 3246 3247 3248 3249 3250 3251
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3252 3253
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3254
	if (!vas || !vms)
3255
		goto err_free2;
3256 3257

	for (area = 0; area < nr_vms; area++) {
3258
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3259
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3271 3272
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3273 3274 3275 3276 3277 3278

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3279 3280
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3281 3282

		/*
3283
		 * Fitting base has not been found.
3284
		 */
3285 3286
		if (va == NULL)
			goto overflow;
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		/*
		 * If required width exeeds current VA block, move
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3298
		/*
3299
		 * If this VA does not fit, move base downwards and recheck.
3300
		 */
3301
		if (base + start < va->va_start) {
3302 3303
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3315

3316 3317
		start = offsets[area];
		end = start + sizes[area];
3318
		va = pvm_find_va_enclose_addr(base + end);
3319
	}
3320

3321 3322
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3323
		int ret;
3324

3325 3326
		start = base + offsets[area];
		size = sizes[area];
3327

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;

		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
	}
3349 3350 3351 3352 3353

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
3354 3355
		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				 pcpu_get_vm_areas);
3356 3357 3358 3359

	kfree(vas);
	return vms;

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
recovery:
	/* Remove previously inserted areas. */
	while (area--) {
		__free_vmap_area(vas[area]);
		vas[area] = NULL;
	}

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3387 3388
err_free:
	for (area = 0; area < nr_vms; area++) {
3389 3390 3391
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3392
		kfree(vms[area]);
3393
	}
3394
err_free2:
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3415
#endif	/* CONFIG_SMP */
3416 3417 3418

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3419
	__acquires(&vmap_area_lock)
3420
{
3421
	spin_lock(&vmap_area_lock);
3422
	return seq_list_start(&vmap_area_list, *pos);
3423 3424 3425 3426
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3427
	return seq_list_next(p, &vmap_area_list, pos);
3428 3429 3430
}

static void s_stop(struct seq_file *m, void *p)
3431
	__releases(&vmap_area_lock)
3432
{
3433
	spin_unlock(&vmap_area_lock);
3434 3435
}

E
Eric Dumazet 已提交
3436 3437
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3438
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3439 3440 3441 3442 3443
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3444 3445
		if (v->flags & VM_UNINITIALIZED)
			return;
3446 3447
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3448

E
Eric Dumazet 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3476 3477
static int s_show(struct seq_file *m, void *p)
{
3478
	struct vmap_area *va;
3479 3480
	struct vm_struct *v;

3481 3482
	va = list_entry(p, struct vmap_area, list);

3483
	/*
3484 3485
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3486
	 */
3487
	if (!va->vm) {
3488
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3489
			(void *)va->va_start, (void *)va->va_end,
3490
			va->va_end - va->va_start);
3491

3492
		return 0;
3493
	}
3494 3495

	v = va->vm;
3496

K
Kees Cook 已提交
3497
	seq_printf(m, "0x%pK-0x%pK %7ld",
3498 3499
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3500 3501
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3502

3503 3504 3505 3506
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3507
		seq_printf(m, " phys=%pa", &v->phys_addr);
3508 3509

	if (v->flags & VM_IOREMAP)
3510
		seq_puts(m, " ioremap");
3511 3512

	if (v->flags & VM_ALLOC)
3513
		seq_puts(m, " vmalloc");
3514 3515

	if (v->flags & VM_MAP)
3516
		seq_puts(m, " vmap");
3517 3518

	if (v->flags & VM_USERMAP)
3519
		seq_puts(m, " user");
3520

3521 3522 3523
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3524
	if (is_vmalloc_addr(v->pages))
3525
		seq_puts(m, " vpages");
3526

E
Eric Dumazet 已提交
3527
	show_numa_info(m, v);
3528
	seq_putc(m, '\n');
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3539 3540 3541
	return 0;
}

3542
static const struct seq_operations vmalloc_op = {
3543 3544 3545 3546 3547
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3548 3549 3550

static int __init proc_vmalloc_init(void)
{
3551
	if (IS_ENABLED(CONFIG_NUMA))
3552
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3553 3554
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3555
	else
3556
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3557 3558 3559
	return 0;
}
module_init(proc_vmalloc_init);
3560

3561
#endif