vmalloc.c 92.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37

38
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
39
#include <asm/tlbflush.h>
40
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48 49 50 51 52 53 54
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 56 57 58
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
59 60
}

N
Nick Piggin 已提交
61
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
62

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71 72 73
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
74
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
75 76 77 78 79 80 81
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
82 83
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
84 85 86 87 88 89
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

90
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
91 92 93 94
{
	pud_t *pud;
	unsigned long next;

95
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
96 97
	do {
		next = pud_addr_end(addr, end);
98 99
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
100 101 102 103 104 105
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

N
Nick Piggin 已提交
122
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
123 124 125 126 127 128 129 130 131 132
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
133
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
134 135 136 137
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
138
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
139 140 141
{
	pte_t *pte;

N
Nick Piggin 已提交
142 143 144 145 146
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
147
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
148 149 150
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
151 152 153 154 155
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
156 157
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
158
		(*nr)++;
L
Linus Torvalds 已提交
159 160 161 162
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
163 164
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
165 166 167 168 169 170 171 172 173
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
174
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
175 176 177 178 179
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

180
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
181
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
182 183 184 185
{
	pud_t *pud;
	unsigned long next;

186
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
187 188 189 190
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
191
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
192 193 194 195 196
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
214 215 216 217 218 219
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
220 221
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
222 223 224
{
	pgd_t *pgd;
	unsigned long next;
225
	unsigned long addr = start;
N
Nick Piggin 已提交
226 227
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
228 229 230 231 232

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
233
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
234
		if (err)
235
			return err;
L
Linus Torvalds 已提交
236
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
237 238

	return nr;
L
Linus Torvalds 已提交
239 240
}

241 242 243 244 245 246 247 248 249 250
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

251
int is_vmalloc_or_module_addr(const void *x)
252 253
{
	/*
254
	 * ARM, x86-64 and sparc64 put modules in a special place,
255 256 257 258 259 260 261 262 263 264 265
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

266
/*
267
 * Walk a vmap address to the struct page it maps.
268
 */
269
struct page *vmalloc_to_page(const void *vmalloc_addr)
270 271
{
	unsigned long addr = (unsigned long) vmalloc_addr;
272
	struct page *page = NULL;
273
	pgd_t *pgd = pgd_offset_k(addr);
274 275 276 277
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
278

279 280 281 282
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
283
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
284

285 286 287 288 289 290
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
291 292 293 294 295 296 297 298 299 300 301

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
302 303
		return NULL;
	pmd = pmd_offset(pud, addr);
304 305
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 307 308 309 310 311 312
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
313
	return page;
314
}
315
EXPORT_SYMBOL(vmalloc_to_page);
316 317

/*
318
 * Map a vmalloc()-space virtual address to the physical page frame number.
319
 */
320
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321
{
322
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323
}
324
EXPORT_SYMBOL(vmalloc_to_pfn);
325

N
Nick Piggin 已提交
326 327 328

/*** Global kva allocator ***/

329
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331

N
Nick Piggin 已提交
332 333

static DEFINE_SPINLOCK(vmap_area_lock);
334
static DEFINE_SPINLOCK(free_vmap_area_lock);
335 336
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
337
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
338
static struct rb_root vmap_area_root = RB_ROOT;
339
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

367 368 369 370 371 372 373
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

374 375 376 377 378 379 380 381 382 383 384 385 386 387
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
388

389 390 391 392 393 394 395 396 397 398 399
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

400 401
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
402 403 404 405

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
406

407 408 409 410 411 412 413
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
414
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
415
{
N
Nick Piggin 已提交
416 417 418 419 420 421 422 423
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
424
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
425 426 427 428 429 430 431 432
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
454

455 456 457 458 459 460 461
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
462

463 464 465 466 467 468 469 470 471 472 473
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
474 475
		else
			BUG();
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
512 513
	}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
534

535 536
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
537 538
}

539 540 541
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
542 543
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
544

545 546 547 548 549 550 551 552
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
646 647 648 649

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
686
static __always_inline struct vmap_area *
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

748 749
			if (merged)
				unlink_va(va, root);
750 751 752

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
753 754 755 756

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
757 758 759 760 761 762 763 764
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
765 766

	return va;
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
828
			 * OK. We roll back and find the first right sub-tree,
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
926
	struct vmap_area *lva = NULL;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
964 965 966 967 968 969 970 971 972 973 974 975 976
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
977 978 979 980 981 982 983 984 985 986 987 988 989
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
990 991 992 993 994
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1013
		if (lva)	/* type == NE_FIT_TYPE */
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1027
	unsigned long vstart, unsigned long vend)
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1057 1058 1059 1060
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1061 1062
	return nva_start_addr;
}
1063

N
Nick Piggin 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1073
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1074
	unsigned long addr;
N
Nick Piggin 已提交
1075 1076
	int purged = 0;

N
Nick Piggin 已提交
1077
	BUG_ON(!size);
1078
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1079
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1080

1081 1082 1083
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1084
	might_sleep();
1085
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1086

1087
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1088 1089 1090
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1091 1092 1093 1094
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1095
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1096

N
Nick Piggin 已提交
1097
retry:
1098
	/*
1099 1100 1101 1102 1103 1104
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1105 1106 1107
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1108 1109
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1110
	 *
1111
	 * Set "pva" to NULL here, because of "retry" path.
1112
	 */
1113
	pva = NULL;
1114

1115 1116 1117 1118 1119 1120
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1121
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1122

1123
	spin_lock(&free_vmap_area_lock);
1124 1125 1126

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1127

1128
	/*
1129 1130
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1131
	 */
1132
	addr = __alloc_vmap_area(size, align, vstart, vend);
1133 1134
	spin_unlock(&free_vmap_area_lock);

1135
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1136
		goto overflow;
N
Nick Piggin 已提交
1137 1138 1139

	va->va_start = addr;
	va->va_end = addr + size;
1140
	va->vm = NULL;
1141

1142 1143
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1144 1145
	spin_unlock(&vmap_area_lock);

1146
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1147 1148 1149
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
1150
	return va;
N
Nick Piggin 已提交
1151 1152 1153 1154 1155 1156 1157

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1168
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1169 1170
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1171 1172

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1173
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

1188 1189 1190 1191
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
N
Nick Piggin 已提交
1192
{
1193
	/*
1194
	 * Remove from the busy tree/list.
1195
	 */
1196
	spin_lock(&vmap_area_lock);
1197
	unlink_va(va, &vmap_area_root);
1198
	spin_unlock(&vmap_area_lock);
1199

1200
	/*
1201
	 * Insert/Merge it back to the free tree/list.
1202
	 */
1203
	spin_lock(&free_vmap_area_lock);
1204
	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1205
	spin_unlock(&free_vmap_area_lock);
N
Nick Piggin 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1241
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1242

1243 1244 1245 1246 1247
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1248
static DEFINE_MUTEX(vmap_purge_lock);
1249

1250 1251 1252
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1253 1254 1255 1256 1257 1258
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1259
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1260 1261
}

N
Nick Piggin 已提交
1262 1263 1264
/*
 * Purges all lazily-freed vmap areas.
 */
1265
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1266
{
1267
	unsigned long resched_threshold;
1268
	struct llist_node *valist;
N
Nick Piggin 已提交
1269
	struct vmap_area *va;
1270
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1271

1272
	lockdep_assert_held(&vmap_purge_lock);
1273

1274
	valist = llist_del_all(&vmap_purge_list);
1275 1276 1277
	if (unlikely(valist == NULL))
		return false;

1278 1279 1280 1281 1282 1283
	/*
	 * First make sure the mappings are removed from all page-tables
	 * before they are freed.
	 */
	vmalloc_sync_all();

1284 1285 1286 1287
	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1288
	llist_for_each_entry(va, valist, purge_list) {
1289 1290 1291 1292
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1293 1294
	}

1295
	flush_tlb_kernel_range(start, end);
1296
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1297

1298
	spin_lock(&free_vmap_area_lock);
1299
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1300
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1301 1302
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1303

1304 1305 1306 1307 1308
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1309 1310 1311 1312 1313 1314
		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
					    &free_vmap_area_list);

		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1315

1316
		atomic_long_sub(nr, &vmap_lazy_nr);
1317

1318
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1319
			cond_resched_lock(&free_vmap_area_lock);
1320
	}
1321
	spin_unlock(&free_vmap_area_lock);
1322
	return true;
N
Nick Piggin 已提交
1323 1324
}

N
Nick Piggin 已提交
1325 1326 1327 1328 1329 1330
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1331
	if (mutex_trylock(&vmap_purge_lock)) {
1332
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1333
		mutex_unlock(&vmap_purge_lock);
1334
	}
N
Nick Piggin 已提交
1335 1336
}

N
Nick Piggin 已提交
1337 1338 1339 1340 1341
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1342
	mutex_lock(&vmap_purge_lock);
1343 1344
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1345
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1346 1347 1348
}

/*
1349 1350 1351
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1352
 */
1353
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1354
{
1355
	unsigned long nr_lazy;
1356

1357 1358 1359 1360
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1361 1362
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1363 1364 1365 1366 1367

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1368
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1369 1370
}

1371 1372 1373 1374 1375 1376
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1377
	unmap_vmap_area(va);
1378 1379 1380
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range(va->va_start, va->va_end);

1381
	free_vmap_area_noflush(va);
1382 1383
}

N
Nick Piggin 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1418 1419 1420 1421
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1434
	unsigned long dirty_min, dirty_max; /*< dirty range */
1435 1436
	struct list_head free_list;
	struct rcu_head rcu_head;
1437
	struct list_head purge;
N
Nick Piggin 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1480
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1481 1482
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1483 1484 1485 1486 1487 1488
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1489
	void *vaddr;
N
Nick Piggin 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1501
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1502
		kfree(vb);
J
Julia Lawall 已提交
1503
		return ERR_CAST(va);
N
Nick Piggin 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1513
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1514 1515
	spin_lock_init(&vb->lock);
	vb->va = va;
1516 1517 1518
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1519
	vb->dirty = 0;
1520 1521
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1533
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1534
	spin_unlock(&vbq->lock);
1535
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1536

1537
	return vaddr;
N
Nick Piggin 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1551
	free_vmap_area_noflush(vb->va);
1552
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1553 1554
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1572 1573
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1598 1599 1600 1601
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1602
	void *vaddr = NULL;
N
Nick Piggin 已提交
1603 1604
	unsigned int order;

1605
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1606
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1607 1608 1609 1610 1611 1612 1613 1614
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1615 1616 1617 1618 1619
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1620
		unsigned long pages_off;
N
Nick Piggin 已提交
1621 1622

		spin_lock(&vb->lock);
1623 1624 1625 1626
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1627

1628 1629
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1630 1631 1632 1633 1634 1635
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1636

1637 1638
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1639
	}
1640

1641
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1642 1643
	rcu_read_unlock();

1644 1645 1646
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1647

1648
	return vaddr;
N
Nick Piggin 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1658
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1659
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1660 1661 1662

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
1663 1664 1665
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1666
	offset >>= PAGE_SHIFT;
N
Nick Piggin 已提交
1667 1668 1669 1670 1671 1672 1673

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1674 1675
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

1676 1677 1678 1679
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range((unsigned long)addr,
					(unsigned long)addr + size);

N
Nick Piggin 已提交
1680
	spin_lock(&vb->lock);
1681 1682 1683 1684

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1685

N
Nick Piggin 已提交
1686 1687
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1688
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1689 1690 1691 1692 1693 1694
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1695
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1696 1697 1698
{
	int cpu;

1699 1700 1701
	if (unlikely(!vmap_initialized))
		return;

1702 1703
	might_sleep();

N
Nick Piggin 已提交
1704 1705 1706 1707 1708 1709 1710
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1711 1712
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1713
				unsigned long s, e;
1714

1715 1716
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1717

1718 1719
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1720

1721
				flush = 1;
N
Nick Piggin 已提交
1722 1723 1724 1725 1726 1727
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1728
	mutex_lock(&vmap_purge_lock);
1729 1730 1731
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1732
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1733
}
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1764
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1765
	unsigned long addr = (unsigned long)mem;
1766
	struct vmap_area *va;
N
Nick Piggin 已提交
1767

1768
	might_sleep();
N
Nick Piggin 已提交
1769 1770 1771
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1772
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1773

1774
	if (likely(count <= VMAP_MAX_ALLOC)) {
1775
		debug_check_no_locks_freed(mem, size);
N
Nick Piggin 已提交
1776
		vb_free(mem, size);
1777 1778 1779 1780 1781
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1782 1783
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1784
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1794
 *
1795 1796 1797 1798 1799 1800
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1801
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1802 1803 1804
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1805
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1832
static struct vm_struct *vmlist __initdata;
1833

N
Nicolas Pitre 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1860 1861 1862
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1863
 * @align: requested alignment
1864 1865 1866 1867 1868 1869 1870 1871
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1872
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1873 1874
{
	static size_t vm_init_off __initdata;
1875 1876 1877 1878
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1879

1880
	vm->addr = (void *)addr;
1881

N
Nicolas Pitre 已提交
1882
	vm_area_add_early(vm);
1883 1884
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1926 1927
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1928 1929
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1930 1931
	int i;

1932 1933 1934 1935 1936
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1937 1938
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1939
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1940 1941 1942 1943

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1944 1945 1946
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1947
	}
1948

I
Ivan Kokshaysky 已提交
1949 1950
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1951 1952 1953 1954
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
1955 1956
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1957
		va->vm = tmp;
1958
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1959
	}
1960

1961 1962 1963 1964
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
1965
	vmap_initialized = true;
N
Nick Piggin 已提交
1966 1967
}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
2011
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
2012 2013 2014 2015 2016 2017 2018 2019 2020

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2021 2022 2023
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2024 2025

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
2026 2027 2028
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
2029
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
2030

2031
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
2032 2033
{
	unsigned long addr = (unsigned long)area->addr;
2034
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
2035 2036
	int err;

2037
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
2038

2039
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
2040 2041 2042
}
EXPORT_SYMBOL_GPL(map_vm_area);

2043 2044
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2045 2046 2047 2048 2049
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2050
	va->vm = vm;
2051 2052 2053 2054 2055 2056 2057
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2058
	spin_unlock(&vmap_area_lock);
2059
}
2060

2061
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2062
{
2063
	/*
2064
	 * Before removing VM_UNINITIALIZED,
2065 2066 2067 2068
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2069
	vm->flags &= ~VM_UNINITIALIZED;
2070 2071
}

N
Nick Piggin 已提交
2072
static struct vm_struct *__get_vm_area_node(unsigned long size,
2073
		unsigned long align, unsigned long flags, unsigned long start,
2074
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2075
{
2076
	struct vmap_area *va;
N
Nick Piggin 已提交
2077
	struct vm_struct *area;
L
Linus Torvalds 已提交
2078

2079
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2080
	size = PAGE_ALIGN(size);
2081 2082
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2083

2084 2085 2086 2087
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2088
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2089 2090 2091
	if (unlikely(!area))
		return NULL;

2092 2093
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2094

N
Nick Piggin 已提交
2095 2096 2097 2098
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2099 2100
	}

2101
	setup_vmalloc_vm(area, va, flags, caller);
2102

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	/*
	 * For KASAN, if we are in vmalloc space, we need to cover the shadow
	 * area with real memory. If we come here through VM_ALLOC, this is
	 * done by a higher level function that has access to the true size,
	 * which might not be a full page.
	 *
	 * We assume module space comes via VM_ALLOC path.
	 */
	if (is_vmalloc_addr(area->addr) && !(area->flags & VM_ALLOC)) {
		if (kasan_populate_vmalloc(area->size, area)) {
			unmap_vmap_area(va);
			kfree(area);
			return NULL;
		}
	}

L
Linus Torvalds 已提交
2119 2120 2121
	return area;
}

C
Christoph Lameter 已提交
2122 2123 2124
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
2125 2126
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
2127
}
2128
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
2129

2130 2131
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2132
				       const void *caller)
2133
{
D
David Rientjes 已提交
2134 2135
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2136 2137
}

L
Linus Torvalds 已提交
2138
/**
2139 2140 2141
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2142
 *
2143 2144 2145
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2146 2147
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2148 2149 2150
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2151
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2152 2153
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2154 2155 2156
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2157
				const void *caller)
2158
{
2159
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2160
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2161 2162
}

2163
/**
2164 2165
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2166
 *
2167 2168 2169
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2170 2171
 *
 * Return: pointer to the found area or %NULL on faulure
2172 2173
 */
struct vm_struct *find_vm_area(const void *addr)
2174
{
N
Nick Piggin 已提交
2175
	struct vmap_area *va;
2176

N
Nick Piggin 已提交
2177
	va = find_vmap_area((unsigned long)addr);
2178 2179
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2180

2181
	return va->vm;
L
Linus Torvalds 已提交
2182 2183
}

2184
/**
2185 2186
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2187
 *
2188 2189 2190
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2191 2192
 *
 * Return: pointer to the found area or %NULL on faulure
2193
 */
2194
struct vm_struct *remove_vm_area(const void *addr)
2195
{
N
Nick Piggin 已提交
2196 2197
	struct vmap_area *va;

2198 2199
	might_sleep();

2200 2201
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2202
	if (va && va->vm) {
2203
		struct vm_struct *vm = va->vm;
2204

2205 2206 2207
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2208
		kasan_free_shadow(vm);
2209 2210
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2211 2212
		return vm;
	}
2213 2214

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2215
	return NULL;
2216 2217
}

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2233
	int flush_dmap = 0;
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2257 2258
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2259
			start = min(addr, start);
2260
			end = max(addr + PAGE_SIZE, end);
2261
			flush_dmap = 1;
2262 2263 2264 2265 2266 2267 2268 2269 2270
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2271
	_vm_unmap_aliases(start, end, flush_dmap);
2272 2273 2274
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2275
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2276 2277 2278 2279 2280 2281
{
	struct vm_struct *area;

	if (!addr)
		return;

2282
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2283
			addr))
L
Linus Torvalds 已提交
2284 2285
		return;

2286
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2287
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2288
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2289 2290 2291 2292
				addr);
		return;
	}

2293 2294
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2295

2296 2297 2298
	if (area->flags & VM_KASAN)
		kasan_poison_vmalloc(area->addr, area->size);

2299 2300
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2301 2302 2303 2304
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2305 2306 2307
			struct page *page = area->pages[i];

			BUG_ON(!page);
2308
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2309
		}
2310
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2311

D
David Rientjes 已提交
2312
		kvfree(area->pages);
L
Linus Torvalds 已提交
2313 2314 2315 2316 2317
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2334 2335
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2336
 *
2337 2338
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2351 2352 2353 2354 2355 2356 2357 2358
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2359
/**
2360 2361
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2362
 *
2363 2364 2365
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2366
 *
2367 2368 2369
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2370
 *
2371
 * May sleep if called *not* from interrupt context.
2372
 *
2373
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2374
 */
2375
void vfree(const void *addr)
L
Linus Torvalds 已提交
2376
{
2377
	BUG_ON(in_nmi());
2378 2379 2380

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2381 2382
	might_sleep_if(!in_interrupt());

2383 2384
	if (!addr)
		return;
2385 2386

	__vfree(addr);
L
Linus Torvalds 已提交
2387 2388 2389 2390
}
EXPORT_SYMBOL(vfree);

/**
2391 2392
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2393
 *
2394 2395
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2396
 *
2397
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2398
 */
2399
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2400 2401
{
	BUG_ON(in_interrupt());
2402
	might_sleep();
2403 2404
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2405 2406 2407 2408
}
EXPORT_SYMBOL(vunmap);

/**
2409 2410 2411 2412 2413 2414 2415 2416
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2417 2418
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2419 2420
 */
void *vmap(struct page **pages, unsigned int count,
2421
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2422 2423
{
	struct vm_struct *area;
2424
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2425

2426 2427
	might_sleep();

2428
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2429 2430
		return NULL;

2431 2432
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2433 2434
	if (!area)
		return NULL;
2435

2436
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
2437 2438 2439 2440 2441 2442 2443 2444
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2445 2446 2447
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2448
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2449
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2450 2451 2452
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2453
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2454 2455 2456 2457
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2458

2459
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2460 2461 2462
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2463
	if (array_size > PAGE_SIZE) {
2464
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2465
				PAGE_KERNEL, node, area->caller);
2466
	} else {
2467
		pages = kmalloc_node(array_size, nested_gfp, node);
2468
	}
2469 2470

	if (!pages) {
L
Linus Torvalds 已提交
2471 2472 2473 2474 2475
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2476 2477 2478
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2479
	for (i = 0; i < area->nr_pages; i++) {
2480 2481
		struct page *page;

J
Jianguo Wu 已提交
2482
		if (node == NUMA_NO_NODE)
2483
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2484
		else
2485
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2486 2487

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2488 2489
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2490
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2491 2492
			goto fail;
		}
2493
		area->pages[i] = page;
2494
		if (gfpflags_allow_blocking(gfp_mask))
2495
			cond_resched();
L
Linus Torvalds 已提交
2496
	}
2497
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2498

2499
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
2500 2501 2502 2503
		goto fail;
	return area->addr;

fail:
2504
	warn_alloc(gfp_mask, NULL,
2505
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2506
			  (area->nr_pages*PAGE_SIZE), area->size);
2507
	__vfree(area->addr);
L
Linus Torvalds 已提交
2508 2509 2510 2511
	return NULL;
}

/**
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2526 2527
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2528
 */
2529 2530
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2531 2532
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2533 2534
{
	struct vm_struct *area;
2535 2536
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2537 2538

	size = PAGE_ALIGN(size);
2539
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2540
		goto fail;
L
Linus Torvalds 已提交
2541

2542 2543
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2544
	if (!area)
2545
		goto fail;
L
Linus Torvalds 已提交
2546

2547
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2548
	if (!addr)
2549
		return NULL;
2550

2551 2552 2553 2554 2555
	if (is_vmalloc_or_module_addr(area->addr)) {
		if (kasan_populate_vmalloc(real_size, area))
			return NULL;
	}

2556
	/*
2557 2558
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2559
	 * Now, it is fully initialized, so remove this flag here.
2560
	 */
2561
	clear_vm_uninitialized_flag(area);
2562

2563
	kmemleak_vmalloc(area, size, gfp_mask);
2564 2565

	return addr;
2566 2567

fail:
2568
	warn_alloc(gfp_mask, NULL,
2569
			  "vmalloc: allocation failure: %lu bytes", real_size);
2570
	return NULL;
L
Linus Torvalds 已提交
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2582
/**
2583 2584 2585 2586 2587 2588 2589
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2590
 *
2591 2592 2593
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2594
 *
2595 2596
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2597
 *
2598 2599
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2600 2601
 *
 * Return: pointer to the allocated memory or %NULL on error
2602
 */
2603
static void *__vmalloc_node(unsigned long size, unsigned long align,
2604
			    gfp_t gfp_mask, pgprot_t prot,
2605
			    int node, const void *caller)
2606 2607
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2608
				gfp_mask, prot, 0, node, caller);
2609 2610
}

C
Christoph Lameter 已提交
2611 2612
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2613
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2614
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2615
}
L
Linus Torvalds 已提交
2616 2617
EXPORT_SYMBOL(__vmalloc);

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2632
/**
2633 2634 2635 2636 2637
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2638
 *
2639 2640
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2641 2642
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2643 2644 2645
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2646
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2647
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2648 2649 2650
}
EXPORT_SYMBOL(vmalloc);

2651
/**
2652 2653 2654 2655 2656 2657 2658 2659 2660
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2661 2662
 *
 * Return: pointer to the allocated memory or %NULL on error
2663 2664 2665
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2666
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2667
				GFP_KERNEL | __GFP_ZERO);
2668 2669 2670
}
EXPORT_SYMBOL(vzalloc);

2671
/**
2672 2673
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2674
 *
2675 2676
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2677 2678
 *
 * Return: pointer to the allocated memory or %NULL on error
2679 2680 2681
 */
void *vmalloc_user(unsigned long size)
{
2682 2683 2684 2685
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2686 2687 2688
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2689
/**
2690 2691 2692
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2693
 *
2694 2695
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2696
 *
2697 2698
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2699 2700
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2701 2702 2703
 */
void *vmalloc_node(unsigned long size, int node)
{
2704
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2705
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2706 2707 2708
}
EXPORT_SYMBOL(vmalloc_node);

2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2720 2721
 *
 * Return: pointer to the allocated memory or %NULL on error
2722 2723 2724 2725
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2726
			 GFP_KERNEL | __GFP_ZERO);
2727 2728 2729
}
EXPORT_SYMBOL(vzalloc_node);

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
/**
 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
 * @size: allocation size
 * @node: numa node
 * @flags: flags for the page level allocator
 *
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
 *
 * Return: pointer to the allocated memory or %NULL on error
 */
void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
{
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    flags | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, node,
				    __builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_user_node_flags);

L
Linus Torvalds 已提交
2750
/**
2751 2752
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2753
 *
2754 2755 2756
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2757
 *
2758 2759
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2760 2761
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2762 2763 2764
 */
void *vmalloc_exec(unsigned long size)
{
2765 2766 2767
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2768 2769
}

2770
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2771
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2772
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2773
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2774
#else
2775 2776 2777 2778 2779
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2780 2781
#endif

L
Linus Torvalds 已提交
2782
/**
2783 2784
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2785
 *
2786 2787
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2788 2789
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2790 2791 2792
 */
void *vmalloc_32(unsigned long size)
{
2793
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2794
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2795 2796 2797
}
EXPORT_SYMBOL(vmalloc_32);

2798
/**
2799
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2800
 * @size:	     allocation size
2801 2802 2803
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2804 2805
 *
 * Return: pointer to the allocated memory or %NULL on error
2806 2807 2808
 */
void *vmalloc_32_user(unsigned long size)
{
2809 2810 2811 2812
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2813 2814 2815
}
EXPORT_SYMBOL(vmalloc_32_user);

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2829
		offset = offset_in_page(addr);
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2846
			void *map = kmap_atomic(p);
2847
			memcpy(buf, map + offset, length);
2848
			kunmap_atomic(map);
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2868
		offset = offset_in_page(addr);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2885
			void *map = kmap_atomic(p);
2886
			memcpy(map + offset, buf, length);
2887
			kunmap_atomic(map);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2915
 * any information, as /dev/kmem.
2916 2917 2918 2919
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2920
 */
L
Linus Torvalds 已提交
2921 2922
long vread(char *buf, char *addr, unsigned long count)
{
2923 2924
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2925
	char *vaddr, *buf_start = buf;
2926
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2927 2928 2929 2930 2931 2932
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2933 2934 2935 2936 2937
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2938
		if (!va->vm)
2939 2940 2941 2942
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2943
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2953
		n = vaddr + get_vm_area_size(vm) - addr;
2954 2955
		if (n > count)
			n = count;
2956
		if (!(vm->flags & VM_IOREMAP))
2957 2958 2959 2960 2961 2962
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2963 2964
	}
finished:
2965
	spin_unlock(&vmap_area_lock);
2966 2967 2968 2969 2970 2971 2972 2973

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2974 2975
}

2976
/**
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2994
 * any information, as /dev/kmem.
2995 2996 2997 2998
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2999
 */
L
Linus Torvalds 已提交
3000 3001
long vwrite(char *buf, char *addr, unsigned long count)
{
3002 3003
	struct vmap_area *va;
	struct vm_struct *vm;
3004 3005 3006
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
3007 3008 3009 3010

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
3011
	buflen = count;
L
Linus Torvalds 已提交
3012

3013 3014 3015 3016 3017
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

3018
		if (!va->vm)
3019 3020 3021 3022
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
3023
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
3024 3025 3026 3027 3028 3029 3030 3031
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
3032
		n = vaddr + get_vm_area_size(vm) - addr;
3033 3034
		if (n > count)
			n = count;
3035
		if (!(vm->flags & VM_IOREMAP)) {
3036 3037 3038 3039 3040 3041
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
3042 3043
	}
finished:
3044
	spin_unlock(&vmap_area_lock);
3045 3046 3047
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
3048
}
3049 3050

/**
3051 3052 3053 3054 3055
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
 * @size:		size of map area
3056
 *
3057
 * Returns:	0 for success, -Exxx on failure
3058
 *
3059 3060 3061 3062
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
3063
 *
3064
 * Similar to remap_pfn_range() (see mm/memory.c)
3065
 */
3066 3067
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
3068 3069 3070
{
	struct vm_struct *area;

3071 3072 3073
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3074 3075
		return -EINVAL;

3076
	area = find_vm_area(kaddr);
3077
	if (!area)
N
Nick Piggin 已提交
3078
		return -EINVAL;
3079

3080
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3081
		return -EINVAL;
3082

3083
	if (kaddr + size > area->addr + get_vm_area_size(area))
N
Nick Piggin 已提交
3084
		return -EINVAL;
3085 3086

	do {
3087
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3088 3089
		int ret;

3090 3091 3092 3093 3094
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3095 3096 3097
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3098

3099
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3100

N
Nick Piggin 已提交
3101
	return 0;
3102
}
3103 3104 3105
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3106 3107 3108 3109
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3110
 *
3111
 * Returns:	0 for success, -Exxx on failure
3112
 *
3113 3114 3115
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3116
 *
3117
 * Similar to remap_pfn_range() (see mm/memory.c)
3118 3119 3120 3121 3122 3123 3124 3125
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
3126 3127
EXPORT_SYMBOL(remap_vmalloc_range);

3128 3129 3130
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
3131 3132 3133
 *
 * The purpose of this function is to make sure the vmalloc area
 * mappings are identical in all page-tables in the system.
3134
 */
3135
void __weak vmalloc_sync_all(void)
3136 3137
{
}
3138 3139


3140
static int f(pte_t *pte, unsigned long addr, void *data)
3141
{
3142 3143 3144 3145 3146 3147
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3148 3149 3150 3151
	return 0;
}

/**
3152 3153 3154
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3155
 *
3156
 * Returns:	NULL on failure, vm_struct on success
3157
 *
3158 3159 3160
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3161
 *
3162 3163
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3164
 */
3165
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3166 3167 3168
{
	struct vm_struct *area;

3169 3170
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3171 3172 3173 3174 3175 3176 3177 3178
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3179
				size, f, ptes ? &ptes : NULL)) {
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3196

3197
#ifdef CONFIG_SMP
3198 3199
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3200
	return rb_entry_safe(n, struct vmap_area, rb_node);
3201 3202 3203
}

/**
3204 3205
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3206
 *
3207 3208 3209 3210
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3211
 */
3212 3213
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3214
{
3215 3216 3217 3218 3219
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3220 3221

	while (n) {
3222 3223 3224 3225 3226 3227
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3228
			n = n->rb_right;
3229 3230 3231
		} else {
			n = n->rb_left;
		}
3232 3233
	}

3234
	return va;
3235 3236 3237
}

/**
3238 3239 3240 3241 3242
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3243
 *
3244
 * Returns: determined end address within vmap_area
3245
 */
3246 3247
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3248
{
3249
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3250 3251
	unsigned long addr;

3252 3253 3254 3255 3256 3257 3258
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3259 3260
	}

3261
	return 0;
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3276 3277 3278 3279
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3280
 *
3281 3282 3283 3284 3285 3286
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3287 3288 3289
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3290
				     size_t align)
3291 3292 3293
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3294
	struct vmap_area **vas, *va;
3295 3296
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3297
	unsigned long base, start, size, end, last_end;
3298
	bool purged = false;
3299
	enum fit_type type;
3300 3301

	/* verify parameters and allocate data structures */
3302
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3315
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3316 3317 3318
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3319
			BUG_ON(start2 < end && start < end2);
3320 3321 3322 3323 3324 3325 3326 3327 3328
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3329 3330
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3331
	if (!vas || !vms)
3332
		goto err_free2;
3333 3334

	for (area = 0; area < nr_vms; area++) {
3335
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3336
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3337 3338 3339 3340
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3341
	spin_lock(&free_vmap_area_lock);
3342 3343 3344 3345 3346 3347

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3348 3349
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3350 3351 3352 3353 3354 3355

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3356 3357
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3358 3359

		/*
3360
		 * Fitting base has not been found.
3361
		 */
3362 3363
		if (va == NULL)
			goto overflow;
3364

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
		/*
		 * If required width exeeds current VA block, move
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3375
		/*
3376
		 * If this VA does not fit, move base downwards and recheck.
3377
		 */
3378
		if (base + start < va->va_start) {
3379 3380
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3392

3393 3394
		start = offsets[area];
		end = start + sizes[area];
3395
		va = pvm_find_va_enclose_addr(base + end);
3396
	}
3397

3398 3399
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3400
		int ret;
3401

3402 3403
		start = base + offsets[area];
		size = sizes[area];
3404

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3424

3425
	spin_unlock(&free_vmap_area_lock);
3426 3427

	/* insert all vm's */
3428 3429 3430 3431 3432
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3433
				 pcpu_get_vm_areas);
3434 3435
	}
	spin_unlock(&vmap_area_lock);
3436

3437 3438 3439 3440 3441 3442
	/* populate the shadow space outside of the lock */
	for (area = 0; area < nr_vms; area++) {
		/* assume success here */
		kasan_populate_vmalloc(sizes[area], vms[area]);
	}

3443 3444 3445
	kfree(vas);
	return vms;

3446
recovery:
3447 3448 3449 3450 3451 3452
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3453
	while (area--) {
3454 3455
		merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
				       &free_vmap_area_list);
3456 3457 3458 3459
		vas[area] = NULL;
	}

overflow:
3460
	spin_unlock(&free_vmap_area_lock);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3479 3480
err_free:
	for (area = 0; area < nr_vms; area++) {
3481 3482 3483
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3484
		kfree(vms[area]);
3485
	}
3486
err_free2:
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3507
#endif	/* CONFIG_SMP */
3508 3509 3510

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3511
	__acquires(&vmap_purge_lock)
3512
	__acquires(&vmap_area_lock)
3513
{
3514
	mutex_lock(&vmap_purge_lock);
3515
	spin_lock(&vmap_area_lock);
3516

3517
	return seq_list_start(&vmap_area_list, *pos);
3518 3519 3520 3521
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3522
	return seq_list_next(p, &vmap_area_list, pos);
3523 3524 3525
}

static void s_stop(struct seq_file *m, void *p)
3526
	__releases(&vmap_purge_lock)
3527
	__releases(&vmap_area_lock)
3528
{
3529
	mutex_unlock(&vmap_purge_lock);
3530
	spin_unlock(&vmap_area_lock);
3531 3532
}

E
Eric Dumazet 已提交
3533 3534
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3535
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3536 3537 3538 3539 3540
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3541 3542
		if (v->flags & VM_UNINITIALIZED)
			return;
3543 3544
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3545

E
Eric Dumazet 已提交
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3573 3574
static int s_show(struct seq_file *m, void *p)
{
3575
	struct vmap_area *va;
3576 3577
	struct vm_struct *v;

3578 3579
	va = list_entry(p, struct vmap_area, list);

3580
	/*
3581 3582
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3583
	 */
3584
	if (!va->vm) {
3585
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3586
			(void *)va->va_start, (void *)va->va_end,
3587
			va->va_end - va->va_start);
3588

3589
		return 0;
3590
	}
3591 3592

	v = va->vm;
3593

K
Kees Cook 已提交
3594
	seq_printf(m, "0x%pK-0x%pK %7ld",
3595 3596
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3597 3598
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3599

3600 3601 3602 3603
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3604
		seq_printf(m, " phys=%pa", &v->phys_addr);
3605 3606

	if (v->flags & VM_IOREMAP)
3607
		seq_puts(m, " ioremap");
3608 3609

	if (v->flags & VM_ALLOC)
3610
		seq_puts(m, " vmalloc");
3611 3612

	if (v->flags & VM_MAP)
3613
		seq_puts(m, " vmap");
3614 3615

	if (v->flags & VM_USERMAP)
3616
		seq_puts(m, " user");
3617

3618 3619 3620
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3621
	if (is_vmalloc_addr(v->pages))
3622
		seq_puts(m, " vpages");
3623

E
Eric Dumazet 已提交
3624
	show_numa_info(m, v);
3625
	seq_putc(m, '\n');
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3636 3637 3638
	return 0;
}

3639
static const struct seq_operations vmalloc_op = {
3640 3641 3642 3643 3644
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3645 3646 3647

static int __init proc_vmalloc_init(void)
{
3648
	if (IS_ENABLED(CONFIG_NUMA))
3649
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3650 3651
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3652
	else
3653
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3654 3655 3656
	return 0;
}
module_init(proc_vmalloc_init);
3657

3658
#endif