vmalloc.c 68.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
8
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
9 10
 */

N
Nick Piggin 已提交
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
15
#include <linux/sched.h>
L
Linus Torvalds 已提交
16 17 18
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
19
#include <linux/proc_fs.h>
20
#include <linux/seq_file.h>
21
#include <linux/debugobjects.h>
22
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
23 24 25 26
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
27
#include <linux/pfn.h>
28
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
29
#include <linux/atomic.h>
30
#include <linux/compiler.h>
31
#include <linux/llist.h>
32
#include <linux/bitops.h>
33

L
Linus Torvalds 已提交
34 35
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
36
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
37

38 39
#include "internal.h"

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
	struct llist_node *llnode = llist_del_all(&p->list);
	while (llnode) {
		void *p = llnode;
		llnode = llist_next(llnode);
		__vunmap(p, 1);
	}
}

N
Nick Piggin 已提交
59
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
60

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69 70 71
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
72
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
73 74 75 76 77 78 79
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
80 81
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
82 83 84 85 86 87
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

N
Nick Piggin 已提交
88
static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
89 90 91 92 93 94 95
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
96 97
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
98 99 100 101 102 103
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

N
Nick Piggin 已提交
104
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		vunmap_pud_range(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
120
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
121 122 123
{
	pte_t *pte;

N
Nick Piggin 已提交
124 125 126 127 128
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
129
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
130 131 132
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
133 134 135 136 137
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
138 139
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
140
		(*nr)++;
L
Linus Torvalds 已提交
141 142 143 144
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
145 146
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
147 148 149 150 151 152 153 154 155
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
156
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
157 158 159 160 161
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
162 163
static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
164 165 166 167 168 169 170 171 172
{
	pud_t *pud;
	unsigned long next;

	pud = pud_alloc(&init_mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
173
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
174 175 176 177 178
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
179 180 181 182 183 184
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
185 186
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
187 188 189
{
	pgd_t *pgd;
	unsigned long next;
190
	unsigned long addr = start;
N
Nick Piggin 已提交
191 192
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
193 194 195 196 197

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
N
Nick Piggin 已提交
198
		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
199
		if (err)
200
			return err;
L
Linus Torvalds 已提交
201
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
202 203

	return nr;
L
Linus Torvalds 已提交
204 205
}

206 207 208 209 210 211 212 213 214 215
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

216
int is_vmalloc_or_module_addr(const void *x)
217 218
{
	/*
219
	 * ARM, x86-64 and sparc64 put modules in a special place,
220 221 222 223 224 225 226 227 228 229 230
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

231
/*
232
 * Walk a vmap address to the struct page it maps.
233
 */
234
struct page *vmalloc_to_page(const void *vmalloc_addr)
235 236
{
	unsigned long addr = (unsigned long) vmalloc_addr;
237
	struct page *page = NULL;
238 239
	pgd_t *pgd = pgd_offset_k(addr);

240 241 242 243
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
244
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
245

246
	if (!pgd_none(*pgd)) {
N
Nick Piggin 已提交
247
		pud_t *pud = pud_offset(pgd, addr);
248
		if (!pud_none(*pud)) {
N
Nick Piggin 已提交
249
			pmd_t *pmd = pmd_offset(pud, addr);
250
			if (!pmd_none(*pmd)) {
N
Nick Piggin 已提交
251 252
				pte_t *ptep, pte;

253 254 255
				ptep = pte_offset_map(pmd, addr);
				pte = *ptep;
				if (pte_present(pte))
256
					page = pte_page(pte);
257 258 259 260
				pte_unmap(ptep);
			}
		}
	}
261
	return page;
262
}
263
EXPORT_SYMBOL(vmalloc_to_page);
264 265

/*
266
 * Map a vmalloc()-space virtual address to the physical page frame number.
267
 */
268
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
269
{
270
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
271
}
272
EXPORT_SYMBOL(vmalloc_to_pfn);
273

N
Nick Piggin 已提交
274 275 276 277 278 279 280 281

/*** Global kva allocator ***/

#define VM_LAZY_FREE	0x01
#define VM_LAZY_FREEING	0x02
#define VM_VM_AREA	0x04

static DEFINE_SPINLOCK(vmap_area_lock);
282 283
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
N
Nick Piggin 已提交
284 285 286 287 288 289 290 291
static struct rb_root vmap_area_root = RB_ROOT;

/* The vmap cache globals are protected by vmap_area_lock */
static struct rb_node *free_vmap_cache;
static unsigned long cached_hole_size;
static unsigned long cached_vstart;
static unsigned long cached_align;

292
static unsigned long vmap_area_pcpu_hole;
N
Nick Piggin 已提交
293 294

static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
295
{
N
Nick Piggin 已提交
296 297 298 299 300 301 302 303
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
304
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

static void __insert_vmap_area(struct vmap_area *va)
{
	struct rb_node **p = &vmap_area_root.rb_node;
	struct rb_node *parent = NULL;
	struct rb_node *tmp;

	while (*p) {
320
		struct vmap_area *tmp_va;
N
Nick Piggin 已提交
321 322

		parent = *p;
323 324
		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
		if (va->va_start < tmp_va->va_end)
N
Nick Piggin 已提交
325
			p = &(*p)->rb_left;
326
		else if (va->va_end > tmp_va->va_start)
N
Nick Piggin 已提交
327 328 329 330 331 332 333 334
			p = &(*p)->rb_right;
		else
			BUG();
	}

	rb_link_node(&va->rb_node, parent, p);
	rb_insert_color(&va->rb_node, &vmap_area_root);

335
	/* address-sort this list */
N
Nick Piggin 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	tmp = rb_prev(&va->rb_node);
	if (tmp) {
		struct vmap_area *prev;
		prev = rb_entry(tmp, struct vmap_area, rb_node);
		list_add_rcu(&va->list, &prev->list);
	} else
		list_add_rcu(&va->list, &vmap_area_list);
}

static void purge_vmap_area_lazy(void);

/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
	struct vmap_area *va;
	struct rb_node *n;
L
Linus Torvalds 已提交
358
	unsigned long addr;
N
Nick Piggin 已提交
359
	int purged = 0;
N
Nick Piggin 已提交
360
	struct vmap_area *first;
N
Nick Piggin 已提交
361

N
Nick Piggin 已提交
362
	BUG_ON(!size);
363
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
364
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
365 366 367 368 369 370

	va = kmalloc_node(sizeof(struct vmap_area),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

371 372 373 374 375 376
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);

N
Nick Piggin 已提交
377 378
retry:
	spin_lock(&vmap_area_lock);
N
Nick Piggin 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	/*
	 * Invalidate cache if we have more permissive parameters.
	 * cached_hole_size notes the largest hole noticed _below_
	 * the vmap_area cached in free_vmap_cache: if size fits
	 * into that hole, we want to scan from vstart to reuse
	 * the hole instead of allocating above free_vmap_cache.
	 * Note that __free_vmap_area may update free_vmap_cache
	 * without updating cached_hole_size or cached_align.
	 */
	if (!free_vmap_cache ||
			size < cached_hole_size ||
			vstart < cached_vstart ||
			align < cached_align) {
nocache:
		cached_hole_size = 0;
		free_vmap_cache = NULL;
	}
	/* record if we encounter less permissive parameters */
	cached_vstart = vstart;
	cached_align = align;

	/* find starting point for our search */
	if (free_vmap_cache) {
		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
403
		addr = ALIGN(first->va_end, align);
N
Nick Piggin 已提交
404 405
		if (addr < vstart)
			goto nocache;
406
		if (addr + size < addr)
N
Nick Piggin 已提交
407 408 409 410
			goto overflow;

	} else {
		addr = ALIGN(vstart, align);
411
		if (addr + size < addr)
N
Nick Piggin 已提交
412 413 414 415 416 417
			goto overflow;

		n = vmap_area_root.rb_node;
		first = NULL;

		while (n) {
N
Nick Piggin 已提交
418 419 420 421
			struct vmap_area *tmp;
			tmp = rb_entry(n, struct vmap_area, rb_node);
			if (tmp->va_end >= addr) {
				first = tmp;
N
Nick Piggin 已提交
422 423 424 425
				if (tmp->va_start <= addr)
					break;
				n = n->rb_left;
			} else
N
Nick Piggin 已提交
426
				n = n->rb_right;
N
Nick Piggin 已提交
427
		}
N
Nick Piggin 已提交
428 429 430 431

		if (!first)
			goto found;
	}
N
Nick Piggin 已提交
432 433

	/* from the starting point, walk areas until a suitable hole is found */
434
	while (addr + size > first->va_start && addr + size <= vend) {
N
Nick Piggin 已提交
435 436
		if (addr + cached_hole_size < first->va_start)
			cached_hole_size = first->va_start - addr;
437
		addr = ALIGN(first->va_end, align);
438
		if (addr + size < addr)
N
Nick Piggin 已提交
439 440
			goto overflow;

441
		if (list_is_last(&first->list, &vmap_area_list))
N
Nick Piggin 已提交
442
			goto found;
443

444
		first = list_next_entry(first, list);
N
Nick Piggin 已提交
445 446
	}

N
Nick Piggin 已提交
447 448 449
found:
	if (addr + size > vend)
		goto overflow;
N
Nick Piggin 已提交
450 451 452 453 454

	va->va_start = addr;
	va->va_end = addr + size;
	va->flags = 0;
	__insert_vmap_area(va);
N
Nick Piggin 已提交
455
	free_vmap_cache = &va->rb_node;
N
Nick Piggin 已提交
456 457
	spin_unlock(&vmap_area_lock);

N
Nick Piggin 已提交
458 459 460 461
	BUG_ON(va->va_start & (align-1));
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
462
	return va;
N
Nick Piggin 已提交
463 464 465 466 467 468 469 470 471

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
	if (printk_ratelimit())
472
		pr_warn("vmap allocation for size %lu failed: "
N
Nick Piggin 已提交
473 474 475
			"use vmalloc=<size> to increase size.\n", size);
	kfree(va);
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
476 477 478 479 480
}

static void __free_vmap_area(struct vmap_area *va)
{
	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
N
Nick Piggin 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

	if (free_vmap_cache) {
		if (va->va_end < cached_vstart) {
			free_vmap_cache = NULL;
		} else {
			struct vmap_area *cache;
			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
			if (va->va_start <= cache->va_start) {
				free_vmap_cache = rb_prev(&va->rb_node);
				/*
				 * We don't try to update cached_hole_size or
				 * cached_align, but it won't go very wrong.
				 */
			}
		}
	}
N
Nick Piggin 已提交
497 498 499 500
	rb_erase(&va->rb_node, &vmap_area_root);
	RB_CLEAR_NODE(&va->rb_node);
	list_del_rcu(&va->list);

501 502 503 504 505 506 507 508 509
	/*
	 * Track the highest possible candidate for pcpu area
	 * allocation.  Areas outside of vmalloc area can be returned
	 * here too, consider only end addresses which fall inside
	 * vmalloc area proper.
	 */
	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);

510
	kfree_rcu(va, rcu_head);
N
Nick Piggin 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
static void vmap_debug_free_range(unsigned long start, unsigned long end)
{
	/*
	 * Unmap page tables and force a TLB flush immediately if
	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
	 * bugs similarly to those in linear kernel virtual address
	 * space after a page has been freed.
	 *
	 * All the lazy freeing logic is still retained, in order to
	 * minimise intrusiveness of this debugging feature.
	 *
	 * This is going to be *slow* (linear kernel virtual address
	 * debugging doesn't do a broadcast TLB flush so it is a lot
	 * faster).
	 */
#ifdef CONFIG_DEBUG_PAGEALLOC
	vunmap_page_range(start, end);
	flush_tlb_kernel_range(start, end);
#endif
}

N
Nick Piggin 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);

579 580 581
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

582 583 584 585 586 587 588 589 590
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
}

N
Nick Piggin 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603
/*
 * Purges all lazily-freed vmap areas.
 *
 * If sync is 0 then don't purge if there is already a purge in progress.
 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 * their own TLB flushing).
 * Returns with *start = min(*start, lowest purged address)
 *              *end = max(*end, highest purged address)
 */
static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
					int sync, int force_flush)
{
604
	static DEFINE_SPINLOCK(purge_lock);
N
Nick Piggin 已提交
605 606
	LIST_HEAD(valist);
	struct vmap_area *va;
607
	struct vmap_area *n_va;
N
Nick Piggin 已提交
608 609 610 611 612 613 614 615
	int nr = 0;

	/*
	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
	 * should not expect such behaviour. This just simplifies locking for
	 * the case that isn't actually used at the moment anyway.
	 */
	if (!sync && !force_flush) {
616
		if (!spin_trylock(&purge_lock))
N
Nick Piggin 已提交
617 618
			return;
	} else
619
		spin_lock(&purge_lock);
N
Nick Piggin 已提交
620

621 622 623
	if (sync)
		purge_fragmented_blocks_allcpus();

N
Nick Piggin 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	rcu_read_lock();
	list_for_each_entry_rcu(va, &vmap_area_list, list) {
		if (va->flags & VM_LAZY_FREE) {
			if (va->va_start < *start)
				*start = va->va_start;
			if (va->va_end > *end)
				*end = va->va_end;
			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
			list_add_tail(&va->purge_list, &valist);
			va->flags |= VM_LAZY_FREEING;
			va->flags &= ~VM_LAZY_FREE;
		}
	}
	rcu_read_unlock();

639
	if (nr)
N
Nick Piggin 已提交
640 641 642 643 644 645 646
		atomic_sub(nr, &vmap_lazy_nr);

	if (nr || force_flush)
		flush_tlb_kernel_range(*start, *end);

	if (nr) {
		spin_lock(&vmap_area_lock);
647
		list_for_each_entry_safe(va, n_va, &valist, purge_list)
N
Nick Piggin 已提交
648 649 650
			__free_vmap_area(va);
		spin_unlock(&vmap_area_lock);
	}
651
	spin_unlock(&purge_lock);
N
Nick Piggin 已提交
652 653
}

N
Nick Piggin 已提交
654 655 656 657 658 659 660 661 662 663 664
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
	unsigned long start = ULONG_MAX, end = 0;

	__purge_vmap_area_lazy(&start, &end, 0, 0);
}

N
Nick Piggin 已提交
665 666 667 668 669 670 671
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
	unsigned long start = ULONG_MAX, end = 0;

N
Nick Piggin 已提交
672
	__purge_vmap_area_lazy(&start, &end, 1, 0);
N
Nick Piggin 已提交
673 674 675
}

/*
676 677 678
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
679
 */
680
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
681 682 683 684
{
	va->flags |= VM_LAZY_FREE;
	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
N
Nick Piggin 已提交
685
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
686 687
}

688 689 690 691 692 693 694 695 696 697
/*
 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 * called for the correct range previously.
 */
static void free_unmap_vmap_area_noflush(struct vmap_area *va)
{
	unmap_vmap_area(va);
	free_vmap_area_noflush(va);
}

698 699 700 701 702 703 704 705 706
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
	free_unmap_vmap_area_noflush(va);
}

N
Nick Piggin 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

static void free_unmap_vmap_area_addr(unsigned long addr)
{
	struct vmap_area *va;

	va = find_vmap_area(addr);
	BUG_ON(!va);
	free_unmap_vmap_area(va);
}


/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
751 752 753 754
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
755 756 757

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

758 759
static bool vmap_initialized __read_mostly = false;

N
Nick Piggin 已提交
760 761 762 763 764 765 766 767 768
struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
769
	unsigned long dirty_min, dirty_max; /*< dirty range */
770 771
	struct list_head free_list;
	struct rcu_head rcu_head;
772
	struct list_head purge;
N
Nick Piggin 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
818 819 820 821 822 823
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
824
	void *vaddr;
N
Nick Piggin 已提交
825 826 827 828 829 830 831 832 833 834 835

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
836
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
837
		kfree(vb);
J
Julia Lawall 已提交
838
		return ERR_CAST(va);
N
Nick Piggin 已提交
839 840 841 842 843 844 845 846 847
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

848
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
849 850
	spin_lock_init(&vb->lock);
	vb->va = va;
851 852 853
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
854
	vb->dirty = 0;
855 856
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
857 858 859 860 861 862 863 864 865 866 867
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
868
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
869
	spin_unlock(&vbq->lock);
870
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
871

872
	return vaddr;
N
Nick Piggin 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

886
	free_vmap_area_noflush(vb->va);
887
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
888 889
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
907 908
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
933 934 935 936
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
937
	void *vaddr = NULL;
N
Nick Piggin 已提交
938 939
	unsigned int order;

940
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
941
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
942 943 944 945 946 947 948 949
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
950 951 952 953 954
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
955
		unsigned long pages_off;
N
Nick Piggin 已提交
956 957

		spin_lock(&vb->lock);
958 959 960 961
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
962

963 964
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
965 966 967 968 969 970
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
971

972 973
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
974
	}
975

976
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
977 978
	rcu_read_unlock();

979 980 981
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
982

983
	return vaddr;
N
Nick Piggin 已提交
984 985 986 987 988 989 990 991 992
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

993
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
994
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
995 996 997

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
998 999 1000
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1001
	offset >>= PAGE_SHIFT;
N
Nick Piggin 已提交
1002 1003 1004 1005 1006 1007 1008

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1009 1010
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
1011
	spin_lock(&vb->lock);
1012 1013 1014 1015

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1016

N
Nick Piggin 已提交
1017 1018
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1019
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int cpu;
	int flush = 0;

1045 1046 1047
	if (unlikely(!vmap_initialized))
		return;

N
Nick Piggin 已提交
1048 1049 1050 1051 1052 1053 1054
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1055 1056
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1057
				unsigned long s, e;
1058

1059 1060
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1061

1062 1063
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1064

1065
				flush = 1;
N
Nick Piggin 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

	__purge_vmap_area_lazy(&start, &end, 1, flush);
}
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
	unsigned long size = count << PAGE_SHIFT;
	unsigned long addr = (unsigned long)mem;

	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
	BUG_ON(addr & (PAGE_SIZE-1));

	debug_check_no_locks_freed(mem, size);
1092
	vmap_debug_free_range(addr, addr+size);
N
Nick Piggin 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

	if (likely(count <= VMAP_MAX_ALLOC))
		vb_free(mem, size);
	else
		free_unmap_vmap_area_addr(addr);
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1107
 *
1108 1109 1110 1111 1112 1113
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1114
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
	unsigned long size = count << PAGE_SHIFT;
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1145
static struct vm_struct *vmlist __initdata;
N
Nicolas Pitre 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1172 1173 1174
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1175
 * @align: requested alignment
1176 1177 1178 1179 1180 1181 1182 1183
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1184
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1185 1186
{
	static size_t vm_init_off __initdata;
1187 1188 1189 1190
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1191

1192
	vm->addr = (void *)addr;
1193

N
Nicolas Pitre 已提交
1194
	vm_area_add_early(vm);
1195 1196
}

N
Nick Piggin 已提交
1197 1198
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1199 1200
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1201 1202 1203 1204
	int i;

	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1205
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1206 1207 1208 1209

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1210 1211 1212
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1213
	}
1214

I
Ivan Kokshaysky 已提交
1215 1216
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1217
		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1218
		va->flags = VM_VM_AREA;
I
Ivan Kokshaysky 已提交
1219 1220
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1221
		va->vm = tmp;
I
Ivan Kokshaysky 已提交
1222 1223
		__insert_vmap_area(va);
	}
1224 1225 1226

	vmap_area_pcpu_hole = VMALLOC_END;

1227
	vmap_initialized = true;
N
Nick Piggin 已提交
1228 1229
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
1273
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1274 1275 1276 1277 1278 1279 1280 1281 1282

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1283 1284 1285
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
1286 1287

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
1288 1289 1290
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
1291
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
1292

1293
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
1294 1295
{
	unsigned long addr = (unsigned long)area->addr;
1296
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
1297 1298
	int err;

1299
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
1300

1301
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
1302 1303 1304
}
EXPORT_SYMBOL_GPL(map_vm_area);

1305
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1306
			      unsigned long flags, const void *caller)
1307
{
1308
	spin_lock(&vmap_area_lock);
1309 1310 1311 1312
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
1313
	va->vm = vm;
1314
	va->flags |= VM_VM_AREA;
1315
	spin_unlock(&vmap_area_lock);
1316
}
1317

1318
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1319
{
1320
	/*
1321
	 * Before removing VM_UNINITIALIZED,
1322 1323 1324 1325
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
1326
	vm->flags &= ~VM_UNINITIALIZED;
1327 1328
}

N
Nick Piggin 已提交
1329
static struct vm_struct *__get_vm_area_node(unsigned long size,
1330
		unsigned long align, unsigned long flags, unsigned long start,
1331
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
1332
{
1333
	struct vmap_area *va;
N
Nick Piggin 已提交
1334
	struct vm_struct *area;
L
Linus Torvalds 已提交
1335

1336
	BUG_ON(in_interrupt());
1337
	if (flags & VM_IOREMAP)
1338 1339
		align = 1ul << clamp_t(int, fls_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
N
Nick Piggin 已提交
1340

L
Linus Torvalds 已提交
1341
	size = PAGE_ALIGN(size);
1342 1343
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
1344

1345
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
1346 1347 1348
	if (unlikely(!area))
		return NULL;

1349 1350
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
1351

N
Nick Piggin 已提交
1352 1353 1354 1355
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
1356 1357
	}

1358
	setup_vmalloc_vm(area, va, flags, caller);
1359

L
Linus Torvalds 已提交
1360 1361 1362
	return area;
}

C
Christoph Lameter 已提交
1363 1364 1365
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
1366 1367
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
1368
}
1369
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
1370

1371 1372
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
1373
				       const void *caller)
1374
{
D
David Rientjes 已提交
1375 1376
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
1377 1378
}

L
Linus Torvalds 已提交
1379
/**
S
Simon Arlott 已提交
1380
 *	get_vm_area  -  reserve a contiguous kernel virtual area
L
Linus Torvalds 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389
 *	@size:		size of the area
 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
 *
 *	Search an area of @size in the kernel virtual mapping area,
 *	and reserved it for out purposes.  Returns the area descriptor
 *	on success or %NULL on failure.
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
1390
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
1391 1392
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
1393 1394 1395
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1396
				const void *caller)
1397
{
1398
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
1399
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
1400 1401
}

1402 1403 1404 1405 1406 1407 1408 1409 1410
/**
 *	find_vm_area  -  find a continuous kernel virtual area
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and return it.
 *	It is up to the caller to do all required locking to keep the returned
 *	pointer valid.
 */
struct vm_struct *find_vm_area(const void *addr)
1411
{
N
Nick Piggin 已提交
1412
	struct vmap_area *va;
1413

N
Nick Piggin 已提交
1414 1415
	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA)
1416
		return va->vm;
L
Linus Torvalds 已提交
1417 1418 1419 1420

	return NULL;
}

1421
/**
S
Simon Arlott 已提交
1422
 *	remove_vm_area  -  find and remove a continuous kernel virtual area
1423 1424 1425 1426 1427 1428
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and remove it.
 *	This function returns the found VM area, but using it is NOT safe
 *	on SMP machines, except for its size or flags.
 */
1429
struct vm_struct *remove_vm_area(const void *addr)
1430
{
N
Nick Piggin 已提交
1431 1432 1433 1434
	struct vmap_area *va;

	va = find_vmap_area((unsigned long)addr);
	if (va && va->flags & VM_VM_AREA) {
1435
		struct vm_struct *vm = va->vm;
1436

1437 1438 1439 1440 1441
		spin_lock(&vmap_area_lock);
		va->vm = NULL;
		va->flags &= ~VM_VM_AREA;
		spin_unlock(&vmap_area_lock);

1442
		vmap_debug_free_range(va->va_start, va->va_end);
1443
		kasan_free_shadow(vm);
1444 1445
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
1446 1447 1448
		return vm;
	}
	return NULL;
1449 1450
}

1451
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
1452 1453 1454 1455 1456 1457
{
	struct vm_struct *area;

	if (!addr)
		return;

1458
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
1459
			addr))
L
Linus Torvalds 已提交
1460 1461 1462 1463
		return;

	area = remove_vm_area(addr);
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
1464
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
1465 1466 1467 1468
				addr);
		return;
	}

1469 1470
	debug_check_no_locks_freed(addr, get_vm_area_size(area));
	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1471

L
Linus Torvalds 已提交
1472 1473 1474 1475
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
1476 1477 1478
			struct page *page = area->pages[i];

			BUG_ON(!page);
1479
			__free_kmem_pages(page, 0);
L
Linus Torvalds 已提交
1480 1481
		}

D
David Rientjes 已提交
1482
		kvfree(area->pages);
L
Linus Torvalds 已提交
1483 1484 1485 1486 1487
	}

	kfree(area);
	return;
}
1488
 
L
Linus Torvalds 已提交
1489 1490 1491 1492
/**
 *	vfree  -  release memory allocated by vmalloc()
 *	@addr:		memory base address
 *
S
Simon Arlott 已提交
1493
 *	Free the virtually continuous memory area starting at @addr, as
1494 1495
 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 *	NULL, no operation is performed.
L
Linus Torvalds 已提交
1496
 *
1497 1498 1499
 *	Must not be called in NMI context (strictly speaking, only if we don't
 *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 *	conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
1500 1501
 *
 *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
1502
 */
1503
void vfree(const void *addr)
L
Linus Torvalds 已提交
1504
{
1505
	BUG_ON(in_nmi());
1506 1507 1508

	kmemleak_free(addr);

1509 1510 1511
	if (!addr)
		return;
	if (unlikely(in_interrupt())) {
1512
		struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1513 1514
		if (llist_add((struct llist_node *)addr, &p->list))
			schedule_work(&p->wq);
1515 1516
	} else
		__vunmap(addr, 1);
L
Linus Torvalds 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
}
EXPORT_SYMBOL(vfree);

/**
 *	vunmap  -  release virtual mapping obtained by vmap()
 *	@addr:		memory base address
 *
 *	Free the virtually contiguous memory area starting at @addr,
 *	which was created from the page array passed to vmap().
 *
1527
 *	Must not be called in interrupt context.
L
Linus Torvalds 已提交
1528
 */
1529
void vunmap(const void *addr)
L
Linus Torvalds 已提交
1530 1531
{
	BUG_ON(in_interrupt());
1532
	might_sleep();
1533 1534
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
}
EXPORT_SYMBOL(vunmap);

/**
 *	vmap  -  map an array of pages into virtually contiguous space
 *	@pages:		array of page pointers
 *	@count:		number of pages to map
 *	@flags:		vm_area->flags
 *	@prot:		page protection for the mapping
 *
 *	Maps @count pages from @pages into contiguous kernel virtual
 *	space.
 */
void *vmap(struct page **pages, unsigned int count,
		unsigned long flags, pgprot_t prot)
{
	struct vm_struct *area;

1553 1554
	might_sleep();

1555
	if (count > totalram_pages)
L
Linus Torvalds 已提交
1556 1557
		return NULL;

1558 1559
	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
					__builtin_return_address(0));
L
Linus Torvalds 已提交
1560 1561
	if (!area)
		return NULL;
1562

1563
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
1564 1565 1566 1567 1568 1569 1570 1571
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

1572 1573
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
1574
			    int node, const void *caller);
A
Adrian Bunk 已提交
1575
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1576
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
1577
{
1578
	const int order = 0;
L
Linus Torvalds 已提交
1579 1580
	struct page **pages;
	unsigned int nr_pages, array_size, i;
1581 1582
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
L
Linus Torvalds 已提交
1583

1584
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
1585 1586 1587 1588
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
1589
	if (array_size > PAGE_SIZE) {
1590
		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1591
				PAGE_KERNEL, node, area->caller);
1592
	} else {
1593
		pages = kmalloc_node(array_size, nested_gfp, node);
1594
	}
L
Linus Torvalds 已提交
1595 1596 1597 1598 1599 1600 1601 1602
	area->pages = pages;
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
1603 1604
		struct page *page;

J
Jianguo Wu 已提交
1605
		if (node == NUMA_NO_NODE)
1606
			page = alloc_kmem_pages(alloc_mask, order);
C
Christoph Lameter 已提交
1607
		else
1608
			page = alloc_kmem_pages_node(node, alloc_mask, order);
1609 1610

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
1611 1612 1613 1614
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
			goto fail;
		}
1615
		area->pages[i] = page;
1616
		if (gfpflags_allow_blocking(gfp_mask))
1617
			cond_resched();
L
Linus Torvalds 已提交
1618 1619
	}

1620
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
1621 1622 1623 1624
		goto fail;
	return area->addr;

fail:
J
Joe Perches 已提交
1625 1626
	warn_alloc_failed(gfp_mask, order,
			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1627
			  (area->nr_pages*PAGE_SIZE), area->size);
L
Linus Torvalds 已提交
1628 1629 1630 1631 1632
	vfree(area->addr);
	return NULL;
}

/**
1633
 *	__vmalloc_node_range  -  allocate virtually contiguous memory
L
Linus Torvalds 已提交
1634
 *	@size:		allocation size
1635
 *	@align:		desired alignment
1636 1637
 *	@start:		vm area range start
 *	@end:		vm area range end
L
Linus Torvalds 已提交
1638 1639
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
1640
 *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
D
David Rientjes 已提交
1641
 *	@node:		node to use for allocation or NUMA_NO_NODE
1642
 *	@caller:	caller's return address
L
Linus Torvalds 已提交
1643 1644 1645 1646 1647
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
 */
1648 1649
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
1650 1651
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
1652 1653
{
	struct vm_struct *area;
1654 1655
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
1656 1657

	size = PAGE_ALIGN(size);
1658
	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1659
		goto fail;
L
Linus Torvalds 已提交
1660

1661 1662
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
1663
	if (!area)
1664
		goto fail;
L
Linus Torvalds 已提交
1665

1666
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1667
	if (!addr)
1668
		return NULL;
1669

1670
	/*
1671 1672
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
1673
	 * Now, it is fully initialized, so remove this flag here.
1674
	 */
1675
	clear_vm_uninitialized_flag(area);
1676

1677
	/*
1678 1679 1680
	 * A ref_count = 2 is needed because vm_struct allocated in
	 * __get_vm_area_node() contains a reference to the virtual address of
	 * the vmalloc'ed block.
1681
	 */
1682
	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1683 1684

	return addr;
1685 1686 1687 1688 1689 1690

fail:
	warn_alloc_failed(gfp_mask, 0,
			  "vmalloc: allocation failure: %lu bytes\n",
			  real_size);
	return NULL;
L
Linus Torvalds 已提交
1691 1692
}

1693 1694 1695 1696 1697 1698
/**
 *	__vmalloc_node  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	@align:		desired alignment
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
D
David Rientjes 已提交
1699
 *	@node:		node to use for allocation or NUMA_NO_NODE
1700 1701 1702 1703 1704 1705 1706 1707
 *	@caller:	caller's return address
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
 */
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
1708
			    int node, const void *caller)
1709 1710
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1711
				gfp_mask, prot, 0, node, caller);
1712 1713
}

C
Christoph Lameter 已提交
1714 1715
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
1716
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1717
				__builtin_return_address(0));
C
Christoph Lameter 已提交
1718
}
L
Linus Torvalds 已提交
1719 1720
EXPORT_SYMBOL(__vmalloc);

1721 1722 1723 1724 1725 1726 1727
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}

L
Linus Torvalds 已提交
1728 1729 1730 1731 1732 1733
/**
 *	vmalloc  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1734
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1735 1736 1737 1738
 *	use __vmalloc() instead.
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
1739 1740
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
				    GFP_KERNEL | __GFP_HIGHMEM);
L
Linus Torvalds 已提交
1741 1742 1743
}
EXPORT_SYMBOL(vmalloc);

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
/**
 *	vzalloc - allocate virtually contiguous memory with zero fill
 *	@size:	allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *	The memory allocated is set to zero.
 *
 *	For tight control over page level allocator and protection flags
 *	use __vmalloc() instead.
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
1756
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1757 1758 1759 1760
				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
}
EXPORT_SYMBOL(vzalloc);

1761
/**
1762 1763
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
1764
 *
1765 1766
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
1767 1768 1769 1770 1771 1772
 */
void *vmalloc_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1773 1774
	ret = __vmalloc_node(size, SHMLBA,
			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
D
David Rientjes 已提交
1775 1776
			     PAGE_KERNEL, NUMA_NO_NODE,
			     __builtin_return_address(0));
1777
	if (ret) {
N
Nick Piggin 已提交
1778
		area = find_vm_area(ret);
1779 1780
		area->flags |= VM_USERMAP;
	}
1781 1782 1783 1784
	return ret;
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
1785 1786 1787
/**
 *	vmalloc_node  -  allocate memory on a specific node
 *	@size:		allocation size
1788
 *	@node:		numa node
C
Christoph Lameter 已提交
1789 1790 1791 1792
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
1793
 *	For tight control over page level allocator and protection flags
C
Christoph Lameter 已提交
1794 1795 1796 1797
 *	use __vmalloc() instead.
 */
void *vmalloc_node(unsigned long size, int node)
{
1798
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1799
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
1800 1801 1802
}
EXPORT_SYMBOL(vmalloc_node);

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
}
EXPORT_SYMBOL(vzalloc_node);

1822 1823 1824 1825
#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif

L
Linus Torvalds 已提交
1826 1827 1828 1829 1830 1831 1832 1833
/**
 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 *	@size:		allocation size
 *
 *	Kernel-internal function to allocate enough pages to cover @size
 *	the page level allocator and map them into contiguous and
 *	executable kernel virtual space.
 *
1834
 *	For tight control over page level allocator and protection flags
L
Linus Torvalds 已提交
1835 1836 1837 1838 1839
 *	use __vmalloc() instead.
 */

void *vmalloc_exec(unsigned long size)
{
1840
	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
D
David Rientjes 已提交
1841
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
1842 1843
}

1844
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1845
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1846
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1847
#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1848 1849 1850 1851
#else
#define GFP_VMALLOC32 GFP_KERNEL
#endif

L
Linus Torvalds 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860
/**
 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 *	@size:		allocation size
 *
 *	Allocate enough 32bit PA addressable pages to cover @size from the
 *	page level allocator and map them into contiguous kernel virtual space.
 */
void *vmalloc_32(unsigned long size)
{
1861
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
1862
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
1863 1864 1865
}
EXPORT_SYMBOL(vmalloc_32);

1866
/**
1867
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1868
 *	@size:		allocation size
1869 1870 1871
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
1872 1873 1874 1875 1876 1877
 */
void *vmalloc_32_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

1878
	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
D
David Rientjes 已提交
1879
			     NUMA_NO_NODE, __builtin_return_address(0));
1880
	if (ret) {
N
Nick Piggin 已提交
1881
		area = find_vm_area(ret);
1882 1883
		area->flags |= VM_USERMAP;
	}
1884 1885 1886 1887
	return ret;
}
EXPORT_SYMBOL(vmalloc_32_user);

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

1901
		offset = offset_in_page(addr);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
1918
			void *map = kmap_atomic(p);
1919
			memcpy(buf, map + offset, length);
1920
			kunmap_atomic(map);
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

1940
		offset = offset_in_page(addr);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
1957
			void *map = kmap_atomic(p);
1958
			memcpy(map + offset, buf, length);
1959
			kunmap_atomic(map);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
 *	vread() -  read vmalloc area in a safe way.
 *	@buf:		buffer for reading data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be increased.
 *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
 *	includes any intersect with alive vmalloc area.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from that area to a given buffer. If the given memory range
 *	of [addr...addr+count) includes some valid address, data is copied to
 *	proper area of @buf. If there are memory holes, they'll be zero-filled.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
1986
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
1987 1988 1989 1990 1991 1992 1993 1994
 *
 *	Note: In usual ops, vread() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 *
 */

L
Linus Torvalds 已提交
1995 1996
long vread(char *buf, char *addr, unsigned long count)
{
1997 1998
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
1999
	char *vaddr, *buf_start = buf;
2000
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2001 2002 2003 2004 2005 2006
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2017
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2027
		n = vaddr + get_vm_area_size(vm) - addr;
2028 2029
		if (n > count)
			n = count;
2030
		if (!(vm->flags & VM_IOREMAP))
2031 2032 2033 2034 2035 2036
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2037 2038
	}
finished:
2039
	spin_unlock(&vmap_area_lock);
2040 2041 2042 2043 2044 2045 2046 2047

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2048 2049
}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/**
 *	vwrite() -  write vmalloc area in a safe way.
 *	@buf:		buffer for source data
 *	@addr:		vm address.
 *	@count:		number of bytes to be read.
 *
 *	Returns # of bytes which addr and buf should be incresed.
 *	(same number to @count).
 *	If [addr...addr+count) doesn't includes any intersect with valid
 *	vmalloc area, returns 0.
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	copy data from a buffer to the given addr. If specified range of
 *	[addr...addr+count) includes some valid address, data is copied from
 *	proper area of @buf. If there are memory holes, no copy to hole.
 *	IOREMAP area is treated as memory hole and no copy is done.
 *
 *	If [addr...addr+count) doesn't includes any intersects with alive
2068
 *	vm_struct area, returns 0. @buf should be kernel's buffer.
2069 2070 2071 2072 2073 2074 2075
 *
 *	Note: In usual ops, vwrite() is never necessary because the caller
 *	should know vmalloc() area is valid and can use memcpy().
 *	This is for routines which have to access vmalloc area without
 *	any informaion, as /dev/kmem.
 */

L
Linus Torvalds 已提交
2076 2077
long vwrite(char *buf, char *addr, unsigned long count)
{
2078 2079
	struct vmap_area *va;
	struct vm_struct *vm;
2080 2081 2082
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2083 2084 2085 2086

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2087
	buflen = count;
L
Linus Torvalds 已提交
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

		if (!(va->flags & VM_VM_AREA))
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2099
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105 2106 2107
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2108
		n = vaddr + get_vm_area_size(vm) - addr;
2109 2110
		if (n > count)
			n = count;
2111
		if (!(vm->flags & VM_IOREMAP)) {
2112 2113 2114 2115 2116 2117
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2118 2119
	}
finished:
2120
	spin_unlock(&vmap_area_lock);
2121 2122 2123
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2124
}
2125 2126

/**
2127 2128 2129 2130 2131
 *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
 *	@vma:		vma to cover
 *	@uaddr:		target user address to start at
 *	@kaddr:		virtual address of vmalloc kernel memory
 *	@size:		size of map area
2132 2133
 *
 *	Returns:	0 for success, -Exxx on failure
2134
 *
2135 2136 2137 2138
 *	This function checks that @kaddr is a valid vmalloc'ed area,
 *	and that it is big enough to cover the range starting at
 *	@uaddr in @vma. Will return failure if that criteria isn't
 *	met.
2139
 *
2140
 *	Similar to remap_pfn_range() (see mm/memory.c)
2141
 */
2142 2143
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
2144 2145 2146
{
	struct vm_struct *area;

2147 2148 2149
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2150 2151
		return -EINVAL;

2152
	area = find_vm_area(kaddr);
2153
	if (!area)
N
Nick Piggin 已提交
2154
		return -EINVAL;
2155 2156

	if (!(area->flags & VM_USERMAP))
N
Nick Piggin 已提交
2157
		return -EINVAL;
2158

2159
	if (kaddr + size > area->addr + area->size)
N
Nick Piggin 已提交
2160
		return -EINVAL;
2161 2162

	do {
2163
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
2164 2165
		int ret;

2166 2167 2168 2169 2170
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
2171 2172 2173
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
2174

2175
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2176

N
Nick Piggin 已提交
2177
	return 0;
2178
}
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
 *	remap_vmalloc_range  -  map vmalloc pages to userspace
 *	@vma:		vma to cover (map full range of vma)
 *	@addr:		vmalloc memory
 *	@pgoff:		number of pages into addr before first page to map
 *
 *	Returns:	0 for success, -Exxx on failure
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	that it is big enough to cover the vma. Will return failure if
 *	that criteria isn't met.
 *
 *	Similar to remap_pfn_range() (see mm/memory.c)
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
2202 2203
EXPORT_SYMBOL(remap_vmalloc_range);

2204 2205 2206 2207
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
 */
2208
void __weak vmalloc_sync_all(void)
2209 2210
{
}
2211 2212


2213
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2214
{
2215 2216 2217 2218 2219 2220
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
2221 2222 2223 2224 2225 2226
	return 0;
}

/**
 *	alloc_vm_area - allocate a range of kernel address space
 *	@size:		size of the area
2227
 *	@ptes:		returns the PTEs for the address space
2228 2229
 *
 *	Returns:	NULL on failure, vm_struct on success
2230 2231 2232
 *
 *	This function reserves a range of kernel address space, and
 *	allocates pagetables to map that range.  No actual mappings
2233 2234 2235 2236
 *	are created.
 *
 *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 *	allocated for the VM area are returned.
2237
 */
2238
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2239 2240 2241
{
	struct vm_struct *area;

2242 2243
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
2244 2245 2246 2247 2248 2249 2250 2251
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2252
				size, f, ptes ? &ptes : NULL)) {
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
2269

2270
#ifdef CONFIG_SMP
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static struct vmap_area *node_to_va(struct rb_node *n)
{
	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
}

/**
 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
 * @end: target address
 * @pnext: out arg for the next vmap_area
 * @pprev: out arg for the previous vmap_area
 *
 * Returns: %true if either or both of next and prev are found,
 *	    %false if no vmap_area exists
 *
 * Find vmap_areas end addresses of which enclose @end.  ie. if not
 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
 */
static bool pvm_find_next_prev(unsigned long end,
			       struct vmap_area **pnext,
			       struct vmap_area **pprev)
{
	struct rb_node *n = vmap_area_root.rb_node;
	struct vmap_area *va = NULL;

	while (n) {
		va = rb_entry(n, struct vmap_area, rb_node);
		if (end < va->va_end)
			n = n->rb_left;
		else if (end > va->va_end)
			n = n->rb_right;
		else
			break;
	}

	if (!va)
		return false;

	if (va->va_end > end) {
		*pnext = va;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	} else {
		*pprev = va;
		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
	}
	return true;
}

/**
 * pvm_determine_end - find the highest aligned address between two vmap_areas
 * @pnext: in/out arg for the next vmap_area
 * @pprev: in/out arg for the previous vmap_area
 * @align: alignment
 *
 * Returns: determined end address
 *
 * Find the highest aligned address between *@pnext and *@pprev below
 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
 * down address is between the end addresses of the two vmap_areas.
 *
 * Please note that the address returned by this function may fall
 * inside *@pnext vmap_area.  The caller is responsible for checking
 * that.
 */
static unsigned long pvm_determine_end(struct vmap_area **pnext,
				       struct vmap_area **pprev,
				       unsigned long align)
{
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	unsigned long addr;

	if (*pnext)
		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
	else
		addr = vmalloc_end;

	while (*pprev && (*pprev)->va_end > addr) {
		*pnext = *pprev;
		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
	}

	return addr;
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
2366 2367 2368 2369
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
 *
 * Despite its complicated look, this allocator is rather simple.  It
 * does everything top-down and scans areas from the end looking for
 * matching slot.  While scanning, if any of the areas overlaps with
 * existing vmap_area, the base address is pulled down to fit the
 * area.  Scanning is repeated till all the areas fit and then all
 * necessary data structres are inserted and the result is returned.
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
2380
				     size_t align)
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
	struct vmap_area **vas, *prev, *next;
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
	unsigned long base, start, end, last_end;
	bool purged = false;

	/* verify parameters and allocate data structures */
2391
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

		for (area2 = 0; area2 < nr_vms; area2++) {
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

			if (area2 == area)
				continue;

			BUG_ON(start2 >= start && start2 < end);
			BUG_ON(end2 <= end && end2 > start);
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

2422 2423
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2424
	if (!vas || !vms)
2425
		goto err_free2;
2426 2427

	for (area = 0; area < nr_vms; area++) {
2428 2429
		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
		base = vmalloc_end - last_end;
		goto found;
	}
	base = pvm_determine_end(&next, &prev, align) - end;

	while (true) {
		BUG_ON(next && next->va_end <= base + end);
		BUG_ON(prev && prev->va_end > base + end);

		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
		if (base + last_end < vmalloc_start + last_end) {
			spin_unlock(&vmap_area_lock);
			if (!purged) {
				purge_vmap_area_lazy();
				purged = true;
				goto retry;
			}
			goto err_free;
		}

		/*
		 * If next overlaps, move base downwards so that it's
		 * right below next and then recheck.
		 */
		if (next && next->va_start < base + end) {
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * If prev overlaps, shift down next and prev and move
		 * base so that it's right below new next and then
		 * recheck.
		 */
		if (prev && prev->va_end > base + start)  {
			next = prev;
			prev = node_to_va(rb_prev(&next->rb_node));
			base = pvm_determine_end(&next, &prev, align) - end;
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
		start = offsets[area];
		end = start + sizes[area];
		pvm_find_next_prev(base + end, &next, &prev);
	}
found:
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
		struct vmap_area *va = vas[area];

		va->va_start = base + offsets[area];
		va->va_end = va->va_start + sizes[area];
		__insert_vmap_area(va);
	}

	vmap_area_pcpu_hole = base + offsets[last_area];

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
2515 2516
		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				 pcpu_get_vm_areas);
2517 2518 2519 2520 2521 2522

	kfree(vas);
	return vms;

err_free:
	for (area = 0; area < nr_vms; area++) {
2523 2524
		kfree(vas[area]);
		kfree(vms[area]);
2525
	}
2526
err_free2:
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
2547
#endif	/* CONFIG_SMP */
2548 2549 2550

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
2551
	__acquires(&vmap_area_lock)
2552 2553
{
	loff_t n = *pos;
2554
	struct vmap_area *va;
2555

2556
	spin_lock(&vmap_area_lock);
2557
	va = list_first_entry(&vmap_area_list, typeof(*va), list);
2558
	while (n > 0 && &va->list != &vmap_area_list) {
2559
		n--;
2560
		va = list_next_entry(va, list);
2561
	}
2562 2563
	if (!n && &va->list != &vmap_area_list)
		return va;
2564 2565 2566 2567 2568 2569 2570

	return NULL;

}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
2571
	struct vmap_area *va = p, *next;
2572 2573

	++*pos;
2574
	next = list_next_entry(va, list);
2575 2576 2577 2578
	if (&next->list != &vmap_area_list)
		return next;

	return NULL;
2579 2580 2581
}

static void s_stop(struct seq_file *m, void *p)
2582
	__releases(&vmap_area_lock)
2583
{
2584
	spin_unlock(&vmap_area_lock);
2585 2586
}

E
Eric Dumazet 已提交
2587 2588
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
2589
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
2590 2591 2592 2593 2594
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

2595 2596
		if (v->flags & VM_UNINITIALIZED)
			return;
2597 2598
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
2599

E
Eric Dumazet 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

2611 2612
static int s_show(struct seq_file *m, void *p)
{
2613 2614 2615
	struct vmap_area *va = p;
	struct vm_struct *v;

2616 2617 2618 2619 2620
	/*
	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
	 * behalf of vmap area is being tear down or vm_map_ram allocation.
	 */
	if (!(va->flags & VM_VM_AREA))
2621 2622 2623
		return 0;

	v = va->vm;
2624

K
Kees Cook 已提交
2625
	seq_printf(m, "0x%pK-0x%pK %7ld",
2626 2627
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
2628 2629
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
2630

2631 2632 2633 2634
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
2635
		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2636 2637

	if (v->flags & VM_IOREMAP)
2638
		seq_puts(m, " ioremap");
2639 2640

	if (v->flags & VM_ALLOC)
2641
		seq_puts(m, " vmalloc");
2642 2643

	if (v->flags & VM_MAP)
2644
		seq_puts(m, " vmap");
2645 2646

	if (v->flags & VM_USERMAP)
2647
		seq_puts(m, " user");
2648

D
David Rientjes 已提交
2649
	if (is_vmalloc_addr(v->pages))
2650
		seq_puts(m, " vpages");
2651

E
Eric Dumazet 已提交
2652
	show_numa_info(m, v);
2653 2654 2655 2656
	seq_putc(m, '\n');
	return 0;
}

2657
static const struct seq_operations vmalloc_op = {
2658 2659 2660 2661 2662
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
2663 2664 2665

static int vmalloc_open(struct inode *inode, struct file *file)
{
2666 2667 2668 2669 2670
	if (IS_ENABLED(CONFIG_NUMA))
		return seq_open_private(file, &vmalloc_op,
					nr_node_ids * sizeof(unsigned int));
	else
		return seq_open(file, &vmalloc_op);
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
}

static const struct file_operations proc_vmalloc_operations = {
	.open		= vmalloc_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};

static int __init proc_vmalloc_init(void)
{
	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
	return 0;
}
module_init(proc_vmalloc_init);
2686

2687 2688
#endif