vmalloc.c 93.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37
#include <linux/overflow.h>
38

39
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
40
#include <asm/tlbflush.h>
41
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
42

43 44
#include "internal.h"

45 46 47 48 49 50 51 52
bool is_vmalloc_addr(const void *x)
{
	unsigned long addr = (unsigned long)x;

	return addr >= VMALLOC_START && addr < VMALLOC_END;
}
EXPORT_SYMBOL(is_vmalloc_addr);

53 54 55 56 57 58 59 60 61 62 63
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 65 66 67
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
68 69
}

N
Nick Piggin 已提交
70
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
71

L
Linus Torvalds 已提交
72 73 74 75 76 77 78 79 80 81 82
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
83
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
84 85 86 87 88 89 90
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
91 92
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
93 94 95 96 97 98
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

99
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
100 101 102 103
{
	pud_t *pud;
	unsigned long next;

104
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
105 106
	do {
		next = pud_addr_end(addr, end);
107 108
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
109 110 111 112 113 114
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

N
Nick Piggin 已提交
131
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
132 133 134 135 136 137 138 139 140 141
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
142
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
143 144 145 146
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
147
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
148 149 150
{
	pte_t *pte;

N
Nick Piggin 已提交
151 152 153 154 155
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
156
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
157 158 159
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
160 161 162 163 164
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
165 166
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
167
		(*nr)++;
L
Linus Torvalds 已提交
168 169 170 171
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
172 173
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
174 175 176 177 178 179 180 181 182
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
183
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
184 185 186 187 188
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

189
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
190
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
191 192 193 194
{
	pud_t *pud;
	unsigned long next;

195
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
196 197 198 199
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
200
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
201 202 203 204 205
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
223 224 225 226 227 228
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
229 230
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
231 232 233
{
	pgd_t *pgd;
	unsigned long next;
234
	unsigned long addr = start;
N
Nick Piggin 已提交
235 236
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
237 238 239 240 241

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
242
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
243
		if (err)
244
			return err;
L
Linus Torvalds 已提交
245
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
246 247

	return nr;
L
Linus Torvalds 已提交
248 249
}

250 251 252 253 254 255 256 257 258 259
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

260
int is_vmalloc_or_module_addr(const void *x)
261 262
{
	/*
263
	 * ARM, x86-64 and sparc64 put modules in a special place,
264 265 266 267 268 269 270 271 272 273 274
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

275
/*
276
 * Walk a vmap address to the struct page it maps.
277
 */
278
struct page *vmalloc_to_page(const void *vmalloc_addr)
279 280
{
	unsigned long addr = (unsigned long) vmalloc_addr;
281
	struct page *page = NULL;
282
	pgd_t *pgd = pgd_offset_k(addr);
283 284 285 286
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
287

288 289 290 291
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
292
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
293

294 295 296 297 298 299
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
300 301 302 303 304 305 306 307 308 309 310

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
311 312
		return NULL;
	pmd = pmd_offset(pud, addr);
313 314
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
315 316 317 318 319 320 321
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
322
	return page;
323
}
324
EXPORT_SYMBOL(vmalloc_to_page);
325 326

/*
327
 * Map a vmalloc()-space virtual address to the physical page frame number.
328
 */
329
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
330
{
331
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
332
}
333
EXPORT_SYMBOL(vmalloc_to_pfn);
334

N
Nick Piggin 已提交
335 336 337

/*** Global kva allocator ***/

338
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
339
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
340

N
Nick Piggin 已提交
341 342

static DEFINE_SPINLOCK(vmap_area_lock);
343
static DEFINE_SPINLOCK(free_vmap_area_lock);
344 345
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
346
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
347
static struct rb_root vmap_area_root = RB_ROOT;
348
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
349

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

376 377 378 379 380 381 382
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

383 384 385 386 387 388 389 390 391 392 393 394 395 396
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
397

398 399 400 401 402 403 404 405 406 407 408
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

409 410
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
411 412 413 414

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
415

416 417 418 419 420 421 422
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
423
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
424
{
N
Nick Piggin 已提交
425 426 427 428 429 430 431 432
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
433
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
434 435 436 437 438 439 440 441
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
463

464 465 466 467 468 469 470
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
471

472 473 474 475 476 477 478 479 480 481 482
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
483 484
		else
			BUG();
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
521 522
	}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
543

544 545
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
546 547
}

548 549 550
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
551 552
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
553

554 555 556 557 558 559 560 561
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
562 563
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
655 656 657 658

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
695
static __always_inline struct vmap_area *
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

757 758
			if (merged)
				unlink_va(va, root);
759 760 761

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
762 763 764 765

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
766 767 768 769 770 771 772 773
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
774 775

	return va;
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
837
			 * OK. We roll back and find the first right sub-tree,
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
935
	struct vmap_area *lva = NULL;
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
973 974 975 976 977 978 979 980 981 982 983 984 985
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
986 987 988 989 990 991 992 993 994 995 996 997 998
			 *
			 * Also we can hit this path in case of regular "vmap"
			 * allocations, if "this" current CPU was not preloaded.
			 * See the comment in alloc_vmap_area() why. If so, then
			 * GFP_NOWAIT is used instead to get an extra object for
			 * split purpose. That is rare and most time does not
			 * occur.
			 *
			 * What happens if an allocation gets failed. Basically,
			 * an "overflow" path is triggered to purge lazily freed
			 * areas to free some memory, then, the "retry" path is
			 * triggered to repeat one more time. See more details
			 * in alloc_vmap_area() function.
999 1000 1001 1002 1003
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

1022
		if (lva)	/* type == NE_FIT_TYPE */
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1036
	unsigned long vstart, unsigned long vend)
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1066 1067 1068 1069
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1070 1071
	return nva_start_addr;
}
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	/*
	 * Remove from the busy tree/list.
	 */
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

	/*
	 * Insert/Merge it back to the free tree/list.
	 */
	spin_lock(&free_vmap_area_lock);
	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
	spin_unlock(&free_vmap_area_lock);
}

N
Nick Piggin 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1102
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1103
	unsigned long addr;
N
Nick Piggin 已提交
1104
	int purged = 0;
1105
	int ret;
N
Nick Piggin 已提交
1106

N
Nick Piggin 已提交
1107
	BUG_ON(!size);
1108
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1109
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1110

1111 1112 1113
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1114
	might_sleep();
1115
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1116

1117
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1118 1119 1120
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1121 1122 1123 1124
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1125
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1126

N
Nick Piggin 已提交
1127
retry:
1128
	/*
1129 1130 1131 1132 1133 1134
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1135 1136 1137
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1138 1139
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1140
	 *
1141
	 * Set "pva" to NULL here, because of "retry" path.
1142
	 */
1143
	pva = NULL;
1144

1145 1146 1147 1148 1149 1150
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1151
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1152

1153
	spin_lock(&free_vmap_area_lock);
1154 1155 1156

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1157

1158
	/*
1159 1160
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1161
	 */
1162
	addr = __alloc_vmap_area(size, align, vstart, vend);
1163 1164
	spin_unlock(&free_vmap_area_lock);

1165
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1166
		goto overflow;
N
Nick Piggin 已提交
1167 1168 1169

	va->va_start = addr;
	va->va_end = addr + size;
1170
	va->vm = NULL;
1171

1172

1173 1174
	spin_lock(&vmap_area_lock);
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
N
Nick Piggin 已提交
1175 1176
	spin_unlock(&vmap_area_lock);

1177
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1178 1179 1180
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

1181 1182 1183 1184 1185 1186
	ret = kasan_populate_vmalloc(addr, size);
	if (ret) {
		free_vmap_area(va);
		return ERR_PTR(ret);
	}

N
Nick Piggin 已提交
1187
	return va;
N
Nick Piggin 已提交
1188 1189 1190 1191 1192 1193 1194

overflow:
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1205
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1206 1207
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1208 1209

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1210
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1258
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1259

1260 1261 1262 1263 1264
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1265
static DEFINE_MUTEX(vmap_purge_lock);
1266

1267 1268 1269
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1270 1271 1272 1273 1274 1275
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1276
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1277 1278
}

N
Nick Piggin 已提交
1279 1280 1281
/*
 * Purges all lazily-freed vmap areas.
 */
1282
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1283
{
1284
	unsigned long resched_threshold;
1285
	struct llist_node *valist;
N
Nick Piggin 已提交
1286
	struct vmap_area *va;
1287
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1288

1289
	lockdep_assert_held(&vmap_purge_lock);
1290

1291
	valist = llist_del_all(&vmap_purge_list);
1292 1293 1294
	if (unlikely(valist == NULL))
		return false;

1295 1296 1297 1298
	/*
	 * First make sure the mappings are removed from all page-tables
	 * before they are freed.
	 */
J
Joerg Roedel 已提交
1299
	vmalloc_sync_unmappings();
1300

1301 1302 1303 1304
	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1305
	llist_for_each_entry(va, valist, purge_list) {
1306 1307 1308 1309
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1310 1311
	}

1312
	flush_tlb_kernel_range(start, end);
1313
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1314

1315
	spin_lock(&free_vmap_area_lock);
1316
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1317
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1318 1319
		unsigned long orig_start = va->va_start;
		unsigned long orig_end = va->va_end;
1320

1321 1322 1323 1324 1325
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
1326 1327 1328 1329 1330 1331
		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
					    &free_vmap_area_list);

		if (is_vmalloc_or_module_addr((void *)orig_start))
			kasan_release_vmalloc(orig_start, orig_end,
					      va->va_start, va->va_end);
1332

1333
		atomic_long_sub(nr, &vmap_lazy_nr);
1334

1335
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1336
			cond_resched_lock(&free_vmap_area_lock);
1337
	}
1338
	spin_unlock(&free_vmap_area_lock);
1339
	return true;
N
Nick Piggin 已提交
1340 1341
}

N
Nick Piggin 已提交
1342 1343 1344 1345 1346 1347
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1348
	if (mutex_trylock(&vmap_purge_lock)) {
1349
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1350
		mutex_unlock(&vmap_purge_lock);
1351
	}
N
Nick Piggin 已提交
1352 1353
}

N
Nick Piggin 已提交
1354 1355 1356 1357 1358
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1359
	mutex_lock(&vmap_purge_lock);
1360 1361
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1362
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1363 1364 1365
}

/*
1366 1367 1368
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1369
 */
1370
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1371
{
1372
	unsigned long nr_lazy;
1373

1374 1375 1376 1377
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1378 1379
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1380 1381 1382 1383 1384

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1385
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1386 1387
}

1388 1389 1390 1391 1392 1393
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1394
	unmap_vmap_area(va);
1395
	if (debug_pagealloc_enabled_static())
1396 1397
		flush_tlb_kernel_range(va->va_start, va->va_end);

1398
	free_vmap_area_noflush(va);
1399 1400
}

N
Nick Piggin 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1435 1436 1437 1438
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1451
	unsigned long dirty_min, dirty_max; /*< dirty range */
1452 1453
	struct list_head free_list;
	struct rcu_head rcu_head;
1454
	struct list_head purge;
N
Nick Piggin 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1497
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1498 1499
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1500 1501 1502 1503 1504 1505
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1506
	void *vaddr;
N
Nick Piggin 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1518
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1519
		kfree(vb);
J
Julia Lawall 已提交
1520
		return ERR_CAST(va);
N
Nick Piggin 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1530
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1531 1532
	spin_lock_init(&vb->lock);
	vb->va = va;
1533 1534 1535
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1536
	vb->dirty = 0;
1537 1538
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1550
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1551
	spin_unlock(&vbq->lock);
1552
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1553

1554
	return vaddr;
N
Nick Piggin 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1568
	free_vmap_area_noflush(vb->va);
1569
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1570 1571
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1589 1590
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1615 1616 1617 1618
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1619
	void *vaddr = NULL;
N
Nick Piggin 已提交
1620 1621
	unsigned int order;

1622
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1623
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1624 1625 1626 1627 1628 1629 1630 1631
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1632 1633 1634 1635 1636
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1637
		unsigned long pages_off;
N
Nick Piggin 已提交
1638 1639

		spin_lock(&vb->lock);
1640 1641 1642 1643
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1644

1645 1646
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1647 1648 1649 1650 1651 1652
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1653

1654 1655
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1656
	}
1657

1658
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1659 1660
	rcu_read_unlock();

1661 1662 1663
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1664

1665
	return vaddr;
N
Nick Piggin 已提交
1666 1667
}

1668
static void vb_free(unsigned long addr, unsigned long size)
N
Nick Piggin 已提交
1669 1670 1671 1672 1673 1674
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1675
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1676
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1677

1678
	flush_cache_vunmap(addr, addr + size);
1679

N
Nick Piggin 已提交
1680 1681
	order = get_order(size);

1682
	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
N
Nick Piggin 已提交
1683

1684
	vb_idx = addr_to_vb_idx(addr);
N
Nick Piggin 已提交
1685 1686 1687 1688 1689
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1690
	vunmap_page_range(addr, addr + size);
1691

1692
	if (debug_pagealloc_enabled_static())
1693
		flush_tlb_kernel_range(addr, addr + size);
1694

N
Nick Piggin 已提交
1695
	spin_lock(&vb->lock);
1696 1697 1698 1699

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1700

N
Nick Piggin 已提交
1701 1702
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1703
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1704 1705 1706 1707 1708 1709
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1710
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1711 1712 1713
{
	int cpu;

1714 1715 1716
	if (unlikely(!vmap_initialized))
		return;

1717 1718
	might_sleep();

N
Nick Piggin 已提交
1719 1720 1721 1722 1723 1724 1725
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1726 1727
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1728
				unsigned long s, e;
1729

1730 1731
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1732

1733 1734
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1735

1736
				flush = 1;
N
Nick Piggin 已提交
1737 1738 1739 1740 1741 1742
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1743
	mutex_lock(&vmap_purge_lock);
1744 1745 1746
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1747
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1748
}
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1779
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1780
	unsigned long addr = (unsigned long)mem;
1781
	struct vmap_area *va;
N
Nick Piggin 已提交
1782

1783
	might_sleep();
N
Nick Piggin 已提交
1784 1785 1786
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1787
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1788

1789 1790
	kasan_poison_vmalloc(mem, size);

1791
	if (likely(count <= VMAP_MAX_ALLOC)) {
1792
		debug_check_no_locks_freed(mem, size);
1793
		vb_free(addr, size);
1794 1795 1796 1797 1798
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1799 1800
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1801
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1811
 *
1812 1813 1814 1815 1816 1817
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1818
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1819 1820 1821
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1822
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
1841 1842 1843

	kasan_unpoison_vmalloc(mem, size);

N
Nick Piggin 已提交
1844 1845 1846 1847 1848 1849 1850 1851
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1852
static struct vm_struct *vmlist __initdata;
1853

N
Nicolas Pitre 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1880 1881 1882
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1883
 * @align: requested alignment
1884 1885 1886 1887 1888 1889 1890 1891
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1892
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1893 1894
{
	static size_t vm_init_off __initdata;
1895 1896 1897 1898
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1899

1900
	vm->addr = (void *)addr;
1901

N
Nicolas Pitre 已提交
1902
	vm_area_add_early(vm);
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1946 1947
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1948 1949
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1950 1951
	int i;

1952 1953 1954 1955 1956
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1957 1958
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1959
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1960 1961 1962 1963

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1964 1965 1966
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1967
	}
1968

I
Ivan Kokshaysky 已提交
1969 1970
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1971 1972 1973 1974
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
1975 1976
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1977
		va->vm = tmp;
1978
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1979
	}
1980

1981 1982 1983 1984
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
1985
	vmap_initialized = true;
N
Nick Piggin 已提交
1986 1987
}

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
2040 2041 2042
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2043 2044

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
2045 2046 2047 2048
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}

2049
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
2050 2051
{
	unsigned long addr = (unsigned long)area->addr;
2052
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
2053 2054
	int err;

2055
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
2056

2057
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
2058 2059
}

2060 2061
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
	struct vmap_area *va, unsigned long flags, const void *caller)
2062 2063 2064 2065 2066
{
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2067
	va->vm = vm;
2068 2069 2070 2071 2072 2073 2074
}

static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
			      unsigned long flags, const void *caller)
{
	spin_lock(&vmap_area_lock);
	setup_vmalloc_vm_locked(vm, va, flags, caller);
2075
	spin_unlock(&vmap_area_lock);
2076
}
2077

2078
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2079
{
2080
	/*
2081
	 * Before removing VM_UNINITIALIZED,
2082 2083 2084 2085
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2086
	vm->flags &= ~VM_UNINITIALIZED;
2087 2088
}

N
Nick Piggin 已提交
2089
static struct vm_struct *__get_vm_area_node(unsigned long size,
2090
		unsigned long align, unsigned long flags, unsigned long start,
2091
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2092
{
2093
	struct vmap_area *va;
N
Nick Piggin 已提交
2094
	struct vm_struct *area;
2095
	unsigned long requested_size = size;
L
Linus Torvalds 已提交
2096

2097
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2098
	size = PAGE_ALIGN(size);
2099 2100
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2101

2102 2103 2104 2105
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2106
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2107 2108 2109
	if (unlikely(!area))
		return NULL;

2110 2111
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2112

N
Nick Piggin 已提交
2113 2114 2115 2116
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2117 2118
	}

2119
	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2120

2121
	setup_vmalloc_vm(area, va, flags, caller);
2122

L
Linus Torvalds 已提交
2123 2124 2125
	return area;
}

2126 2127
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2128
				       const void *caller)
2129
{
D
David Rientjes 已提交
2130 2131
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2132 2133
}

L
Linus Torvalds 已提交
2134
/**
2135 2136 2137
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2138
 *
2139 2140 2141
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2142 2143
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2144 2145 2146
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2147
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2148 2149
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2150 2151 2152
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2153
				const void *caller)
2154
{
2155
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2156
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2157 2158
}

2159
/**
2160 2161
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2162
 *
2163 2164 2165
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2166 2167
 *
 * Return: pointer to the found area or %NULL on faulure
2168 2169
 */
struct vm_struct *find_vm_area(const void *addr)
2170
{
N
Nick Piggin 已提交
2171
	struct vmap_area *va;
2172

N
Nick Piggin 已提交
2173
	va = find_vmap_area((unsigned long)addr);
2174 2175
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2176

2177
	return va->vm;
L
Linus Torvalds 已提交
2178 2179
}

2180
/**
2181 2182
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2183
 *
2184 2185 2186
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2187 2188
 *
 * Return: pointer to the found area or %NULL on faulure
2189
 */
2190
struct vm_struct *remove_vm_area(const void *addr)
2191
{
N
Nick Piggin 已提交
2192 2193
	struct vmap_area *va;

2194 2195
	might_sleep();

2196 2197
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2198
	if (va && va->vm) {
2199
		struct vm_struct *vm = va->vm;
2200

2201 2202 2203
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2204
		kasan_free_shadow(vm);
2205 2206
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2207 2208
		return vm;
	}
2209 2210

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2211
	return NULL;
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2229
	int flush_dmap = 0;
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2253 2254
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2255
			start = min(addr, start);
2256
			end = max(addr + PAGE_SIZE, end);
2257
			flush_dmap = 1;
2258 2259 2260 2261 2262 2263 2264 2265 2266
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2267
	_vm_unmap_aliases(start, end, flush_dmap);
2268 2269 2270
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2271
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2272 2273 2274 2275 2276 2277
{
	struct vm_struct *area;

	if (!addr)
		return;

2278
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2279
			addr))
L
Linus Torvalds 已提交
2280 2281
		return;

2282
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2283
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2284
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2285 2286 2287 2288
				addr);
		return;
	}

2289 2290
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2291

2292
	kasan_poison_vmalloc(area->addr, area->size);
2293

2294 2295
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2296 2297 2298 2299
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2300 2301 2302
			struct page *page = area->pages[i];

			BUG_ON(!page);
2303
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2304
		}
2305
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2306

D
David Rientjes 已提交
2307
		kvfree(area->pages);
L
Linus Torvalds 已提交
2308 2309 2310 2311 2312
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2329 2330
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2331
 *
2332 2333
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2346 2347 2348 2349 2350 2351 2352 2353
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2354
/**
2355 2356
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2357
 *
2358 2359 2360
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2361
 *
2362 2363 2364
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2365
 *
2366
 * May sleep if called *not* from interrupt context.
2367
 *
2368
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2369
 */
2370
void vfree(const void *addr)
L
Linus Torvalds 已提交
2371
{
2372
	BUG_ON(in_nmi());
2373 2374 2375

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2376 2377
	might_sleep_if(!in_interrupt());

2378 2379
	if (!addr)
		return;
2380 2381

	__vfree(addr);
L
Linus Torvalds 已提交
2382 2383 2384 2385
}
EXPORT_SYMBOL(vfree);

/**
2386 2387
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2388
 *
2389 2390
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2391
 *
2392
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2393
 */
2394
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2395 2396
{
	BUG_ON(in_interrupt());
2397
	might_sleep();
2398 2399
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2400 2401 2402 2403
}
EXPORT_SYMBOL(vunmap);

/**
2404 2405 2406 2407 2408 2409 2410 2411
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2412 2413
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2414 2415
 */
void *vmap(struct page **pages, unsigned int count,
2416
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2417 2418
{
	struct vm_struct *area;
2419
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2420

2421 2422
	might_sleep();

2423
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2424 2425
		return NULL;

2426 2427
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2428 2429
	if (!area)
		return NULL;
2430

2431
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
2432 2433 2434 2435 2436 2437 2438 2439
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2440 2441 2442
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2443
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2444
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2445 2446 2447
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2448
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2449 2450 2451 2452
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2453

2454
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2455 2456 2457
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2458
	if (array_size > PAGE_SIZE) {
2459
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2460
				PAGE_KERNEL, node, area->caller);
2461
	} else {
2462
		pages = kmalloc_node(array_size, nested_gfp, node);
2463
	}
2464 2465

	if (!pages) {
L
Linus Torvalds 已提交
2466 2467 2468 2469 2470
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2471 2472 2473
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2474
	for (i = 0; i < area->nr_pages; i++) {
2475 2476
		struct page *page;

J
Jianguo Wu 已提交
2477
		if (node == NUMA_NO_NODE)
2478
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2479
		else
2480
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2481 2482

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2483 2484
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2485
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2486 2487
			goto fail;
		}
2488
		area->pages[i] = page;
2489
		if (gfpflags_allow_blocking(gfp_mask))
2490
			cond_resched();
L
Linus Torvalds 已提交
2491
	}
2492
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2493

2494
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
2495 2496 2497 2498
		goto fail;
	return area->addr;

fail:
2499
	warn_alloc(gfp_mask, NULL,
2500
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2501
			  (area->nr_pages*PAGE_SIZE), area->size);
2502
	__vfree(area->addr);
L
Linus Torvalds 已提交
2503 2504 2505 2506
	return NULL;
}

/**
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2521 2522
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2523
 */
2524 2525
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2526 2527
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2528 2529
{
	struct vm_struct *area;
2530 2531
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2532 2533

	size = PAGE_ALIGN(size);
2534
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2535
		goto fail;
L
Linus Torvalds 已提交
2536

2537
	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2538
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2539
	if (!area)
2540
		goto fail;
L
Linus Torvalds 已提交
2541

2542
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2543
	if (!addr)
2544
		return NULL;
2545

2546
	/*
2547 2548
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2549
	 * Now, it is fully initialized, so remove this flag here.
2550
	 */
2551
	clear_vm_uninitialized_flag(area);
2552

2553
	kmemleak_vmalloc(area, size, gfp_mask);
2554 2555

	return addr;
2556 2557

fail:
2558
	warn_alloc(gfp_mask, NULL,
2559
			  "vmalloc: allocation failure: %lu bytes", real_size);
2560
	return NULL;
L
Linus Torvalds 已提交
2561 2562
}

2563 2564 2565 2566 2567 2568 2569 2570 2571
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2572
/**
2573 2574 2575 2576 2577 2578 2579
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2580
 *
2581 2582 2583
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2584
 *
2585 2586
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2587
 *
2588 2589
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2590 2591
 *
 * Return: pointer to the allocated memory or %NULL on error
2592
 */
2593
static void *__vmalloc_node(unsigned long size, unsigned long align,
2594
			    gfp_t gfp_mask, pgprot_t prot,
2595
			    int node, const void *caller)
2596 2597
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2598
				gfp_mask, prot, 0, node, caller);
2599 2600
}

C
Christoph Lameter 已提交
2601 2602
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2603
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2604
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2605
}
L
Linus Torvalds 已提交
2606 2607
EXPORT_SYMBOL(__vmalloc);

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2622
/**
2623 2624 2625 2626 2627
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2628
 *
2629 2630
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2631 2632
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2633 2634 2635
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2636
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2637
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2638 2639 2640
}
EXPORT_SYMBOL(vmalloc);

2641
/**
2642 2643 2644 2645 2646 2647 2648 2649 2650
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2651 2652
 *
 * Return: pointer to the allocated memory or %NULL on error
2653 2654 2655
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2656
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2657
				GFP_KERNEL | __GFP_ZERO);
2658 2659 2660
}
EXPORT_SYMBOL(vzalloc);

2661
/**
2662 2663
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2664
 *
2665 2666
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2667 2668
 *
 * Return: pointer to the allocated memory or %NULL on error
2669 2670 2671
 */
void *vmalloc_user(unsigned long size)
{
2672 2673 2674 2675
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2676 2677 2678
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2679
/**
2680 2681 2682
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2683
 *
2684 2685
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2686
 *
2687 2688
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2689 2690
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2691 2692 2693
 */
void *vmalloc_node(unsigned long size, int node)
{
2694
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2695
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2696 2697 2698
}
EXPORT_SYMBOL(vmalloc_node);

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2710 2711
 *
 * Return: pointer to the allocated memory or %NULL on error
2712 2713 2714 2715
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2716
			 GFP_KERNEL | __GFP_ZERO);
2717 2718 2719
}
EXPORT_SYMBOL(vzalloc_node);

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
/**
 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
 * @size: allocation size
 * @node: numa node
 * @flags: flags for the page level allocator
 *
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
 *
 * Return: pointer to the allocated memory or %NULL on error
 */
void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
{
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    flags | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, node,
				    __builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_user_node_flags);

L
Linus Torvalds 已提交
2740
/**
2741 2742
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2743
 *
2744 2745 2746
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2747
 *
2748 2749
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2750 2751
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2752 2753 2754
 */
void *vmalloc_exec(unsigned long size)
{
2755 2756 2757
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2758 2759
}

2760
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2761
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2762
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2763
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2764
#else
2765 2766 2767 2768 2769
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2770 2771
#endif

L
Linus Torvalds 已提交
2772
/**
2773 2774
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2775
 *
2776 2777
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2778 2779
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2780 2781 2782
 */
void *vmalloc_32(unsigned long size)
{
2783
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2784
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2785 2786 2787
}
EXPORT_SYMBOL(vmalloc_32);

2788
/**
2789
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2790
 * @size:	     allocation size
2791 2792 2793
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2794 2795
 *
 * Return: pointer to the allocated memory or %NULL on error
2796 2797 2798
 */
void *vmalloc_32_user(unsigned long size)
{
2799 2800 2801 2802
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2803 2804 2805
}
EXPORT_SYMBOL(vmalloc_32_user);

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2819
		offset = offset_in_page(addr);
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2836
			void *map = kmap_atomic(p);
2837
			memcpy(buf, map + offset, length);
2838
			kunmap_atomic(map);
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2858
		offset = offset_in_page(addr);
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2875
			void *map = kmap_atomic(p);
2876
			memcpy(map + offset, buf, length);
2877
			kunmap_atomic(map);
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2905
 * any information, as /dev/kmem.
2906 2907 2908 2909
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2910
 */
L
Linus Torvalds 已提交
2911 2912
long vread(char *buf, char *addr, unsigned long count)
{
2913 2914
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2915
	char *vaddr, *buf_start = buf;
2916
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2917 2918 2919 2920 2921 2922
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2923 2924 2925 2926 2927
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2928
		if (!va->vm)
2929 2930 2931 2932
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2933
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2943
		n = vaddr + get_vm_area_size(vm) - addr;
2944 2945
		if (n > count)
			n = count;
2946
		if (!(vm->flags & VM_IOREMAP))
2947 2948 2949 2950 2951 2952
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2953 2954
	}
finished:
2955
	spin_unlock(&vmap_area_lock);
2956 2957 2958 2959 2960 2961 2962 2963

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2964 2965
}

2966
/**
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2984
 * any information, as /dev/kmem.
2985 2986 2987 2988
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2989
 */
L
Linus Torvalds 已提交
2990 2991
long vwrite(char *buf, char *addr, unsigned long count)
{
2992 2993
	struct vmap_area *va;
	struct vm_struct *vm;
2994 2995 2996
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2997 2998 2999 3000

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
3001
	buflen = count;
L
Linus Torvalds 已提交
3002

3003 3004 3005 3006 3007
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

3008
		if (!va->vm)
3009 3010 3011 3012
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
3013
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
3014 3015 3016 3017 3018 3019 3020 3021
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
3022
		n = vaddr + get_vm_area_size(vm) - addr;
3023 3024
		if (n > count)
			n = count;
3025
		if (!(vm->flags & VM_IOREMAP)) {
3026 3027 3028 3029 3030 3031
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
3032 3033
	}
finished:
3034
	spin_unlock(&vmap_area_lock);
3035 3036 3037
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
3038
}
3039 3040

/**
3041 3042 3043 3044
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
3045
 * @pgoff:		offset from @kaddr to start at
3046
 * @size:		size of map area
3047
 *
3048
 * Returns:	0 for success, -Exxx on failure
3049
 *
3050 3051 3052 3053
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
3054
 *
3055
 * Similar to remap_pfn_range() (see mm/memory.c)
3056
 */
3057
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3058 3059
				void *kaddr, unsigned long pgoff,
				unsigned long size)
3060 3061
{
	struct vm_struct *area;
3062 3063 3064 3065 3066
	unsigned long off;
	unsigned long end_index;

	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
		return -EINVAL;
3067

3068 3069 3070
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3071 3072
		return -EINVAL;

3073
	area = find_vm_area(kaddr);
3074
	if (!area)
N
Nick Piggin 已提交
3075
		return -EINVAL;
3076

3077
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3078
		return -EINVAL;
3079

3080 3081
	if (check_add_overflow(size, off, &end_index) ||
	    end_index > get_vm_area_size(area))
N
Nick Piggin 已提交
3082
		return -EINVAL;
3083
	kaddr += off;
3084 3085

	do {
3086
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3087 3088
		int ret;

3089 3090 3091 3092 3093
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3094 3095 3096
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3097

3098
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3099

N
Nick Piggin 已提交
3100
	return 0;
3101
}
3102 3103 3104
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3105 3106 3107 3108
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3109
 *
3110
 * Returns:	0 for success, -Exxx on failure
3111
 *
3112 3113 3114
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3115
 *
3116
 * Similar to remap_pfn_range() (see mm/memory.c)
3117 3118 3119 3120 3121
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
3122
					   addr, pgoff,
3123 3124
					   vma->vm_end - vma->vm_start);
}
3125 3126
EXPORT_SYMBOL(remap_vmalloc_range);

3127
/*
J
Joerg Roedel 已提交
3128 3129
 * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
 * not to have one.
3130 3131 3132
 *
 * The purpose of this function is to make sure the vmalloc area
 * mappings are identical in all page-tables in the system.
3133
 */
J
Joerg Roedel 已提交
3134
void __weak vmalloc_sync_mappings(void)
3135 3136
{
}
3137

J
Joerg Roedel 已提交
3138 3139 3140
void __weak vmalloc_sync_unmappings(void)
{
}
3141

3142
static int f(pte_t *pte, unsigned long addr, void *data)
3143
{
3144 3145 3146 3147 3148 3149
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3150 3151 3152 3153
	return 0;
}

/**
3154 3155 3156
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3157
 *
3158
 * Returns:	NULL on failure, vm_struct on success
3159
 *
3160 3161 3162
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3163
 *
3164 3165
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3166
 */
3167
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3168 3169 3170
{
	struct vm_struct *area;

3171 3172
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3173 3174 3175 3176 3177 3178 3179 3180
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3181
				size, f, ptes ? &ptes : NULL)) {
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3198

3199
#ifdef CONFIG_SMP
3200 3201
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3202
	return rb_entry_safe(n, struct vmap_area, rb_node);
3203 3204 3205
}

/**
3206 3207
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3208
 *
3209 3210 3211 3212
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3213
 */
3214 3215
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3216
{
3217 3218 3219 3220 3221
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3222 3223

	while (n) {
3224 3225 3226 3227 3228 3229
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3230
			n = n->rb_right;
3231 3232 3233
		} else {
			n = n->rb_left;
		}
3234 3235
	}

3236
	return va;
3237 3238 3239
}

/**
3240 3241 3242 3243 3244
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3245
 *
3246
 * Returns: determined end address within vmap_area
3247
 */
3248 3249
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3250
{
3251
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3252 3253
	unsigned long addr;

3254 3255 3256 3257 3258 3259 3260
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3261 3262
	}

3263
	return 0;
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3278 3279 3280 3281
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3282
 *
3283 3284 3285 3286 3287 3288
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3289 3290 3291
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3292
				     size_t align)
3293 3294 3295
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3296
	struct vmap_area **vas, *va;
3297 3298
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3299
	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3300
	bool purged = false;
3301
	enum fit_type type;
3302 3303

	/* verify parameters and allocate data structures */
3304
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3317
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3318 3319 3320
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3321
			BUG_ON(start2 < end && start < end2);
3322 3323 3324 3325 3326 3327 3328 3329 3330
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3331 3332
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3333
	if (!vas || !vms)
3334
		goto err_free2;
3335 3336

	for (area = 0; area < nr_vms; area++) {
3337
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3338
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3339 3340 3341 3342
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
3343
	spin_lock(&free_vmap_area_lock);
3344 3345 3346 3347 3348 3349

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3350 3351
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3352 3353 3354 3355 3356 3357

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3358 3359
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3360 3361

		/*
3362
		 * Fitting base has not been found.
3363
		 */
3364 3365
		if (va == NULL)
			goto overflow;
3366

3367
		/*
Q
Qiujun Huang 已提交
3368
		 * If required width exceeds current VA block, move
3369 3370 3371 3372 3373 3374 3375 3376
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3377
		/*
3378
		 * If this VA does not fit, move base downwards and recheck.
3379
		 */
3380
		if (base + start < va->va_start) {
3381 3382
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3394

3395 3396
		start = offsets[area];
		end = start + sizes[area];
3397
		va = pvm_find_va_enclose_addr(base + end);
3398
	}
3399

3400 3401
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3402
		int ret;
3403

3404 3405
		start = base + offsets[area];
		size = sizes[area];
3406

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;
	}
3426

3427
	spin_unlock(&free_vmap_area_lock);
3428

3429 3430 3431 3432 3433 3434 3435 3436 3437
	/* populate the kasan shadow space */
	for (area = 0; area < nr_vms; area++) {
		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
			goto err_free_shadow;

		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
				       sizes[area]);
	}

3438
	/* insert all vm's */
3439 3440 3441 3442 3443
	spin_lock(&vmap_area_lock);
	for (area = 0; area < nr_vms; area++) {
		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);

		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3444
				 pcpu_get_vm_areas);
3445 3446
	}
	spin_unlock(&vmap_area_lock);
3447 3448 3449 3450

	kfree(vas);
	return vms;

3451
recovery:
3452 3453 3454 3455 3456 3457
	/*
	 * Remove previously allocated areas. There is no
	 * need in removing these areas from the busy tree,
	 * because they are inserted only on the final step
	 * and when pcpu_get_vm_areas() is success.
	 */
3458
	while (area--) {
3459 3460 3461 3462 3463 3464
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
3465 3466 3467 3468
		vas[area] = NULL;
	}

overflow:
3469
	spin_unlock(&free_vmap_area_lock);
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3488 3489
err_free:
	for (area = 0; area < nr_vms; area++) {
3490 3491 3492
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3493
		kfree(vms[area]);
3494
	}
3495
err_free2:
3496 3497 3498
	kfree(vas);
	kfree(vms);
	return NULL;
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520

err_free_shadow:
	spin_lock(&free_vmap_area_lock);
	/*
	 * We release all the vmalloc shadows, even the ones for regions that
	 * hadn't been successfully added. This relies on kasan_release_vmalloc
	 * being able to tolerate this case.
	 */
	for (area = 0; area < nr_vms; area++) {
		orig_start = vas[area]->va_start;
		orig_end = vas[area]->va_end;
		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
					    &free_vmap_area_list);
		kasan_release_vmalloc(orig_start, orig_end,
				      va->va_start, va->va_end);
		vas[area] = NULL;
		kfree(vms[area]);
	}
	spin_unlock(&free_vmap_area_lock);
	kfree(vas);
	kfree(vms);
	return NULL;
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3538
#endif	/* CONFIG_SMP */
3539 3540 3541

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3542
	__acquires(&vmap_purge_lock)
3543
	__acquires(&vmap_area_lock)
3544
{
3545
	mutex_lock(&vmap_purge_lock);
3546
	spin_lock(&vmap_area_lock);
3547

3548
	return seq_list_start(&vmap_area_list, *pos);
3549 3550 3551 3552
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3553
	return seq_list_next(p, &vmap_area_list, pos);
3554 3555 3556
}

static void s_stop(struct seq_file *m, void *p)
3557
	__releases(&vmap_purge_lock)
3558
	__releases(&vmap_area_lock)
3559
{
3560
	mutex_unlock(&vmap_purge_lock);
3561
	spin_unlock(&vmap_area_lock);
3562 3563
}

E
Eric Dumazet 已提交
3564 3565
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3566
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3567 3568 3569 3570 3571
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3572 3573
		if (v->flags & VM_UNINITIALIZED)
			return;
3574 3575
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3576

E
Eric Dumazet 已提交
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3604 3605
static int s_show(struct seq_file *m, void *p)
{
3606
	struct vmap_area *va;
3607 3608
	struct vm_struct *v;

3609 3610
	va = list_entry(p, struct vmap_area, list);

3611
	/*
3612 3613
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3614
	 */
3615
	if (!va->vm) {
3616
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3617
			(void *)va->va_start, (void *)va->va_end,
3618
			va->va_end - va->va_start);
3619

3620
		return 0;
3621
	}
3622 3623

	v = va->vm;
3624

K
Kees Cook 已提交
3625
	seq_printf(m, "0x%pK-0x%pK %7ld",
3626 3627
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3628 3629
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3630

3631 3632 3633 3634
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3635
		seq_printf(m, " phys=%pa", &v->phys_addr);
3636 3637

	if (v->flags & VM_IOREMAP)
3638
		seq_puts(m, " ioremap");
3639 3640

	if (v->flags & VM_ALLOC)
3641
		seq_puts(m, " vmalloc");
3642 3643

	if (v->flags & VM_MAP)
3644
		seq_puts(m, " vmap");
3645 3646

	if (v->flags & VM_USERMAP)
3647
		seq_puts(m, " user");
3648

3649 3650 3651
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3652
	if (is_vmalloc_addr(v->pages))
3653
		seq_puts(m, " vpages");
3654

E
Eric Dumazet 已提交
3655
	show_numa_info(m, v);
3656
	seq_putc(m, '\n');
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3667 3668 3669
	return 0;
}

3670
static const struct seq_operations vmalloc_op = {
3671 3672 3673 3674 3675
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3676 3677 3678

static int __init proc_vmalloc_init(void)
{
3679
	if (IS_ENABLED(CONFIG_NUMA))
3680
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3681 3682
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3683
	else
3684
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3685 3686 3687
	return 0;
}
module_init(proc_vmalloc_init);
3688

3689
#endif