vmalloc.c 90.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
C
Christoph Lameter 已提交
9
 *  Numa awareness, Christoph Lameter, SGI, June 2005
L
Linus Torvalds 已提交
10 11
 */

N
Nick Piggin 已提交
12
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
13 14 15
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
16
#include <linux/sched/signal.h>
L
Linus Torvalds 已提交
17 18 19
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
20
#include <linux/proc_fs.h>
21
#include <linux/seq_file.h>
22
#include <linux/set_memory.h>
23
#include <linux/debugobjects.h>
24
#include <linux/kallsyms.h>
N
Nick Piggin 已提交
25
#include <linux/list.h>
26
#include <linux/notifier.h>
N
Nick Piggin 已提交
27 28 29
#include <linux/rbtree.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
30
#include <linux/pfn.h>
31
#include <linux/kmemleak.h>
A
Arun Sharma 已提交
32
#include <linux/atomic.h>
33
#include <linux/compiler.h>
34
#include <linux/llist.h>
35
#include <linux/bitops.h>
36
#include <linux/rbtree_augmented.h>
37

38
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
39
#include <asm/tlbflush.h>
40
#include <asm/shmparam.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48 49 50 51 52 53 54
struct vfree_deferred {
	struct llist_head list;
	struct work_struct wq;
};
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);

static void __vunmap(const void *, int);

static void free_work(struct work_struct *w)
{
	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 56 57 58
	struct llist_node *t, *llnode;

	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
		__vunmap((void *)llnode, 1);
59 60
}

N
Nick Piggin 已提交
61
/*** Page table manipulation functions ***/
A
Adrian Bunk 已提交
62

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71 72 73
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

N
Nick Piggin 已提交
74
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
75 76 77 78 79 80 81
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
82 83
		if (pmd_clear_huge(pmd))
			continue;
L
Linus Torvalds 已提交
84 85 86 87 88 89
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

90
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
91 92 93 94
{
	pud_t *pud;
	unsigned long next;

95
	pud = pud_offset(p4d, addr);
L
Linus Torvalds 已提交
96 97
	do {
		next = pud_addr_end(addr, end);
98 99
		if (pud_clear_huge(pud))
			continue;
L
Linus Torvalds 已提交
100 101 102 103 104 105
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_offset(pgd, addr);
	do {
		next = p4d_addr_end(addr, end);
		if (p4d_clear_huge(p4d))
			continue;
		if (p4d_none_or_clear_bad(p4d))
			continue;
		vunmap_pud_range(p4d, addr, next);
	} while (p4d++, addr = next, addr != end);
}

N
Nick Piggin 已提交
122
static void vunmap_page_range(unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
123 124 125 126 127 128 129 130 131 132
{
	pgd_t *pgd;
	unsigned long next;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
133
		vunmap_p4d_range(pgd, addr, next);
L
Linus Torvalds 已提交
134 135 136 137
	} while (pgd++, addr = next, addr != end);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
N
Nick Piggin 已提交
138
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
139 140 141
{
	pte_t *pte;

N
Nick Piggin 已提交
142 143 144 145 146
	/*
	 * nr is a running index into the array which helps higher level
	 * callers keep track of where we're up to.
	 */

H
Hugh Dickins 已提交
147
	pte = pte_alloc_kernel(pmd, addr);
L
Linus Torvalds 已提交
148 149 150
	if (!pte)
		return -ENOMEM;
	do {
N
Nick Piggin 已提交
151 152 153 154 155
		struct page *page = pages[*nr];

		if (WARN_ON(!pte_none(*pte)))
			return -EBUSY;
		if (WARN_ON(!page))
L
Linus Torvalds 已提交
156 157
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
N
Nick Piggin 已提交
158
		(*nr)++;
L
Linus Torvalds 已提交
159 160 161 162
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

N
Nick Piggin 已提交
163 164
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
165 166 167 168 169 170 171 172 173
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
N
Nick Piggin 已提交
174
		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
175 176 177 178 179
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

180
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
N
Nick Piggin 已提交
181
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
L
Linus Torvalds 已提交
182 183 184 185
{
	pud_t *pud;
	unsigned long next;

186
	pud = pud_alloc(&init_mm, p4d, addr);
L
Linus Torvalds 已提交
187 188 189 190
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
N
Nick Piggin 已提交
191
		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
L
Linus Torvalds 已提交
192 193 194 195 196
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
{
	p4d_t *p4d;
	unsigned long next;

	p4d = p4d_alloc(&init_mm, pgd, addr);
	if (!p4d)
		return -ENOMEM;
	do {
		next = p4d_addr_end(addr, end);
		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
			return -ENOMEM;
	} while (p4d++, addr = next, addr != end);
	return 0;
}

N
Nick Piggin 已提交
214 215 216 217 218 219
/*
 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 * will have pfns corresponding to the "pages" array.
 *
 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 */
220 221
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
				   pgprot_t prot, struct page **pages)
L
Linus Torvalds 已提交
222 223 224
{
	pgd_t *pgd;
	unsigned long next;
225
	unsigned long addr = start;
N
Nick Piggin 已提交
226 227
	int err = 0;
	int nr = 0;
L
Linus Torvalds 已提交
228 229 230 231 232

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
233
		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
L
Linus Torvalds 已提交
234
		if (err)
235
			return err;
L
Linus Torvalds 已提交
236
	} while (pgd++, addr = next, addr != end);
N
Nick Piggin 已提交
237 238

	return nr;
L
Linus Torvalds 已提交
239 240
}

241 242 243 244 245 246 247 248 249 250
static int vmap_page_range(unsigned long start, unsigned long end,
			   pgprot_t prot, struct page **pages)
{
	int ret;

	ret = vmap_page_range_noflush(start, end, prot, pages);
	flush_cache_vmap(start, end);
	return ret;
}

251
int is_vmalloc_or_module_addr(const void *x)
252 253
{
	/*
254
	 * ARM, x86-64 and sparc64 put modules in a special place,
255 256 257 258 259 260 261 262 263 264 265
	 * and fall back on vmalloc() if that fails. Others
	 * just put it in the vmalloc space.
	 */
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
	unsigned long addr = (unsigned long)x;
	if (addr >= MODULES_VADDR && addr < MODULES_END)
		return 1;
#endif
	return is_vmalloc_addr(x);
}

266
/*
267
 * Walk a vmap address to the struct page it maps.
268
 */
269
struct page *vmalloc_to_page(const void *vmalloc_addr)
270 271
{
	unsigned long addr = (unsigned long) vmalloc_addr;
272
	struct page *page = NULL;
273
	pgd_t *pgd = pgd_offset_k(addr);
274 275 276 277
	p4d_t *p4d;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep, pte;
278

279 280 281 282
	/*
	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
	 * architectures that do not vmalloc module space
	 */
283
	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
J
Jiri Slaby 已提交
284

285 286 287 288 289 290
	if (pgd_none(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (p4d_none(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
291 292 293 294 295 296 297 298 299 300 301

	/*
	 * Don't dereference bad PUD or PMD (below) entries. This will also
	 * identify huge mappings, which we may encounter on architectures
	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
	 * not [unambiguously] associated with a struct page, so there is
	 * no correct value to return for them.
	 */
	WARN_ON_ONCE(pud_bad(*pud));
	if (pud_none(*pud) || pud_bad(*pud))
302 303
		return NULL;
	pmd = pmd_offset(pud, addr);
304 305
	WARN_ON_ONCE(pmd_bad(*pmd));
	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 307 308 309 310 311 312
		return NULL;

	ptep = pte_offset_map(pmd, addr);
	pte = *ptep;
	if (pte_present(pte))
		page = pte_page(pte);
	pte_unmap(ptep);
313
	return page;
314
}
315
EXPORT_SYMBOL(vmalloc_to_page);
316 317

/*
318
 * Map a vmalloc()-space virtual address to the physical page frame number.
319
 */
320
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321
{
322
	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323
}
324
EXPORT_SYMBOL(vmalloc_to_pfn);
325

N
Nick Piggin 已提交
326 327 328

/*** Global kva allocator ***/

329
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331

N
Nick Piggin 已提交
332 333

static DEFINE_SPINLOCK(vmap_area_lock);
334 335
/* Export for kexec only */
LIST_HEAD(vmap_area_list);
336
static LLIST_HEAD(vmap_purge_list);
N
Nick Piggin 已提交
337
static struct rb_root vmap_area_root = RB_ROOT;
338
static bool vmap_initialized __read_mostly;
N
Nick Piggin 已提交
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
/*
 * This kmem_cache is used for vmap_area objects. Instead of
 * allocating from slab we reuse an object from this cache to
 * make things faster. Especially in "no edge" splitting of
 * free block.
 */
static struct kmem_cache *vmap_area_cachep;

/*
 * This linked list is used in pair with free_vmap_area_root.
 * It gives O(1) access to prev/next to perform fast coalescing.
 */
static LIST_HEAD(free_vmap_area_list);

/*
 * This augment red-black tree represents the free vmap space.
 * All vmap_area objects in this tree are sorted by va->va_start
 * address. It is used for allocation and merging when a vmap
 * object is released.
 *
 * Each vmap_area node contains a maximum available free block
 * of its sub-tree, right or left. Therefore it is possible to
 * find a lowest match of free area.
 */
static struct rb_root free_vmap_area_root = RB_ROOT;

366 367 368 369 370 371 372
/*
 * Preload a CPU with one object for "no edge" split case. The
 * aim is to get rid of allocations from the atomic context, thus
 * to use more permissive allocation masks.
 */
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);

373 374 375 376 377 378 379 380 381 382 383 384 385 386
static __always_inline unsigned long
va_size(struct vmap_area *va)
{
	return (va->va_end - va->va_start);
}

static __always_inline unsigned long
get_subtree_max_size(struct rb_node *node)
{
	struct vmap_area *va;

	va = rb_entry_safe(node, struct vmap_area, rb_node);
	return va ? va->subtree_max_size : 0;
}
N
Nick Piggin 已提交
387

388 389 390 391 392 393 394 395 396 397 398
/*
 * Gets called when remove the node and rotate.
 */
static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area *va)
{
	return max3(va_size(va),
		get_subtree_max_size(va->rb_node.rb_left),
		get_subtree_max_size(va->rb_node.rb_right));
}

399 400
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
401 402 403 404

static void purge_vmap_area_lazy(void);
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
static unsigned long lazy_max_pages(void);
N
Nick Piggin 已提交
405

406 407 408 409 410 411 412
static atomic_long_t nr_vmalloc_pages;

unsigned long vmalloc_nr_pages(void)
{
	return atomic_long_read(&nr_vmalloc_pages);
}

N
Nick Piggin 已提交
413
static struct vmap_area *__find_vmap_area(unsigned long addr)
L
Linus Torvalds 已提交
414
{
N
Nick Piggin 已提交
415 416 417 418 419 420 421 422
	struct rb_node *n = vmap_area_root.rb_node;

	while (n) {
		struct vmap_area *va;

		va = rb_entry(n, struct vmap_area, rb_node);
		if (addr < va->va_start)
			n = n->rb_left;
423
		else if (addr >= va->va_end)
N
Nick Piggin 已提交
424 425 426 427 428 429 430 431
			n = n->rb_right;
		else
			return va;
	}

	return NULL;
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
/*
 * This function returns back addresses of parent node
 * and its left or right link for further processing.
 */
static __always_inline struct rb_node **
find_va_links(struct vmap_area *va,
	struct rb_root *root, struct rb_node *from,
	struct rb_node **parent)
{
	struct vmap_area *tmp_va;
	struct rb_node **link;

	if (root) {
		link = &root->rb_node;
		if (unlikely(!*link)) {
			*parent = NULL;
			return link;
		}
	} else {
		link = &from;
	}
N
Nick Piggin 已提交
453

454 455 456 457 458 459 460
	/*
	 * Go to the bottom of the tree. When we hit the last point
	 * we end up with parent rb_node and correct direction, i name
	 * it link, where the new va->rb_node will be attached to.
	 */
	do {
		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
N
Nick Piggin 已提交
461

462 463 464 465 466 467 468 469 470 471 472
		/*
		 * During the traversal we also do some sanity check.
		 * Trigger the BUG() if there are sides(left/right)
		 * or full overlaps.
		 */
		if (va->va_start < tmp_va->va_end &&
				va->va_end <= tmp_va->va_start)
			link = &(*link)->rb_left;
		else if (va->va_end > tmp_va->va_start &&
				va->va_start >= tmp_va->va_end)
			link = &(*link)->rb_right;
N
Nick Piggin 已提交
473 474
		else
			BUG();
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	} while (*link);

	*parent = &tmp_va->rb_node;
	return link;
}

static __always_inline struct list_head *
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
{
	struct list_head *list;

	if (unlikely(!parent))
		/*
		 * The red-black tree where we try to find VA neighbors
		 * before merging or inserting is empty, i.e. it means
		 * there is no free vmap space. Normally it does not
		 * happen but we handle this case anyway.
		 */
		return NULL;

	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
	return (&parent->rb_right == link ? list->next : list);
}

static __always_inline void
link_va(struct vmap_area *va, struct rb_root *root,
	struct rb_node *parent, struct rb_node **link, struct list_head *head)
{
	/*
	 * VA is still not in the list, but we can
	 * identify its future previous list_head node.
	 */
	if (likely(parent)) {
		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
		if (&parent->rb_right != link)
			head = head->prev;
N
Nick Piggin 已提交
511 512
	}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	/* Insert to the rb-tree */
	rb_link_node(&va->rb_node, parent, link);
	if (root == &free_vmap_area_root) {
		/*
		 * Some explanation here. Just perform simple insertion
		 * to the tree. We do not set va->subtree_max_size to
		 * its current size before calling rb_insert_augmented().
		 * It is because of we populate the tree from the bottom
		 * to parent levels when the node _is_ in the tree.
		 *
		 * Therefore we set subtree_max_size to zero after insertion,
		 * to let __augment_tree_propagate_from() puts everything to
		 * the correct order later on.
		 */
		rb_insert_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
		va->subtree_max_size = 0;
	} else {
		rb_insert_color(&va->rb_node, root);
	}
N
Nick Piggin 已提交
533

534 535
	/* Address-sort this list */
	list_add(&va->list, head);
N
Nick Piggin 已提交
536 537
}

538 539 540
static __always_inline void
unlink_va(struct vmap_area *va, struct rb_root *root)
{
541 542
	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
		return;
N
Nick Piggin 已提交
543

544 545 546 547 548 549 550 551
	if (root == &free_vmap_area_root)
		rb_erase_augmented(&va->rb_node,
			root, &free_vmap_area_rb_augment_cb);
	else
		rb_erase(&va->rb_node, root);

	list_del(&va->list);
	RB_CLEAR_NODE(&va->rb_node);
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
#if DEBUG_AUGMENT_PROPAGATE_CHECK
static void
augment_tree_propagate_check(struct rb_node *n)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long size;
	bool found = false;

	if (n == NULL)
		return;

	va = rb_entry(n, struct vmap_area, rb_node);
	size = va->subtree_max_size;
	node = n;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) == size) {
			node = node->rb_left;
		} else {
			if (va_size(va) == size) {
				found = true;
				break;
			}

			node = node->rb_right;
		}
	}

	if (!found) {
		va = rb_entry(n, struct vmap_area, rb_node);
		pr_emerg("tree is corrupted: %lu, %lu\n",
			va_size(va), va->subtree_max_size);
	}

	augment_tree_propagate_check(n->rb_left);
	augment_tree_propagate_check(n->rb_right);
}
#endif

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * This function populates subtree_max_size from bottom to upper
 * levels starting from VA point. The propagation must be done
 * when VA size is modified by changing its va_start/va_end. Or
 * in case of newly inserting of VA to the tree.
 *
 * It means that __augment_tree_propagate_from() must be called:
 * - After VA has been inserted to the tree(free path);
 * - After VA has been shrunk(allocation path);
 * - After VA has been increased(merging path).
 *
 * Please note that, it does not mean that upper parent nodes
 * and their subtree_max_size are recalculated all the time up
 * to the root node.
 *
 *       4--8
 *        /\
 *       /  \
 *      /    \
 *    2--2  8--8
 *
 * For example if we modify the node 4, shrinking it to 2, then
 * no any modification is required. If we shrink the node 2 to 1
 * its subtree_max_size is updated only, and set to 1. If we shrink
 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 * node becomes 4--6.
 */
static __always_inline void
augment_tree_propagate_from(struct vmap_area *va)
{
	struct rb_node *node = &va->rb_node;
	unsigned long new_va_sub_max_size;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);
		new_va_sub_max_size = compute_subtree_max_size(va);

		/*
		 * If the newly calculated maximum available size of the
		 * subtree is equal to the current one, then it means that
		 * the tree is propagated correctly. So we have to stop at
		 * this point to save cycles.
		 */
		if (va->subtree_max_size == new_va_sub_max_size)
			break;

		va->subtree_max_size = new_va_sub_max_size;
		node = rb_parent(&va->rb_node);
	}
645 646 647 648

#if DEBUG_AUGMENT_PROPAGATE_CHECK
	augment_tree_propagate_check(free_vmap_area_root.rb_node);
#endif
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
}

static void
insert_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	link = find_va_links(va, root, NULL, &parent);
	link_va(va, root, parent, link, head);
}

static void
insert_vmap_area_augment(struct vmap_area *va,
	struct rb_node *from, struct rb_root *root,
	struct list_head *head)
{
	struct rb_node **link;
	struct rb_node *parent;

	if (from)
		link = find_va_links(va, NULL, from, &parent);
	else
		link = find_va_links(va, root, NULL, &parent);

	link_va(va, root, parent, link, head);
	augment_tree_propagate_from(va);
}

/*
 * Merge de-allocated chunk of VA memory with previous
 * and next free blocks. If coalesce is not done a new
 * free area is inserted. If VA has been merged, it is
 * freed.
 */
static __always_inline void
merge_or_add_vmap_area(struct vmap_area *va,
	struct rb_root *root, struct list_head *head)
{
	struct vmap_area *sibling;
	struct list_head *next;
	struct rb_node **link;
	struct rb_node *parent;
	bool merged = false;

	/*
	 * Find a place in the tree where VA potentially will be
	 * inserted, unless it is merged with its sibling/siblings.
	 */
	link = find_va_links(va, root, NULL, &parent);

	/*
	 * Get next node of VA to check if merging can be done.
	 */
	next = get_va_next_sibling(parent, link);
	if (unlikely(next == NULL))
		goto insert;

	/*
	 * start            end
	 * |                |
	 * |<------VA------>|<-----Next----->|
	 *                  |                |
	 *                  start            end
	 */
	if (next != head) {
		sibling = list_entry(next, struct vmap_area, list);
		if (sibling->va_start == va->va_end) {
			sibling->va_start = va->va_start;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);

			/* Point to the new merged area. */
			va = sibling;
			merged = true;
		}
	}

	/*
	 * start            end
	 * |                |
	 * |<-----Prev----->|<------VA------>|
	 *                  |                |
	 *                  start            end
	 */
	if (next->prev != head) {
		sibling = list_entry(next->prev, struct vmap_area, list);
		if (sibling->va_end == va->va_start) {
			sibling->va_end = va->va_end;

			/* Check and update the tree if needed. */
			augment_tree_propagate_from(sibling);

747 748
			if (merged)
				unlink_va(va, root);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

			/* Free vmap_area object. */
			kmem_cache_free(vmap_area_cachep, va);
			return;
		}
	}

insert:
	if (!merged) {
		link_va(va, root, parent, link, head);
		augment_tree_propagate_from(va);
	}
}

static __always_inline bool
is_within_this_va(struct vmap_area *va, unsigned long size,
	unsigned long align, unsigned long vstart)
{
	unsigned long nva_start_addr;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Can be overflowed due to big size or alignment. */
	if (nva_start_addr + size < nva_start_addr ||
			nva_start_addr < vstart)
		return false;

	return (nva_start_addr + size <= va->va_end);
}

/*
 * Find the first free block(lowest start address) in the tree,
 * that will accomplish the request corresponding to passing
 * parameters.
 */
static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;
	struct rb_node *node;
	unsigned long length;

	/* Start from the root. */
	node = free_vmap_area_root.rb_node;

	/* Adjust the search size for alignment overhead. */
	length = size + align - 1;

	while (node) {
		va = rb_entry(node, struct vmap_area, rb_node);

		if (get_subtree_max_size(node->rb_left) >= length &&
				vstart < va->va_start) {
			node = node->rb_left;
		} else {
			if (is_within_this_va(va, size, align, vstart))
				return va;

			/*
			 * Does not make sense to go deeper towards the right
			 * sub-tree if it does not have a free block that is
			 * equal or bigger to the requested search length.
			 */
			if (get_subtree_max_size(node->rb_right) >= length) {
				node = node->rb_right;
				continue;
			}

			/*
822
			 * OK. We roll back and find the first right sub-tree,
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
			 * that will satisfy the search criteria. It can happen
			 * only once due to "vstart" restriction.
			 */
			while ((node = rb_parent(node))) {
				va = rb_entry(node, struct vmap_area, rb_node);
				if (is_within_this_va(va, size, align, vstart))
					return va;

				if (get_subtree_max_size(node->rb_right) >= length &&
						vstart <= va->va_start) {
					node = node->rb_right;
					break;
				}
			}
		}
	}

	return NULL;
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
#include <linux/random.h>

static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,
	unsigned long align, unsigned long vstart)
{
	struct vmap_area *va;

	list_for_each_entry(va, &free_vmap_area_list, list) {
		if (!is_within_this_va(va, size, align, vstart))
			continue;

		return va;
	}

	return NULL;
}

static void
find_vmap_lowest_match_check(unsigned long size)
{
	struct vmap_area *va_1, *va_2;
	unsigned long vstart;
	unsigned int rnd;

	get_random_bytes(&rnd, sizeof(rnd));
	vstart = VMALLOC_START + rnd;

	va_1 = find_vmap_lowest_match(size, 1, vstart);
	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);

	if (va_1 != va_2)
		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
			va_1, va_2, vstart);
}
#endif

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
enum fit_type {
	NOTHING_FIT = 0,
	FL_FIT_TYPE = 1,	/* full fit */
	LE_FIT_TYPE = 2,	/* left edge fit */
	RE_FIT_TYPE = 3,	/* right edge fit */
	NE_FIT_TYPE = 4		/* no edge fit */
};

static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size)
{
	enum fit_type type;

	/* Check if it is within VA. */
	if (nva_start_addr < va->va_start ||
			nva_start_addr + size > va->va_end)
		return NOTHING_FIT;

	/* Now classify. */
	if (va->va_start == nva_start_addr) {
		if (va->va_end == nva_start_addr + size)
			type = FL_FIT_TYPE;
		else
			type = LE_FIT_TYPE;
	} else if (va->va_end == nva_start_addr + size) {
		type = RE_FIT_TYPE;
	} else {
		type = NE_FIT_TYPE;
	}

	return type;
}

static __always_inline int
adjust_va_to_fit_type(struct vmap_area *va,
	unsigned long nva_start_addr, unsigned long size,
	enum fit_type type)
{
920
	struct vmap_area *lva = NULL;
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

	if (type == FL_FIT_TYPE) {
		/*
		 * No need to split VA, it fully fits.
		 *
		 * |               |
		 * V      NVA      V
		 * |---------------|
		 */
		unlink_va(va, &free_vmap_area_root);
		kmem_cache_free(vmap_area_cachep, va);
	} else if (type == LE_FIT_TYPE) {
		/*
		 * Split left edge of fit VA.
		 *
		 * |       |
		 * V  NVA  V   R
		 * |-------|-------|
		 */
		va->va_start += size;
	} else if (type == RE_FIT_TYPE) {
		/*
		 * Split right edge of fit VA.
		 *
		 *         |       |
		 *     L   V  NVA  V
		 * |-------|-------|
		 */
		va->va_end = nva_start_addr;
	} else if (type == NE_FIT_TYPE) {
		/*
		 * Split no edge of fit VA.
		 *
		 *     |       |
		 *   L V  NVA  V R
		 * |---|-------|---|
		 */
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
		if (unlikely(!lva)) {
			/*
			 * For percpu allocator we do not do any pre-allocation
			 * and leave it as it is. The reason is it most likely
			 * never ends up with NE_FIT_TYPE splitting. In case of
			 * percpu allocations offsets and sizes are aligned to
			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
			 * are its main fitting cases.
			 *
			 * There are a few exceptions though, as an example it is
			 * a first allocation (early boot up) when we have "one"
			 * big free space that has to be split.
			 */
			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
			if (!lva)
				return -1;
		}
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993

		/*
		 * Build the remainder.
		 */
		lva->va_start = va->va_start;
		lva->va_end = nva_start_addr;

		/*
		 * Shrink this VA to remaining size.
		 */
		va->va_start = nva_start_addr + size;
	} else {
		return -1;
	}

	if (type != FL_FIT_TYPE) {
		augment_tree_propagate_from(va);

994
		if (lva)	/* type == NE_FIT_TYPE */
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
			insert_vmap_area_augment(lva, &va->rb_node,
				&free_vmap_area_root, &free_vmap_area_list);
	}

	return 0;
}

/*
 * Returns a start address of the newly allocated area, if success.
 * Otherwise a vend is returned that indicates failure.
 */
static __always_inline unsigned long
__alloc_vmap_area(unsigned long size, unsigned long align,
1008
	unsigned long vstart, unsigned long vend)
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
{
	unsigned long nva_start_addr;
	struct vmap_area *va;
	enum fit_type type;
	int ret;

	va = find_vmap_lowest_match(size, align, vstart);
	if (unlikely(!va))
		return vend;

	if (va->va_start > vstart)
		nva_start_addr = ALIGN(va->va_start, align);
	else
		nva_start_addr = ALIGN(vstart, align);

	/* Check the "vend" restriction. */
	if (nva_start_addr + size > vend)
		return vend;

	/* Classify what we have found. */
	type = classify_va_fit_type(va, nva_start_addr, size);
	if (WARN_ON_ONCE(type == NOTHING_FIT))
		return vend;

	/* Update the free vmap_area. */
	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
	if (ret)
		return vend;

1038 1039 1040 1041
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
	find_vmap_lowest_match_check(size);
#endif

1042 1043
	return nva_start_addr;
}
1044

N
Nick Piggin 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053
/*
 * Allocate a region of KVA of the specified size and alignment, within the
 * vstart and vend.
 */
static struct vmap_area *alloc_vmap_area(unsigned long size,
				unsigned long align,
				unsigned long vstart, unsigned long vend,
				int node, gfp_t gfp_mask)
{
1054
	struct vmap_area *va, *pva;
L
Linus Torvalds 已提交
1055
	unsigned long addr;
N
Nick Piggin 已提交
1056 1057
	int purged = 0;

N
Nick Piggin 已提交
1058
	BUG_ON(!size);
1059
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1060
	BUG_ON(!is_power_of_2(align));
N
Nick Piggin 已提交
1061

1062 1063 1064
	if (unlikely(!vmap_initialized))
		return ERR_PTR(-EBUSY);

1065
	might_sleep();
1066
	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1067

1068
	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
N
Nick Piggin 已提交
1069 1070 1071
	if (unlikely(!va))
		return ERR_PTR(-ENOMEM);

1072 1073 1074 1075
	/*
	 * Only scan the relevant parts containing pointers to other objects
	 * to avoid false negatives.
	 */
1076
	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1077

N
Nick Piggin 已提交
1078
retry:
1079
	/*
1080 1081 1082 1083 1084 1085
	 * Preload this CPU with one extra vmap_area object. It is used
	 * when fit type of free area is NE_FIT_TYPE. Please note, it
	 * does not guarantee that an allocation occurs on a CPU that
	 * is preloaded, instead we minimize the case when it is not.
	 * It can happen because of cpu migration, because there is a
	 * race until the below spinlock is taken.
1086 1087 1088
	 *
	 * The preload is done in non-atomic context, thus it allows us
	 * to use more permissive allocation masks to be more stable under
1089 1090
	 * low memory condition and high memory pressure. In rare case,
	 * if not preloaded, GFP_NOWAIT is used.
1091
	 *
1092
	 * Set "pva" to NULL here, because of "retry" path.
1093
	 */
1094
	pva = NULL;
1095

1096 1097 1098 1099 1100 1101
	if (!this_cpu_read(ne_fit_preload_node))
		/*
		 * Even if it fails we do not really care about that.
		 * Just proceed as it is. If needed "overflow" path
		 * will refill the cache we allocate from.
		 */
1102
		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1103

N
Nick Piggin 已提交
1104
	spin_lock(&vmap_area_lock);
1105 1106 1107

	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
		kmem_cache_free(vmap_area_cachep, pva);
N
Nick Piggin 已提交
1108

1109
	/*
1110 1111
	 * If an allocation fails, the "vend" address is
	 * returned. Therefore trigger the overflow path.
1112
	 */
1113
	addr = __alloc_vmap_area(size, align, vstart, vend);
1114
	if (unlikely(addr == vend))
N
Nick Piggin 已提交
1115
		goto overflow;
N
Nick Piggin 已提交
1116 1117 1118

	va->va_start = addr;
	va->va_end = addr + size;
1119
	va->vm = NULL;
1120 1121
	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);

N
Nick Piggin 已提交
1122 1123
	spin_unlock(&vmap_area_lock);

1124
	BUG_ON(!IS_ALIGNED(va->va_start, align));
N
Nick Piggin 已提交
1125 1126 1127
	BUG_ON(va->va_start < vstart);
	BUG_ON(va->va_end > vend);

N
Nick Piggin 已提交
1128
	return va;
N
Nick Piggin 已提交
1129 1130 1131 1132 1133 1134 1135 1136

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = 1;
		goto retry;
	}
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

	if (gfpflags_allow_blocking(gfp_mask)) {
		unsigned long freed = 0;
		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
		if (freed > 0) {
			purged = 0;
			goto retry;
		}
	}

1147
	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
J
Joe Perches 已提交
1148 1149
		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
			size);
1150 1151

	kmem_cache_free(vmap_area_cachep, va);
N
Nick Piggin 已提交
1152
	return ERR_PTR(-EBUSY);
N
Nick Piggin 已提交
1153 1154
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
int register_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);

int unregister_vmap_purge_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
}
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);

N
Nick Piggin 已提交
1167 1168
static void __free_vmap_area(struct vmap_area *va)
{
1169
	/*
1170
	 * Remove from the busy tree/list.
1171
	 */
1172
	unlink_va(va, &vmap_area_root);
1173

1174 1175 1176 1177 1178
	/*
	 * Merge VA with its neighbors, otherwise just add it.
	 */
	merge_or_add_vmap_area(va,
		&free_vmap_area_root, &free_vmap_area_list);
N
Nick Piggin 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
}

/*
 * Free a region of KVA allocated by alloc_vmap_area
 */
static void free_vmap_area(struct vmap_area *va)
{
	spin_lock(&vmap_area_lock);
	__free_vmap_area(va);
	spin_unlock(&vmap_area_lock);
}

/*
 * Clear the pagetable entries of a given vmap_area
 */
static void unmap_vmap_area(struct vmap_area *va)
{
	vunmap_page_range(va->va_start, va->va_end);
}

/*
 * lazy_max_pages is the maximum amount of virtual address space we gather up
 * before attempting to purge with a TLB flush.
 *
 * There is a tradeoff here: a larger number will cover more kernel page tables
 * and take slightly longer to purge, but it will linearly reduce the number of
 * global TLB flushes that must be performed. It would seem natural to scale
 * this number up linearly with the number of CPUs (because vmapping activity
 * could also scale linearly with the number of CPUs), however it is likely
 * that in practice, workloads might be constrained in other ways that mean
 * vmap activity will not scale linearly with CPUs. Also, I want to be
 * conservative and not introduce a big latency on huge systems, so go with
 * a less aggressive log scale. It will still be an improvement over the old
 * code, and it will be simple to change the scale factor if we find that it
 * becomes a problem on bigger systems.
 */
static unsigned long lazy_max_pages(void)
{
	unsigned int log;

	log = fls(num_online_cpus());

	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
}

1224
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
N
Nick Piggin 已提交
1225

1226 1227 1228 1229 1230
/*
 * Serialize vmap purging.  There is no actual criticial section protected
 * by this look, but we want to avoid concurrent calls for performance
 * reasons and to make the pcpu_get_vm_areas more deterministic.
 */
1231
static DEFINE_MUTEX(vmap_purge_lock);
1232

1233 1234 1235
/* for per-CPU blocks */
static void purge_fragmented_blocks_allcpus(void);

1236 1237 1238 1239 1240 1241
/*
 * called before a call to iounmap() if the caller wants vm_area_struct's
 * immediately freed.
 */
void set_iounmap_nonlazy(void)
{
1242
	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1243 1244
}

N
Nick Piggin 已提交
1245 1246 1247
/*
 * Purges all lazily-freed vmap areas.
 */
1248
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
N
Nick Piggin 已提交
1249
{
1250
	unsigned long resched_threshold;
1251
	struct llist_node *valist;
N
Nick Piggin 已提交
1252
	struct vmap_area *va;
1253
	struct vmap_area *n_va;
N
Nick Piggin 已提交
1254

1255
	lockdep_assert_held(&vmap_purge_lock);
1256

1257
	valist = llist_del_all(&vmap_purge_list);
1258 1259 1260
	if (unlikely(valist == NULL))
		return false;

1261 1262 1263 1264 1265 1266
	/*
	 * First make sure the mappings are removed from all page-tables
	 * before they are freed.
	 */
	vmalloc_sync_all();

1267 1268 1269 1270
	/*
	 * TODO: to calculate a flush range without looping.
	 * The list can be up to lazy_max_pages() elements.
	 */
1271
	llist_for_each_entry(va, valist, purge_list) {
1272 1273 1274 1275
		if (va->va_start < start)
			start = va->va_start;
		if (va->va_end > end)
			end = va->va_end;
N
Nick Piggin 已提交
1276 1277
	}

1278
	flush_tlb_kernel_range(start, end);
1279
	resched_threshold = lazy_max_pages() << 1;
N
Nick Piggin 已提交
1280

1281
	spin_lock(&vmap_area_lock);
1282
	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1283
		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1284

1285 1286 1287 1288 1289 1290 1291 1292
		/*
		 * Finally insert or merge lazily-freed area. It is
		 * detached and there is no need to "unlink" it from
		 * anything.
		 */
		merge_or_add_vmap_area(va,
			&free_vmap_area_root, &free_vmap_area_list);

1293
		atomic_long_sub(nr, &vmap_lazy_nr);
1294

1295
		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1296
			cond_resched_lock(&vmap_area_lock);
1297
	}
1298 1299
	spin_unlock(&vmap_area_lock);
	return true;
N
Nick Piggin 已提交
1300 1301
}

N
Nick Piggin 已提交
1302 1303 1304 1305 1306 1307
/*
 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 * is already purging.
 */
static void try_purge_vmap_area_lazy(void)
{
1308
	if (mutex_trylock(&vmap_purge_lock)) {
1309
		__purge_vmap_area_lazy(ULONG_MAX, 0);
1310
		mutex_unlock(&vmap_purge_lock);
1311
	}
N
Nick Piggin 已提交
1312 1313
}

N
Nick Piggin 已提交
1314 1315 1316 1317 1318
/*
 * Kick off a purge of the outstanding lazy areas.
 */
static void purge_vmap_area_lazy(void)
{
1319
	mutex_lock(&vmap_purge_lock);
1320 1321
	purge_fragmented_blocks_allcpus();
	__purge_vmap_area_lazy(ULONG_MAX, 0);
1322
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1323 1324 1325
}

/*
1326 1327 1328
 * Free a vmap area, caller ensuring that the area has been unmapped
 * and flush_cache_vunmap had been called for the correct range
 * previously.
N
Nick Piggin 已提交
1329
 */
1330
static void free_vmap_area_noflush(struct vmap_area *va)
N
Nick Piggin 已提交
1331
{
1332
	unsigned long nr_lazy;
1333

1334 1335 1336 1337
	spin_lock(&vmap_area_lock);
	unlink_va(va, &vmap_area_root);
	spin_unlock(&vmap_area_lock);

1338 1339
	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
				PAGE_SHIFT, &vmap_lazy_nr);
1340 1341 1342 1343 1344

	/* After this point, we may free va at any time */
	llist_add(&va->purge_list, &vmap_purge_list);

	if (unlikely(nr_lazy > lazy_max_pages()))
N
Nick Piggin 已提交
1345
		try_purge_vmap_area_lazy();
N
Nick Piggin 已提交
1346 1347
}

1348 1349 1350 1351 1352 1353
/*
 * Free and unmap a vmap area
 */
static void free_unmap_vmap_area(struct vmap_area *va)
{
	flush_cache_vunmap(va->va_start, va->va_end);
1354
	unmap_vmap_area(va);
1355 1356 1357
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range(va->va_start, va->va_end);

1358
	free_vmap_area_noflush(va);
1359 1360
}

N
Nick Piggin 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
static struct vmap_area *find_vmap_area(unsigned long addr)
{
	struct vmap_area *va;

	spin_lock(&vmap_area_lock);
	va = __find_vmap_area(addr);
	spin_unlock(&vmap_area_lock);

	return va;
}

/*** Per cpu kva allocator ***/

/*
 * vmap space is limited especially on 32 bit architectures. Ensure there is
 * room for at least 16 percpu vmap blocks per CPU.
 */
/*
 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 * instead (we just need a rough idea)
 */
#if BITS_PER_LONG == 32
#define VMALLOC_SPACE		(128UL*1024*1024)
#else
#define VMALLOC_SPACE		(128UL*1024*1024*1024)
#endif

#define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
#define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
#define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
#define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
#define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
#define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1395 1396 1397 1398
#define VMAP_BBMAP_BITS		\
		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
N
Nick Piggin 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

#define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)

struct vmap_block_queue {
	spinlock_t lock;
	struct list_head free;
};

struct vmap_block {
	spinlock_t lock;
	struct vmap_area *va;
	unsigned long free, dirty;
1411
	unsigned long dirty_min, dirty_max; /*< dirty range */
1412 1413
	struct list_head free_list;
	struct rcu_head rcu_head;
1414
	struct list_head purge;
N
Nick Piggin 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
};

/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);

/*
 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 * in the free path. Could get rid of this if we change the API to return a
 * "cookie" from alloc, to be passed to free. But no big deal yet.
 */
static DEFINE_SPINLOCK(vmap_block_tree_lock);
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);

/*
 * We should probably have a fallback mechanism to allocate virtual memory
 * out of partially filled vmap blocks. However vmap block sizing should be
 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 * big problem.
 */

static unsigned long addr_to_vb_idx(unsigned long addr)
{
	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
	addr /= VMAP_BLOCK_SIZE;
	return addr;
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
{
	unsigned long addr;

	addr = va_start + (pages_off << PAGE_SHIFT);
	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
	return (void *)addr;
}

/**
 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 * @order:    how many 2^order pages should be occupied in newly allocated block
 * @gfp_mask: flags for the page level allocator
 *
1457
 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1458 1459
 */
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
N
Nick Piggin 已提交
1460 1461 1462 1463 1464 1465
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
	struct vmap_area *va;
	unsigned long vb_idx;
	int node, err;
1466
	void *vaddr;
N
Nick Piggin 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	node = numa_node_id();

	vb = kmalloc_node(sizeof(struct vmap_block),
			gfp_mask & GFP_RECLAIM_MASK, node);
	if (unlikely(!vb))
		return ERR_PTR(-ENOMEM);

	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
					VMALLOC_START, VMALLOC_END,
					node, gfp_mask);
1478
	if (IS_ERR(va)) {
N
Nick Piggin 已提交
1479
		kfree(vb);
J
Julia Lawall 已提交
1480
		return ERR_CAST(va);
N
Nick Piggin 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489
	}

	err = radix_tree_preload(gfp_mask);
	if (unlikely(err)) {
		kfree(vb);
		free_vmap_area(va);
		return ERR_PTR(err);
	}

1490
	vaddr = vmap_block_vaddr(va->va_start, 0);
N
Nick Piggin 已提交
1491 1492
	spin_lock_init(&vb->lock);
	vb->va = va;
1493 1494 1495
	/* At least something should be left free */
	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
	vb->free = VMAP_BBMAP_BITS - (1UL << order);
N
Nick Piggin 已提交
1496
	vb->dirty = 0;
1497 1498
	vb->dirty_min = VMAP_BBMAP_BITS;
	vb->dirty_max = 0;
N
Nick Piggin 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	INIT_LIST_HEAD(&vb->free_list);

	vb_idx = addr_to_vb_idx(va->va_start);
	spin_lock(&vmap_block_tree_lock);
	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(err);
	radix_tree_preload_end();

	vbq = &get_cpu_var(vmap_block_queue);
	spin_lock(&vbq->lock);
1510
	list_add_tail_rcu(&vb->free_list, &vbq->free);
N
Nick Piggin 已提交
1511
	spin_unlock(&vbq->lock);
1512
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1513

1514
	return vaddr;
N
Nick Piggin 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
}

static void free_vmap_block(struct vmap_block *vb)
{
	struct vmap_block *tmp;
	unsigned long vb_idx;

	vb_idx = addr_to_vb_idx(vb->va->va_start);
	spin_lock(&vmap_block_tree_lock);
	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
	spin_unlock(&vmap_block_tree_lock);
	BUG_ON(tmp != vb);

1528
	free_vmap_area_noflush(vb->va);
1529
	kfree_rcu(vb, rcu_head);
N
Nick Piggin 已提交
1530 1531
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
static void purge_fragmented_blocks(int cpu)
{
	LIST_HEAD(purge);
	struct vmap_block *vb;
	struct vmap_block *n_vb;
	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);

	rcu_read_lock();
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {

		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
			continue;

		spin_lock(&vb->lock);
		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
			vb->free = 0; /* prevent further allocs after releasing lock */
			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1549 1550
			vb->dirty_min = 0;
			vb->dirty_max = VMAP_BBMAP_BITS;
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
			spin_unlock(&vb->lock);
			list_add_tail(&vb->purge, &purge);
		} else
			spin_unlock(&vb->lock);
	}
	rcu_read_unlock();

	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
		list_del(&vb->purge);
		free_vmap_block(vb);
	}
}

static void purge_fragmented_blocks_allcpus(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		purge_fragmented_blocks(cpu);
}

N
Nick Piggin 已提交
1575 1576 1577 1578
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
	struct vmap_block_queue *vbq;
	struct vmap_block *vb;
1579
	void *vaddr = NULL;
N
Nick Piggin 已提交
1580 1581
	unsigned int order;

1582
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1583
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
J
Jan Kara 已提交
1584 1585 1586 1587 1588 1589 1590 1591
	if (WARN_ON(size == 0)) {
		/*
		 * Allocating 0 bytes isn't what caller wants since
		 * get_order(0) returns funny result. Just warn and terminate
		 * early.
		 */
		return NULL;
	}
N
Nick Piggin 已提交
1592 1593 1594 1595 1596
	order = get_order(size);

	rcu_read_lock();
	vbq = &get_cpu_var(vmap_block_queue);
	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1597
		unsigned long pages_off;
N
Nick Piggin 已提交
1598 1599

		spin_lock(&vb->lock);
1600 1601 1602 1603
		if (vb->free < (1UL << order)) {
			spin_unlock(&vb->lock);
			continue;
		}
1604

1605 1606
		pages_off = VMAP_BBMAP_BITS - vb->free;
		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1607 1608 1609 1610 1611 1612
		vb->free -= 1UL << order;
		if (vb->free == 0) {
			spin_lock(&vbq->lock);
			list_del_rcu(&vb->free_list);
			spin_unlock(&vbq->lock);
		}
1613

1614 1615
		spin_unlock(&vb->lock);
		break;
N
Nick Piggin 已提交
1616
	}
1617

1618
	put_cpu_var(vmap_block_queue);
N
Nick Piggin 已提交
1619 1620
	rcu_read_unlock();

1621 1622 1623
	/* Allocate new block if nothing was found */
	if (!vaddr)
		vaddr = new_vmap_block(order, gfp_mask);
N
Nick Piggin 已提交
1624

1625
	return vaddr;
N
Nick Piggin 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634
}

static void vb_free(const void *addr, unsigned long size)
{
	unsigned long offset;
	unsigned long vb_idx;
	unsigned int order;
	struct vmap_block *vb;

1635
	BUG_ON(offset_in_page(size));
N
Nick Piggin 已提交
1636
	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1637 1638 1639

	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);

N
Nick Piggin 已提交
1640 1641 1642
	order = get_order(size);

	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1643
	offset >>= PAGE_SHIFT;
N
Nick Piggin 已提交
1644 1645 1646 1647 1648 1649 1650

	vb_idx = addr_to_vb_idx((unsigned long)addr);
	rcu_read_lock();
	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
	rcu_read_unlock();
	BUG_ON(!vb);

1651 1652
	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);

1653 1654 1655 1656
	if (debug_pagealloc_enabled())
		flush_tlb_kernel_range((unsigned long)addr,
					(unsigned long)addr + size);

N
Nick Piggin 已提交
1657
	spin_lock(&vb->lock);
1658 1659 1660 1661

	/* Expand dirty range */
	vb->dirty_min = min(vb->dirty_min, offset);
	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1662

N
Nick Piggin 已提交
1663 1664
	vb->dirty += 1UL << order;
	if (vb->dirty == VMAP_BBMAP_BITS) {
1665
		BUG_ON(vb->free);
N
Nick Piggin 已提交
1666 1667 1668 1669 1670 1671
		spin_unlock(&vb->lock);
		free_vmap_block(vb);
	} else
		spin_unlock(&vb->lock);
}

1672
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
N
Nick Piggin 已提交
1673 1674 1675
{
	int cpu;

1676 1677 1678
	if (unlikely(!vmap_initialized))
		return;

1679 1680
	might_sleep();

N
Nick Piggin 已提交
1681 1682 1683 1684 1685 1686 1687
	for_each_possible_cpu(cpu) {
		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
		struct vmap_block *vb;

		rcu_read_lock();
		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
			spin_lock(&vb->lock);
1688 1689
			if (vb->dirty) {
				unsigned long va_start = vb->va->va_start;
N
Nick Piggin 已提交
1690
				unsigned long s, e;
1691

1692 1693
				s = va_start + (vb->dirty_min << PAGE_SHIFT);
				e = va_start + (vb->dirty_max << PAGE_SHIFT);
N
Nick Piggin 已提交
1694

1695 1696
				start = min(s, start);
				end   = max(e, end);
N
Nick Piggin 已提交
1697

1698
				flush = 1;
N
Nick Piggin 已提交
1699 1700 1701 1702 1703 1704
			}
			spin_unlock(&vb->lock);
		}
		rcu_read_unlock();
	}

1705
	mutex_lock(&vmap_purge_lock);
1706 1707 1708
	purge_fragmented_blocks_allcpus();
	if (!__purge_vmap_area_lazy(start, end) && flush)
		flush_tlb_kernel_range(start, end);
1709
	mutex_unlock(&vmap_purge_lock);
N
Nick Piggin 已提交
1710
}
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

/**
 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 *
 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 * to amortize TLB flushing overheads. What this means is that any page you
 * have now, may, in a former life, have been mapped into kernel virtual
 * address by the vmap layer and so there might be some CPUs with TLB entries
 * still referencing that page (additional to the regular 1:1 kernel mapping).
 *
 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 * be sure that none of the pages we have control over will have any aliases
 * from the vmap layer.
 */
void vm_unmap_aliases(void)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush = 0;

	_vm_unmap_aliases(start, end, flush);
}
N
Nick Piggin 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740
EXPORT_SYMBOL_GPL(vm_unmap_aliases);

/**
 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 * @mem: the pointer returned by vm_map_ram
 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 */
void vm_unmap_ram(const void *mem, unsigned int count)
{
1741
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1742
	unsigned long addr = (unsigned long)mem;
1743
	struct vmap_area *va;
N
Nick Piggin 已提交
1744

1745
	might_sleep();
N
Nick Piggin 已提交
1746 1747 1748
	BUG_ON(!addr);
	BUG_ON(addr < VMALLOC_START);
	BUG_ON(addr > VMALLOC_END);
1749
	BUG_ON(!PAGE_ALIGNED(addr));
N
Nick Piggin 已提交
1750

1751
	if (likely(count <= VMAP_MAX_ALLOC)) {
1752
		debug_check_no_locks_freed(mem, size);
N
Nick Piggin 已提交
1753
		vb_free(mem, size);
1754 1755 1756 1757 1758
		return;
	}

	va = find_vmap_area(addr);
	BUG_ON(!va);
1759 1760
	debug_check_no_locks_freed((void *)va->va_start,
				    (va->va_end - va->va_start));
1761
	free_unmap_vmap_area(va);
N
Nick Piggin 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770
}
EXPORT_SYMBOL(vm_unmap_ram);

/**
 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 * @pages: an array of pointers to the pages to be mapped
 * @count: number of pages
 * @node: prefer to allocate data structures on this node
 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1771
 *
1772 1773 1774 1775 1776 1777
 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 * faster than vmap so it's good.  But if you mix long-life and short-life
 * objects with vm_map_ram(), it could consume lots of address space through
 * fragmentation (especially on a 32bit machine).  You could see failures in
 * the end.  Please use this function for short-lived objects.
 *
1778
 * Returns: a pointer to the address that has been mapped, or %NULL on failure
N
Nick Piggin 已提交
1779 1780 1781
 */
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
1782
	unsigned long size = (unsigned long)count << PAGE_SHIFT;
N
Nick Piggin 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	unsigned long addr;
	void *mem;

	if (likely(count <= VMAP_MAX_ALLOC)) {
		mem = vb_alloc(size, GFP_KERNEL);
		if (IS_ERR(mem))
			return NULL;
		addr = (unsigned long)mem;
	} else {
		struct vmap_area *va;
		va = alloc_vmap_area(size, PAGE_SIZE,
				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
		if (IS_ERR(va))
			return NULL;

		addr = va->va_start;
		mem = (void *)addr;
	}
	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
		vm_unmap_ram(mem, count);
		return NULL;
	}
	return mem;
}
EXPORT_SYMBOL(vm_map_ram);

1809
static struct vm_struct *vmlist __initdata;
1810

N
Nicolas Pitre 已提交
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
/**
 * vm_area_add_early - add vmap area early during boot
 * @vm: vm_struct to add
 *
 * This function is used to add fixed kernel vm area to vmlist before
 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 * should contain proper values and the other fields should be zero.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
void __init vm_area_add_early(struct vm_struct *vm)
{
	struct vm_struct *tmp, **p;

	BUG_ON(vmap_initialized);
	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
		if (tmp->addr >= vm->addr) {
			BUG_ON(tmp->addr < vm->addr + vm->size);
			break;
		} else
			BUG_ON(tmp->addr + tmp->size > vm->addr);
	}
	vm->next = *p;
	*p = vm;
}

1837 1838 1839
/**
 * vm_area_register_early - register vmap area early during boot
 * @vm: vm_struct to register
1840
 * @align: requested alignment
1841 1842 1843 1844 1845 1846 1847 1848
 *
 * This function is used to register kernel vm area before
 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 * proper values on entry and other fields should be zero.  On return,
 * vm->addr contains the allocated address.
 *
 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 */
1849
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1850 1851
{
	static size_t vm_init_off __initdata;
1852 1853 1854 1855
	unsigned long addr;

	addr = ALIGN(VMALLOC_START + vm_init_off, align);
	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1856

1857
	vm->addr = (void *)addr;
1858

N
Nicolas Pitre 已提交
1859
	vm_area_add_early(vm);
1860 1861
}

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
static void vmap_init_free_space(void)
{
	unsigned long vmap_start = 1;
	const unsigned long vmap_end = ULONG_MAX;
	struct vmap_area *busy, *free;

	/*
	 *     B     F     B     B     B     F
	 * -|-----|.....|-----|-----|-----|.....|-
	 *  |           The KVA space           |
	 *  |<--------------------------------->|
	 */
	list_for_each_entry(busy, &vmap_area_list, list) {
		if (busy->va_start - vmap_start > 0) {
			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
			if (!WARN_ON_ONCE(!free)) {
				free->va_start = vmap_start;
				free->va_end = busy->va_start;

				insert_vmap_area_augment(free, NULL,
					&free_vmap_area_root,
						&free_vmap_area_list);
			}
		}

		vmap_start = busy->va_end;
	}

	if (vmap_end - vmap_start > 0) {
		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (!WARN_ON_ONCE(!free)) {
			free->va_start = vmap_start;
			free->va_end = vmap_end;

			insert_vmap_area_augment(free, NULL,
				&free_vmap_area_root,
					&free_vmap_area_list);
		}
	}
}

N
Nick Piggin 已提交
1903 1904
void __init vmalloc_init(void)
{
I
Ivan Kokshaysky 已提交
1905 1906
	struct vmap_area *va;
	struct vm_struct *tmp;
N
Nick Piggin 已提交
1907 1908
	int i;

1909 1910 1911 1912 1913
	/*
	 * Create the cache for vmap_area objects.
	 */
	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);

N
Nick Piggin 已提交
1914 1915
	for_each_possible_cpu(i) {
		struct vmap_block_queue *vbq;
1916
		struct vfree_deferred *p;
N
Nick Piggin 已提交
1917 1918 1919 1920

		vbq = &per_cpu(vmap_block_queue, i);
		spin_lock_init(&vbq->lock);
		INIT_LIST_HEAD(&vbq->free);
1921 1922 1923
		p = &per_cpu(vfree_deferred, i);
		init_llist_head(&p->list);
		INIT_WORK(&p->wq, free_work);
N
Nick Piggin 已提交
1924
	}
1925

I
Ivan Kokshaysky 已提交
1926 1927
	/* Import existing vmlist entries. */
	for (tmp = vmlist; tmp; tmp = tmp->next) {
1928 1929 1930 1931
		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
		if (WARN_ON_ONCE(!va))
			continue;

I
Ivan Kokshaysky 已提交
1932 1933
		va->va_start = (unsigned long)tmp->addr;
		va->va_end = va->va_start + tmp->size;
1934
		va->vm = tmp;
1935
		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
I
Ivan Kokshaysky 已提交
1936
	}
1937

1938 1939 1940 1941
	/*
	 * Now we can initialize a free vmap space.
	 */
	vmap_init_free_space();
1942
	vmap_initialized = true;
N
Nick Piggin 已提交
1943 1944
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
/**
 * map_kernel_range_noflush - map kernel VM area with the specified pages
 * @addr: start of the VM area to map
 * @size: size of the VM area to map
 * @prot: page protection flags to use
 * @pages: pages to map
 *
 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vmap() on to-be-mapped areas
 * before calling this function.
 *
 * RETURNS:
 * The number of pages mapped on success, -errno on failure.
 */
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
			     pgprot_t prot, struct page **pages)
{
	return vmap_page_range_noflush(addr, addr + size, prot, pages);
}

/**
 * unmap_kernel_range_noflush - unmap kernel VM area
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
 * specify should have been allocated using get_vm_area() and its
 * friends.
 *
 * NOTE:
 * This function does NOT do any cache flushing.  The caller is
 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
 * before calling this function and flush_tlb_kernel_range() after.
 */
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
{
	vunmap_page_range(addr, addr + size);
}
1988
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1989 1990 1991 1992 1993 1994 1995 1996 1997

/**
 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
 * @addr: start of the VM area to unmap
 * @size: size of the VM area to unmap
 *
 * Similar to unmap_kernel_range_noflush() but flushes vcache before
 * the unmapping and tlb after.
 */
N
Nick Piggin 已提交
1998 1999 2000
void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	unsigned long end = addr + size;
2001 2002

	flush_cache_vunmap(addr, end);
N
Nick Piggin 已提交
2003 2004 2005
	vunmap_page_range(addr, end);
	flush_tlb_kernel_range(addr, end);
}
2006
EXPORT_SYMBOL_GPL(unmap_kernel_range);
N
Nick Piggin 已提交
2007

2008
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
N
Nick Piggin 已提交
2009 2010
{
	unsigned long addr = (unsigned long)area->addr;
2011
	unsigned long end = addr + get_vm_area_size(area);
N
Nick Piggin 已提交
2012 2013
	int err;

2014
	err = vmap_page_range(addr, end, prot, pages);
N
Nick Piggin 已提交
2015

2016
	return err > 0 ? 0 : err;
N
Nick Piggin 已提交
2017 2018 2019
}
EXPORT_SYMBOL_GPL(map_vm_area);

2020
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2021
			      unsigned long flags, const void *caller)
2022
{
2023
	spin_lock(&vmap_area_lock);
2024 2025 2026 2027
	vm->flags = flags;
	vm->addr = (void *)va->va_start;
	vm->size = va->va_end - va->va_start;
	vm->caller = caller;
2028
	va->vm = vm;
2029
	spin_unlock(&vmap_area_lock);
2030
}
2031

2032
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2033
{
2034
	/*
2035
	 * Before removing VM_UNINITIALIZED,
2036 2037 2038 2039
	 * we should make sure that vm has proper values.
	 * Pair with smp_rmb() in show_numa_info().
	 */
	smp_wmb();
2040
	vm->flags &= ~VM_UNINITIALIZED;
2041 2042
}

N
Nick Piggin 已提交
2043
static struct vm_struct *__get_vm_area_node(unsigned long size,
2044
		unsigned long align, unsigned long flags, unsigned long start,
2045
		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
N
Nick Piggin 已提交
2046
{
2047
	struct vmap_area *va;
N
Nick Piggin 已提交
2048
	struct vm_struct *area;
L
Linus Torvalds 已提交
2049

2050
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
2051
	size = PAGE_ALIGN(size);
2052 2053
	if (unlikely(!size))
		return NULL;
L
Linus Torvalds 已提交
2054

2055 2056 2057 2058
	if (flags & VM_IOREMAP)
		align = 1ul << clamp_t(int, get_count_order_long(size),
				       PAGE_SHIFT, IOREMAP_MAX_ORDER);

2059
	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
L
Linus Torvalds 已提交
2060 2061 2062
	if (unlikely(!area))
		return NULL;

2063 2064
	if (!(flags & VM_NO_GUARD))
		size += PAGE_SIZE;
L
Linus Torvalds 已提交
2065

N
Nick Piggin 已提交
2066 2067 2068 2069
	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
	if (IS_ERR(va)) {
		kfree(area);
		return NULL;
L
Linus Torvalds 已提交
2070 2071
	}

2072
	setup_vmalloc_vm(area, va, flags, caller);
2073

L
Linus Torvalds 已提交
2074 2075 2076
	return area;
}

C
Christoph Lameter 已提交
2077 2078 2079
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
D
David Rientjes 已提交
2080 2081
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
C
Christoph Lameter 已提交
2082
}
2083
EXPORT_SYMBOL_GPL(__get_vm_area);
C
Christoph Lameter 已提交
2084

2085 2086
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
				       unsigned long start, unsigned long end,
2087
				       const void *caller)
2088
{
D
David Rientjes 已提交
2089 2090
	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
				  GFP_KERNEL, caller);
2091 2092
}

L
Linus Torvalds 已提交
2093
/**
2094 2095 2096
 * get_vm_area - reserve a contiguous kernel virtual area
 * @size:	 size of the area
 * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
L
Linus Torvalds 已提交
2097
 *
2098 2099 2100
 * Search an area of @size in the kernel virtual mapping area,
 * and reserved it for out purposes.  Returns the area descriptor
 * on success or %NULL on failure.
2101 2102
 *
 * Return: the area descriptor on success or %NULL on failure.
L
Linus Torvalds 已提交
2103 2104 2105
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
2106
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2107 2108
				  NUMA_NO_NODE, GFP_KERNEL,
				  __builtin_return_address(0));
2109 2110 2111
}

struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2112
				const void *caller)
2113
{
2114
	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
D
David Rientjes 已提交
2115
				  NUMA_NO_NODE, GFP_KERNEL, caller);
L
Linus Torvalds 已提交
2116 2117
}

2118
/**
2119 2120
 * find_vm_area - find a continuous kernel virtual area
 * @addr:	  base address
2121
 *
2122 2123 2124
 * Search for the kernel VM area starting at @addr, and return it.
 * It is up to the caller to do all required locking to keep the returned
 * pointer valid.
2125 2126
 *
 * Return: pointer to the found area or %NULL on faulure
2127 2128
 */
struct vm_struct *find_vm_area(const void *addr)
2129
{
N
Nick Piggin 已提交
2130
	struct vmap_area *va;
2131

N
Nick Piggin 已提交
2132
	va = find_vmap_area((unsigned long)addr);
2133 2134
	if (!va)
		return NULL;
L
Linus Torvalds 已提交
2135

2136
	return va->vm;
L
Linus Torvalds 已提交
2137 2138
}

2139
/**
2140 2141
 * remove_vm_area - find and remove a continuous kernel virtual area
 * @addr:	    base address
2142
 *
2143 2144 2145
 * Search for the kernel VM area starting at @addr, and remove it.
 * This function returns the found VM area, but using it is NOT safe
 * on SMP machines, except for its size or flags.
2146 2147
 *
 * Return: pointer to the found area or %NULL on faulure
2148
 */
2149
struct vm_struct *remove_vm_area(const void *addr)
2150
{
N
Nick Piggin 已提交
2151 2152
	struct vmap_area *va;

2153 2154
	might_sleep();

2155 2156
	spin_lock(&vmap_area_lock);
	va = __find_vmap_area((unsigned long)addr);
2157
	if (va && va->vm) {
2158
		struct vm_struct *vm = va->vm;
2159

2160 2161 2162
		va->vm = NULL;
		spin_unlock(&vmap_area_lock);

2163
		kasan_free_shadow(vm);
2164 2165
		free_unmap_vmap_area(va);

N
Nick Piggin 已提交
2166 2167
		return vm;
	}
2168 2169

	spin_unlock(&vmap_area_lock);
N
Nick Piggin 已提交
2170
	return NULL;
2171 2172
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
static inline void set_area_direct_map(const struct vm_struct *area,
				       int (*set_direct_map)(struct page *page))
{
	int i;

	for (i = 0; i < area->nr_pages; i++)
		if (page_address(area->pages[i]))
			set_direct_map(area->pages[i]);
}

/* Handle removing and resetting vm mappings related to the vm_struct. */
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
{
	unsigned long start = ULONG_MAX, end = 0;
	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2188
	int flush_dmap = 0;
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	int i;

	remove_vm_area(area->addr);

	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
	if (!flush_reset)
		return;

	/*
	 * If not deallocating pages, just do the flush of the VM area and
	 * return.
	 */
	if (!deallocate_pages) {
		vm_unmap_aliases();
		return;
	}

	/*
	 * If execution gets here, flush the vm mapping and reset the direct
	 * map. Find the start and end range of the direct mappings to make sure
	 * the vm_unmap_aliases() flush includes the direct map.
	 */
	for (i = 0; i < area->nr_pages; i++) {
2212 2213
		unsigned long addr = (unsigned long)page_address(area->pages[i]);
		if (addr) {
2214
			start = min(addr, start);
2215
			end = max(addr + PAGE_SIZE, end);
2216
			flush_dmap = 1;
2217 2218 2219 2220 2221 2222 2223 2224 2225
		}
	}

	/*
	 * Set direct map to something invalid so that it won't be cached if
	 * there are any accesses after the TLB flush, then flush the TLB and
	 * reset the direct map permissions to the default.
	 */
	set_area_direct_map(area, set_direct_map_invalid_noflush);
2226
	_vm_unmap_aliases(start, end, flush_dmap);
2227 2228 2229
	set_area_direct_map(area, set_direct_map_default_noflush);
}

2230
static void __vunmap(const void *addr, int deallocate_pages)
L
Linus Torvalds 已提交
2231 2232 2233 2234 2235 2236
{
	struct vm_struct *area;

	if (!addr)
		return;

2237
	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
D
Dan Carpenter 已提交
2238
			addr))
L
Linus Torvalds 已提交
2239 2240
		return;

2241
	area = find_vm_area(addr);
L
Linus Torvalds 已提交
2242
	if (unlikely(!area)) {
A
Arjan van de Ven 已提交
2243
		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
L
Linus Torvalds 已提交
2244 2245 2246 2247
				addr);
		return;
	}

2248 2249
	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2250

2251 2252
	vm_remove_mappings(area, deallocate_pages);

L
Linus Torvalds 已提交
2253 2254 2255 2256
	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
2257 2258 2259
			struct page *page = area->pages[i];

			BUG_ON(!page);
2260
			__free_pages(page, 0);
L
Linus Torvalds 已提交
2261
		}
2262
		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2263

D
David Rientjes 已提交
2264
		kvfree(area->pages);
L
Linus Torvalds 已提交
2265 2266 2267 2268 2269
	}

	kfree(area);
	return;
}
A
Andrey Ryabinin 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285

static inline void __vfree_deferred(const void *addr)
{
	/*
	 * Use raw_cpu_ptr() because this can be called from preemptible
	 * context. Preemption is absolutely fine here, because the llist_add()
	 * implementation is lockless, so it works even if we are adding to
	 * nother cpu's list.  schedule_work() should be fine with this too.
	 */
	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);

	if (llist_add((struct llist_node *)addr, &p->list))
		schedule_work(&p->wq);
}

/**
2286 2287
 * vfree_atomic - release memory allocated by vmalloc()
 * @addr:	  memory base address
A
Andrey Ryabinin 已提交
2288
 *
2289 2290
 * This one is just like vfree() but can be called in any atomic context
 * except NMIs.
A
Andrey Ryabinin 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
 */
void vfree_atomic(const void *addr)
{
	BUG_ON(in_nmi());

	kmemleak_free(addr);

	if (!addr)
		return;
	__vfree_deferred(addr);
}

2303 2304 2305 2306 2307 2308 2309 2310
static void __vfree(const void *addr)
{
	if (unlikely(in_interrupt()))
		__vfree_deferred(addr);
	else
		__vunmap(addr, 1);
}

L
Linus Torvalds 已提交
2311
/**
2312 2313
 * vfree - release memory allocated by vmalloc()
 * @addr:  memory base address
L
Linus Torvalds 已提交
2314
 *
2315 2316 2317
 * Free the virtually continuous memory area starting at @addr, as
 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 * NULL, no operation is performed.
L
Linus Torvalds 已提交
2318
 *
2319 2320 2321
 * Must not be called in NMI context (strictly speaking, only if we don't
 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 * conventions for vfree() arch-depenedent would be a really bad idea)
A
Andrew Morton 已提交
2322
 *
2323
 * May sleep if called *not* from interrupt context.
2324
 *
2325
 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
L
Linus Torvalds 已提交
2326
 */
2327
void vfree(const void *addr)
L
Linus Torvalds 已提交
2328
{
2329
	BUG_ON(in_nmi());
2330 2331 2332

	kmemleak_free(addr);

A
Andrey Ryabinin 已提交
2333 2334
	might_sleep_if(!in_interrupt());

2335 2336
	if (!addr)
		return;
2337 2338

	__vfree(addr);
L
Linus Torvalds 已提交
2339 2340 2341 2342
}
EXPORT_SYMBOL(vfree);

/**
2343 2344
 * vunmap - release virtual mapping obtained by vmap()
 * @addr:   memory base address
L
Linus Torvalds 已提交
2345
 *
2346 2347
 * Free the virtually contiguous memory area starting at @addr,
 * which was created from the page array passed to vmap().
L
Linus Torvalds 已提交
2348
 *
2349
 * Must not be called in interrupt context.
L
Linus Torvalds 已提交
2350
 */
2351
void vunmap(const void *addr)
L
Linus Torvalds 已提交
2352 2353
{
	BUG_ON(in_interrupt());
2354
	might_sleep();
2355 2356
	if (addr)
		__vunmap(addr, 0);
L
Linus Torvalds 已提交
2357 2358 2359 2360
}
EXPORT_SYMBOL(vunmap);

/**
2361 2362 2363 2364 2365 2366 2367 2368
 * vmap - map an array of pages into virtually contiguous space
 * @pages: array of page pointers
 * @count: number of pages to map
 * @flags: vm_area->flags
 * @prot: page protection for the mapping
 *
 * Maps @count pages from @pages into contiguous kernel virtual
 * space.
2369 2370
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2371 2372
 */
void *vmap(struct page **pages, unsigned int count,
2373
	   unsigned long flags, pgprot_t prot)
L
Linus Torvalds 已提交
2374 2375
{
	struct vm_struct *area;
2376
	unsigned long size;		/* In bytes */
L
Linus Torvalds 已提交
2377

2378 2379
	might_sleep();

2380
	if (count > totalram_pages())
L
Linus Torvalds 已提交
2381 2382
		return NULL;

2383 2384
	size = (unsigned long)count << PAGE_SHIFT;
	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2385 2386
	if (!area)
		return NULL;
2387

2388
	if (map_vm_area(area, prot, pages)) {
L
Linus Torvalds 已提交
2389 2390 2391 2392 2393 2394 2395 2396
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

2397 2398 2399
static void *__vmalloc_node(unsigned long size, unsigned long align,
			    gfp_t gfp_mask, pgprot_t prot,
			    int node, const void *caller);
A
Adrian Bunk 已提交
2400
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2401
				 pgprot_t prot, int node)
L
Linus Torvalds 已提交
2402 2403 2404
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;
2405
	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2406 2407 2408 2409
	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
					0 :
					__GFP_HIGHMEM;
L
Linus Torvalds 已提交
2410

2411
	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
L
Linus Torvalds 已提交
2412 2413 2414
	array_size = (nr_pages * sizeof(struct page *));

	/* Please note that the recursion is strictly bounded. */
2415
	if (array_size > PAGE_SIZE) {
2416
		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2417
				PAGE_KERNEL, node, area->caller);
2418
	} else {
2419
		pages = kmalloc_node(array_size, nested_gfp, node);
2420
	}
2421 2422

	if (!pages) {
L
Linus Torvalds 已提交
2423 2424 2425 2426 2427
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

2428 2429 2430
	area->pages = pages;
	area->nr_pages = nr_pages;

L
Linus Torvalds 已提交
2431
	for (i = 0; i < area->nr_pages; i++) {
2432 2433
		struct page *page;

J
Jianguo Wu 已提交
2434
		if (node == NUMA_NO_NODE)
2435
			page = alloc_page(alloc_mask|highmem_mask);
C
Christoph Lameter 已提交
2436
		else
2437
			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2438 2439

		if (unlikely(!page)) {
L
Linus Torvalds 已提交
2440 2441
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
2442
			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2443 2444
			goto fail;
		}
2445
		area->pages[i] = page;
2446
		if (gfpflags_allow_blocking(gfp_mask))
2447
			cond_resched();
L
Linus Torvalds 已提交
2448
	}
2449
	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
L
Linus Torvalds 已提交
2450

2451
	if (map_vm_area(area, prot, pages))
L
Linus Torvalds 已提交
2452 2453 2454 2455
		goto fail;
	return area->addr;

fail:
2456
	warn_alloc(gfp_mask, NULL,
2457
			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2458
			  (area->nr_pages*PAGE_SIZE), area->size);
2459
	__vfree(area->addr);
L
Linus Torvalds 已提交
2460 2461 2462 2463
	return NULL;
}

/**
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
 * __vmalloc_node_range - allocate virtually contiguous memory
 * @size:		  allocation size
 * @align:		  desired alignment
 * @start:		  vm area range start
 * @end:		  vm area range end
 * @gfp_mask:		  flags for the page level allocator
 * @prot:		  protection mask for the allocated pages
 * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 * @node:		  node to use for allocation or NUMA_NO_NODE
 * @caller:		  caller's return address
 *
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
2478 2479
 *
 * Return: the address of the area or %NULL on failure
L
Linus Torvalds 已提交
2480
 */
2481 2482
void *__vmalloc_node_range(unsigned long size, unsigned long align,
			unsigned long start, unsigned long end, gfp_t gfp_mask,
2483 2484
			pgprot_t prot, unsigned long vm_flags, int node,
			const void *caller)
L
Linus Torvalds 已提交
2485 2486
{
	struct vm_struct *area;
2487 2488
	void *addr;
	unsigned long real_size = size;
L
Linus Torvalds 已提交
2489 2490

	size = PAGE_ALIGN(size);
2491
	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2492
		goto fail;
L
Linus Torvalds 已提交
2493

2494 2495
	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
				vm_flags, start, end, node, gfp_mask, caller);
L
Linus Torvalds 已提交
2496
	if (!area)
2497
		goto fail;
L
Linus Torvalds 已提交
2498

2499
	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2500
	if (!addr)
2501
		return NULL;
2502

2503
	/*
2504 2505
	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
	 * flag. It means that vm_struct is not fully initialized.
2506
	 * Now, it is fully initialized, so remove this flag here.
2507
	 */
2508
	clear_vm_uninitialized_flag(area);
2509

2510
	kmemleak_vmalloc(area, size, gfp_mask);
2511 2512

	return addr;
2513 2514

fail:
2515
	warn_alloc(gfp_mask, NULL,
2516
			  "vmalloc: allocation failure: %lu bytes", real_size);
2517
	return NULL;
L
Linus Torvalds 已提交
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527 2528
/*
 * This is only for performance analysis of vmalloc and stress purpose.
 * It is required by vmalloc test module, therefore do not use it other
 * than that.
 */
#ifdef CONFIG_TEST_VMALLOC_MODULE
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
#endif

2529
/**
2530 2531 2532 2533 2534 2535 2536
 * __vmalloc_node - allocate virtually contiguous memory
 * @size:	    allocation size
 * @align:	    desired alignment
 * @gfp_mask:	    flags for the page level allocator
 * @prot:	    protection mask for the allocated pages
 * @node:	    node to use for allocation or NUMA_NO_NODE
 * @caller:	    caller's return address
M
Michal Hocko 已提交
2537
 *
2538 2539 2540
 * Allocate enough pages to cover @size from the page level
 * allocator with @gfp_mask flags.  Map them into contiguous
 * kernel virtual space, using a pagetable protection of @prot.
M
Michal Hocko 已提交
2541
 *
2542 2543
 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 * and __GFP_NOFAIL are not supported
M
Michal Hocko 已提交
2544
 *
2545 2546
 * Any use of gfp flags outside of GFP_KERNEL should be consulted
 * with mm people.
2547 2548
 *
 * Return: pointer to the allocated memory or %NULL on error
2549
 */
2550
static void *__vmalloc_node(unsigned long size, unsigned long align,
2551
			    gfp_t gfp_mask, pgprot_t prot,
2552
			    int node, const void *caller)
2553 2554
{
	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2555
				gfp_mask, prot, 0, node, caller);
2556 2557
}

C
Christoph Lameter 已提交
2558 2559
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
D
David Rientjes 已提交
2560
	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2561
				__builtin_return_address(0));
C
Christoph Lameter 已提交
2562
}
L
Linus Torvalds 已提交
2563 2564
EXPORT_SYMBOL(__vmalloc);

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
static inline void *__vmalloc_node_flags(unsigned long size,
					int node, gfp_t flags)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
					node, __builtin_return_address(0));
}


void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
				  void *caller)
{
	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
}

L
Linus Torvalds 已提交
2579
/**
2580 2581 2582 2583 2584
 * vmalloc - allocate virtually contiguous memory
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
L
Linus Torvalds 已提交
2585
 *
2586 2587
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2588 2589
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2590 2591 2592
 */
void *vmalloc(unsigned long size)
{
D
David Rientjes 已提交
2593
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2594
				    GFP_KERNEL);
L
Linus Torvalds 已提交
2595 2596 2597
}
EXPORT_SYMBOL(vmalloc);

2598
/**
2599 2600 2601 2602 2603 2604 2605 2606 2607
 * vzalloc - allocate virtually contiguous memory with zero fill
 * @size:    allocation size
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2608 2609
 *
 * Return: pointer to the allocated memory or %NULL on error
2610 2611 2612
 */
void *vzalloc(unsigned long size)
{
D
David Rientjes 已提交
2613
	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2614
				GFP_KERNEL | __GFP_ZERO);
2615 2616 2617
}
EXPORT_SYMBOL(vzalloc);

2618
/**
2619 2620
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
2621
 *
2622 2623
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
2624 2625
 *
 * Return: pointer to the allocated memory or %NULL on error
2626 2627 2628
 */
void *vmalloc_user(unsigned long size)
{
2629 2630 2631 2632
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2633 2634 2635
}
EXPORT_SYMBOL(vmalloc_user);

C
Christoph Lameter 已提交
2636
/**
2637 2638 2639
 * vmalloc_node - allocate memory on a specific node
 * @size:	  allocation size
 * @node:	  numa node
C
Christoph Lameter 已提交
2640
 *
2641 2642
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
C
Christoph Lameter 已提交
2643
 *
2644 2645
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2646 2647
 *
 * Return: pointer to the allocated memory or %NULL on error
C
Christoph Lameter 已提交
2648 2649 2650
 */
void *vmalloc_node(unsigned long size, int node)
{
2651
	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2652
					node, __builtin_return_address(0));
C
Christoph Lameter 已提交
2653 2654 2655
}
EXPORT_SYMBOL(vmalloc_node);

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/**
 * vzalloc_node - allocate memory on a specific node with zero fill
 * @size:	allocation size
 * @node:	numa node
 *
 * Allocate enough pages to cover @size from the page level
 * allocator and map them into contiguous kernel virtual space.
 * The memory allocated is set to zero.
 *
 * For tight control over page level allocator and protection flags
 * use __vmalloc_node() instead.
2667 2668
 *
 * Return: pointer to the allocated memory or %NULL on error
2669 2670 2671 2672
 */
void *vzalloc_node(unsigned long size, int node)
{
	return __vmalloc_node_flags(size, node,
2673
			 GFP_KERNEL | __GFP_ZERO);
2674 2675 2676
}
EXPORT_SYMBOL(vzalloc_node);

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
/**
 * vmalloc_user_node_flags - allocate memory for userspace on a specific node
 * @size: allocation size
 * @node: numa node
 * @flags: flags for the page level allocator
 *
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
 *
 * Return: pointer to the allocated memory or %NULL on error
 */
void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
{
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    flags | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, node,
				    __builtin_return_address(0));
}
EXPORT_SYMBOL(vmalloc_user_node_flags);

L
Linus Torvalds 已提交
2697
/**
2698 2699
 * vmalloc_exec - allocate virtually contiguous, executable memory
 * @size:	  allocation size
L
Linus Torvalds 已提交
2700
 *
2701 2702 2703
 * Kernel-internal function to allocate enough pages to cover @size
 * the page level allocator and map them into contiguous and
 * executable kernel virtual space.
L
Linus Torvalds 已提交
2704
 *
2705 2706
 * For tight control over page level allocator and protection flags
 * use __vmalloc() instead.
2707 2708
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2709 2710 2711
 */
void *vmalloc_exec(unsigned long size)
{
2712 2713 2714
	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
			NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2715 2716
}

2717
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2718
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2719
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2720
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2721
#else
2722 2723 2724 2725 2726
/*
 * 64b systems should always have either DMA or DMA32 zones. For others
 * GFP_DMA32 should do the right thing and use the normal zone.
 */
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2727 2728
#endif

L
Linus Torvalds 已提交
2729
/**
2730 2731
 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 * @size:	allocation size
L
Linus Torvalds 已提交
2732
 *
2733 2734
 * Allocate enough 32bit PA addressable pages to cover @size from the
 * page level allocator and map them into contiguous kernel virtual space.
2735 2736
 *
 * Return: pointer to the allocated memory or %NULL on error
L
Linus Torvalds 已提交
2737 2738 2739
 */
void *vmalloc_32(unsigned long size)
{
2740
	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
D
David Rientjes 已提交
2741
			      NUMA_NO_NODE, __builtin_return_address(0));
L
Linus Torvalds 已提交
2742 2743 2744
}
EXPORT_SYMBOL(vmalloc_32);

2745
/**
2746
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2747
 * @size:	     allocation size
2748 2749 2750
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
2751 2752
 *
 * Return: pointer to the allocated memory or %NULL on error
2753 2754 2755
 */
void *vmalloc_32_user(unsigned long size)
{
2756 2757 2758 2759
	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
				    VM_USERMAP, NUMA_NO_NODE,
				    __builtin_return_address(0));
2760 2761 2762
}
EXPORT_SYMBOL(vmalloc_32_user);

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
/*
 * small helper routine , copy contents to buf from addr.
 * If the page is not present, fill zero.
 */

static int aligned_vread(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2776
		offset = offset_in_page(addr);
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2793
			void *map = kmap_atomic(p);
2794
			memcpy(buf, map + offset, length);
2795
			kunmap_atomic(map);
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		} else
			memset(buf, 0, length);

		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

static int aligned_vwrite(char *buf, char *addr, unsigned long count)
{
	struct page *p;
	int copied = 0;

	while (count) {
		unsigned long offset, length;

2815
		offset = offset_in_page(addr);
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		length = PAGE_SIZE - offset;
		if (length > count)
			length = count;
		p = vmalloc_to_page(addr);
		/*
		 * To do safe access to this _mapped_ area, we need
		 * lock. But adding lock here means that we need to add
		 * overhead of vmalloc()/vfree() calles for this _debug_
		 * interface, rarely used. Instead of that, we'll use
		 * kmap() and get small overhead in this access function.
		 */
		if (p) {
			/*
			 * we can expect USER0 is not used (see vread/vwrite's
			 * function description)
			 */
2832
			void *map = kmap_atomic(p);
2833
			memcpy(map + offset, buf, length);
2834
			kunmap_atomic(map);
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
		}
		addr += length;
		buf += length;
		copied += length;
		count -= length;
	}
	return copied;
}

/**
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
 * vread() - read vmalloc area in a safe way.
 * @buf:     buffer for reading data
 * @addr:    vm address.
 * @count:   number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from that area to a given buffer. If the given memory range
 * of [addr...addr+count) includes some valid address, data is copied to
 * proper area of @buf. If there are memory holes, they'll be zero-filled.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vread() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2862
 * any information, as /dev/kmem.
2863 2864 2865 2866
 *
 * Return: number of bytes for which addr and buf should be increased
 * (same number as @count) or %0 if [addr...addr+count) doesn't
 * include any intersection with valid vmalloc area
2867
 */
L
Linus Torvalds 已提交
2868 2869
long vread(char *buf, char *addr, unsigned long count)
{
2870 2871
	struct vmap_area *va;
	struct vm_struct *vm;
L
Linus Torvalds 已提交
2872
	char *vaddr, *buf_start = buf;
2873
	unsigned long buflen = count;
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878 2879
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

2880 2881 2882 2883 2884
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2885
		if (!va->vm)
2886 2887 2888 2889
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2890
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
2900
		n = vaddr + get_vm_area_size(vm) - addr;
2901 2902
		if (n > count)
			n = count;
2903
		if (!(vm->flags & VM_IOREMAP))
2904 2905 2906 2907 2908 2909
			aligned_vread(buf, addr, n);
		else /* IOREMAP area is treated as memory hole */
			memset(buf, 0, n);
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2910 2911
	}
finished:
2912
	spin_unlock(&vmap_area_lock);
2913 2914 2915 2916 2917 2918 2919 2920

	if (buf == buf_start)
		return 0;
	/* zero-fill memory holes */
	if (buf != buf_start + buflen)
		memset(buf, 0, buflen - (buf - buf_start));

	return buflen;
L
Linus Torvalds 已提交
2921 2922
}

2923
/**
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
 * vwrite() - write vmalloc area in a safe way.
 * @buf:      buffer for source data
 * @addr:     vm address.
 * @count:    number of bytes to be read.
 *
 * This function checks that addr is a valid vmalloc'ed area, and
 * copy data from a buffer to the given addr. If specified range of
 * [addr...addr+count) includes some valid address, data is copied from
 * proper area of @buf. If there are memory holes, no copy to hole.
 * IOREMAP area is treated as memory hole and no copy is done.
 *
 * If [addr...addr+count) doesn't includes any intersects with alive
 * vm_struct area, returns 0. @buf should be kernel's buffer.
 *
 * Note: In usual ops, vwrite() is never necessary because the caller
 * should know vmalloc() area is valid and can use memcpy().
 * This is for routines which have to access vmalloc area without
2941
 * any information, as /dev/kmem.
2942 2943 2944 2945
 *
 * Return: number of bytes for which addr and buf should be
 * increased (same number as @count) or %0 if [addr...addr+count)
 * doesn't include any intersection with valid vmalloc area
2946
 */
L
Linus Torvalds 已提交
2947 2948
long vwrite(char *buf, char *addr, unsigned long count)
{
2949 2950
	struct vmap_area *va;
	struct vm_struct *vm;
2951 2952 2953
	char *vaddr;
	unsigned long n, buflen;
	int copied = 0;
L
Linus Torvalds 已提交
2954 2955 2956 2957

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;
2958
	buflen = count;
L
Linus Torvalds 已提交
2959

2960 2961 2962 2963 2964
	spin_lock(&vmap_area_lock);
	list_for_each_entry(va, &vmap_area_list, list) {
		if (!count)
			break;

2965
		if (!va->vm)
2966 2967 2968 2969
			continue;

		vm = va->vm;
		vaddr = (char *) vm->addr;
2970
		if (addr >= vaddr + get_vm_area_size(vm))
L
Linus Torvalds 已提交
2971 2972 2973 2974 2975 2976 2977 2978
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
2979
		n = vaddr + get_vm_area_size(vm) - addr;
2980 2981
		if (n > count)
			n = count;
2982
		if (!(vm->flags & VM_IOREMAP)) {
2983 2984 2985 2986 2987 2988
			aligned_vwrite(buf, addr, n);
			copied++;
		}
		buf += n;
		addr += n;
		count -= n;
L
Linus Torvalds 已提交
2989 2990
	}
finished:
2991
	spin_unlock(&vmap_area_lock);
2992 2993 2994
	if (!copied)
		return 0;
	return buflen;
L
Linus Torvalds 已提交
2995
}
2996 2997

/**
2998 2999 3000 3001 3002
 * remap_vmalloc_range_partial - map vmalloc pages to userspace
 * @vma:		vma to cover
 * @uaddr:		target user address to start at
 * @kaddr:		virtual address of vmalloc kernel memory
 * @size:		size of map area
3003
 *
3004
 * Returns:	0 for success, -Exxx on failure
3005
 *
3006 3007 3008 3009
 * This function checks that @kaddr is a valid vmalloc'ed area,
 * and that it is big enough to cover the range starting at
 * @uaddr in @vma. Will return failure if that criteria isn't
 * met.
3010
 *
3011
 * Similar to remap_pfn_range() (see mm/memory.c)
3012
 */
3013 3014
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
				void *kaddr, unsigned long size)
3015 3016 3017
{
	struct vm_struct *area;

3018 3019 3020
	size = PAGE_ALIGN(size);

	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3021 3022
		return -EINVAL;

3023
	area = find_vm_area(kaddr);
3024
	if (!area)
N
Nick Piggin 已提交
3025
		return -EINVAL;
3026

3027
	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
N
Nick Piggin 已提交
3028
		return -EINVAL;
3029

3030
	if (kaddr + size > area->addr + get_vm_area_size(area))
N
Nick Piggin 已提交
3031
		return -EINVAL;
3032 3033

	do {
3034
		struct page *page = vmalloc_to_page(kaddr);
N
Nick Piggin 已提交
3035 3036
		int ret;

3037 3038 3039 3040 3041
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
3042 3043 3044
		kaddr += PAGE_SIZE;
		size -= PAGE_SIZE;
	} while (size > 0);
3045

3046
	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3047

N
Nick Piggin 已提交
3048
	return 0;
3049
}
3050 3051 3052
EXPORT_SYMBOL(remap_vmalloc_range_partial);

/**
3053 3054 3055 3056
 * remap_vmalloc_range - map vmalloc pages to userspace
 * @vma:		vma to cover (map full range of vma)
 * @addr:		vmalloc memory
 * @pgoff:		number of pages into addr before first page to map
3057
 *
3058
 * Returns:	0 for success, -Exxx on failure
3059
 *
3060 3061 3062
 * This function checks that addr is a valid vmalloc'ed area, and
 * that it is big enough to cover the vma. Will return failure if
 * that criteria isn't met.
3063
 *
3064
 * Similar to remap_pfn_range() (see mm/memory.c)
3065 3066 3067 3068 3069 3070 3071 3072
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	return remap_vmalloc_range_partial(vma, vma->vm_start,
					   addr + (pgoff << PAGE_SHIFT),
					   vma->vm_end - vma->vm_start);
}
3073 3074
EXPORT_SYMBOL(remap_vmalloc_range);

3075 3076 3077
/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
3078 3079 3080
 *
 * The purpose of this function is to make sure the vmalloc area
 * mappings are identical in all page-tables in the system.
3081
 */
3082
void __weak vmalloc_sync_all(void)
3083 3084
{
}
3085 3086


3087
static int f(pte_t *pte, unsigned long addr, void *data)
3088
{
3089 3090 3091 3092 3093 3094
	pte_t ***p = data;

	if (p) {
		*(*p) = pte;
		(*p)++;
	}
3095 3096 3097 3098
	return 0;
}

/**
3099 3100 3101
 * alloc_vm_area - allocate a range of kernel address space
 * @size:	   size of the area
 * @ptes:	   returns the PTEs for the address space
3102
 *
3103
 * Returns:	NULL on failure, vm_struct on success
3104
 *
3105 3106 3107
 * This function reserves a range of kernel address space, and
 * allocates pagetables to map that range.  No actual mappings
 * are created.
3108
 *
3109 3110
 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
 * allocated for the VM area are returned.
3111
 */
3112
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3113 3114 3115
{
	struct vm_struct *area;

3116 3117
	area = get_vm_area_caller(size, VM_IOREMAP,
				__builtin_return_address(0));
3118 3119 3120 3121 3122 3123 3124 3125
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3126
				size, f, ptes ? &ptes : NULL)) {
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
		free_vm_area(area);
		return NULL;
	}

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3143

3144
#ifdef CONFIG_SMP
3145 3146
static struct vmap_area *node_to_va(struct rb_node *n)
{
G
Geliang Tang 已提交
3147
	return rb_entry_safe(n, struct vmap_area, rb_node);
3148 3149 3150
}

/**
3151 3152
 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 * @addr: target address
3153
 *
3154 3155 3156 3157
 * Returns: vmap_area if it is found. If there is no such area
 *   the first highest(reverse order) vmap_area is returned
 *   i.e. va->va_start < addr && va->va_end < addr or NULL
 *   if there are no any areas before @addr.
3158
 */
3159 3160
static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)
3161
{
3162 3163 3164 3165 3166
	struct vmap_area *va, *tmp;
	struct rb_node *n;

	n = free_vmap_area_root.rb_node;
	va = NULL;
3167 3168

	while (n) {
3169 3170 3171 3172 3173 3174
		tmp = rb_entry(n, struct vmap_area, rb_node);
		if (tmp->va_start <= addr) {
			va = tmp;
			if (tmp->va_end >= addr)
				break;

3175
			n = n->rb_right;
3176 3177 3178
		} else {
			n = n->rb_left;
		}
3179 3180
	}

3181
	return va;
3182 3183 3184
}

/**
3185 3186 3187 3188 3189
 * pvm_determine_end_from_reverse - find the highest aligned address
 * of free block below VMALLOC_END
 * @va:
 *   in - the VA we start the search(reverse order);
 *   out - the VA with the highest aligned end address.
3190
 *
3191
 * Returns: determined end address within vmap_area
3192
 */
3193 3194
static unsigned long
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3195
{
3196
	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3197 3198
	unsigned long addr;

3199 3200 3201 3202 3203 3204 3205
	if (likely(*va)) {
		list_for_each_entry_from_reverse((*va),
				&free_vmap_area_list, list) {
			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
			if ((*va)->va_start < addr)
				return addr;
		}
3206 3207
	}

3208
	return 0;
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
}

/**
 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 * @offsets: array containing offset of each area
 * @sizes: array containing size of each area
 * @nr_vms: the number of areas to allocate
 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 *
 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 *	    vm_structs on success, %NULL on failure
 *
 * Percpu allocator wants to use congruent vm areas so that it can
 * maintain the offsets among percpu areas.  This function allocates
3223 3224 3225 3226
 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 * be scattered pretty far, distance between two areas easily going up
 * to gigabytes.  To avoid interacting with regular vmallocs, these
 * areas are allocated from top.
3227
 *
3228 3229 3230 3231 3232 3233
 * Despite its complicated look, this allocator is rather simple. It
 * does everything top-down and scans free blocks from the end looking
 * for matching base. While scanning, if any of the areas do not fit the
 * base address is pulled down to fit the area. Scanning is repeated till
 * all the areas fit and then all necessary data structures are inserted
 * and the result is returned.
3234 3235 3236
 */
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
				     const size_t *sizes, int nr_vms,
3237
				     size_t align)
3238 3239 3240
{
	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3241
	struct vmap_area **vas, *va;
3242 3243
	struct vm_struct **vms;
	int area, area2, last_area, term_area;
3244
	unsigned long base, start, size, end, last_end;
3245
	bool purged = false;
3246
	enum fit_type type;
3247 3248

	/* verify parameters and allocate data structures */
3249
	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
	for (last_area = 0, area = 0; area < nr_vms; area++) {
		start = offsets[area];
		end = start + sizes[area];

		/* is everything aligned properly? */
		BUG_ON(!IS_ALIGNED(offsets[area], align));
		BUG_ON(!IS_ALIGNED(sizes[area], align));

		/* detect the area with the highest address */
		if (start > offsets[last_area])
			last_area = area;

3262
		for (area2 = area + 1; area2 < nr_vms; area2++) {
3263 3264 3265
			unsigned long start2 = offsets[area2];
			unsigned long end2 = start2 + sizes[area2];

3266
			BUG_ON(start2 < end && start < end2);
3267 3268 3269 3270 3271 3272 3273 3274 3275
		}
	}
	last_end = offsets[last_area] + sizes[last_area];

	if (vmalloc_end - vmalloc_start < last_end) {
		WARN_ON(true);
		return NULL;
	}

3276 3277
	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3278
	if (!vas || !vms)
3279
		goto err_free2;
3280 3281

	for (area = 0; area < nr_vms; area++) {
3282
		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3283
		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
		if (!vas[area] || !vms[area])
			goto err_free;
	}
retry:
	spin_lock(&vmap_area_lock);

	/* start scanning - we scan from the top, begin with the last area */
	area = term_area = last_area;
	start = offsets[area];
	end = start + sizes[area];

3295 3296
	va = pvm_find_va_enclose_addr(vmalloc_end);
	base = pvm_determine_end_from_reverse(&va, align) - end;
3297 3298 3299 3300 3301 3302

	while (true) {
		/*
		 * base might have underflowed, add last_end before
		 * comparing.
		 */
3303 3304
		if (base + last_end < vmalloc_start + last_end)
			goto overflow;
3305 3306

		/*
3307
		 * Fitting base has not been found.
3308
		 */
3309 3310
		if (va == NULL)
			goto overflow;
3311

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
		/*
		 * If required width exeeds current VA block, move
		 * base downwards and then recheck.
		 */
		if (base + end > va->va_end) {
			base = pvm_determine_end_from_reverse(&va, align) - end;
			term_area = area;
			continue;
		}

3322
		/*
3323
		 * If this VA does not fit, move base downwards and recheck.
3324
		 */
3325
		if (base + start < va->va_start) {
3326 3327
			va = node_to_va(rb_prev(&va->rb_node));
			base = pvm_determine_end_from_reverse(&va, align) - end;
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
			term_area = area;
			continue;
		}

		/*
		 * This area fits, move on to the previous one.  If
		 * the previous one is the terminal one, we're done.
		 */
		area = (area + nr_vms - 1) % nr_vms;
		if (area == term_area)
			break;
3339

3340 3341
		start = offsets[area];
		end = start + sizes[area];
3342
		va = pvm_find_va_enclose_addr(base + end);
3343
	}
3344

3345 3346
	/* we've found a fitting base, insert all va's */
	for (area = 0; area < nr_vms; area++) {
3347
		int ret;
3348

3349 3350
		start = base + offsets[area];
		size = sizes[area];
3351

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
		va = pvm_find_va_enclose_addr(start);
		if (WARN_ON_ONCE(va == NULL))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		type = classify_va_fit_type(va, start, size);
		if (WARN_ON_ONCE(type == NOTHING_FIT))
			/* It is a BUG(), but trigger recovery instead. */
			goto recovery;

		ret = adjust_va_to_fit_type(va, start, size, type);
		if (unlikely(ret))
			goto recovery;

		/* Allocated area. */
		va = vas[area];
		va->va_start = start;
		va->va_end = start + size;

		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
	}
3373 3374 3375 3376 3377

	spin_unlock(&vmap_area_lock);

	/* insert all vm's */
	for (area = 0; area < nr_vms; area++)
3378 3379
		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
				 pcpu_get_vm_areas);
3380 3381 3382 3383

	kfree(vas);
	return vms;

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
recovery:
	/* Remove previously inserted areas. */
	while (area--) {
		__free_vmap_area(vas[area]);
		vas[area] = NULL;
	}

overflow:
	spin_unlock(&vmap_area_lock);
	if (!purged) {
		purge_vmap_area_lazy();
		purged = true;

		/* Before "retry", check if we recover. */
		for (area = 0; area < nr_vms; area++) {
			if (vas[area])
				continue;

			vas[area] = kmem_cache_zalloc(
				vmap_area_cachep, GFP_KERNEL);
			if (!vas[area])
				goto err_free;
		}

		goto retry;
	}

3411 3412
err_free:
	for (area = 0; area < nr_vms; area++) {
3413 3414 3415
		if (vas[area])
			kmem_cache_free(vmap_area_cachep, vas[area]);

3416
		kfree(vms[area]);
3417
	}
3418
err_free2:
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	kfree(vas);
	kfree(vms);
	return NULL;
}

/**
 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 * @nr_vms: the number of allocated areas
 *
 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 */
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
{
	int i;

	for (i = 0; i < nr_vms; i++)
		free_vm_area(vms[i]);
	kfree(vms);
}
3439
#endif	/* CONFIG_SMP */
3440 3441 3442

#ifdef CONFIG_PROC_FS
static void *s_start(struct seq_file *m, loff_t *pos)
3443
	__acquires(&vmap_area_lock)
3444
{
3445
	spin_lock(&vmap_area_lock);
3446
	return seq_list_start(&vmap_area_list, *pos);
3447 3448 3449 3450
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3451
	return seq_list_next(p, &vmap_area_list, pos);
3452 3453 3454
}

static void s_stop(struct seq_file *m, void *p)
3455
	__releases(&vmap_area_lock)
3456
{
3457
	spin_unlock(&vmap_area_lock);
3458 3459
}

E
Eric Dumazet 已提交
3460 3461
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
{
3462
	if (IS_ENABLED(CONFIG_NUMA)) {
E
Eric Dumazet 已提交
3463 3464 3465 3466 3467
		unsigned int nr, *counters = m->private;

		if (!counters)
			return;

3468 3469
		if (v->flags & VM_UNINITIALIZED)
			return;
3470 3471
		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
		smp_rmb();
3472

E
Eric Dumazet 已提交
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
		memset(counters, 0, nr_node_ids * sizeof(unsigned int));

		for (nr = 0; nr < v->nr_pages; nr++)
			counters[page_to_nid(v->pages[nr])]++;

		for_each_node_state(nr, N_HIGH_MEMORY)
			if (counters[nr])
				seq_printf(m, " N%u=%u", nr, counters[nr]);
	}
}

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
static void show_purge_info(struct seq_file *m)
{
	struct llist_node *head;
	struct vmap_area *va;

	head = READ_ONCE(vmap_purge_list.first);
	if (head == NULL)
		return;

	llist_for_each_entry(va, head, purge_list) {
		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
			(void *)va->va_start, (void *)va->va_end,
			va->va_end - va->va_start);
	}
}

3500 3501
static int s_show(struct seq_file *m, void *p)
{
3502
	struct vmap_area *va;
3503 3504
	struct vm_struct *v;

3505 3506
	va = list_entry(p, struct vmap_area, list);

3507
	/*
3508 3509
	 * s_show can encounter race with remove_vm_area, !vm on behalf
	 * of vmap area is being tear down or vm_map_ram allocation.
3510
	 */
3511
	if (!va->vm) {
3512
		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3513
			(void *)va->va_start, (void *)va->va_end,
3514
			va->va_end - va->va_start);
3515

3516
		return 0;
3517
	}
3518 3519

	v = va->vm;
3520

K
Kees Cook 已提交
3521
	seq_printf(m, "0x%pK-0x%pK %7ld",
3522 3523
		v->addr, v->addr + v->size, v->size);

J
Joe Perches 已提交
3524 3525
	if (v->caller)
		seq_printf(m, " %pS", v->caller);
3526

3527 3528 3529 3530
	if (v->nr_pages)
		seq_printf(m, " pages=%d", v->nr_pages);

	if (v->phys_addr)
3531
		seq_printf(m, " phys=%pa", &v->phys_addr);
3532 3533

	if (v->flags & VM_IOREMAP)
3534
		seq_puts(m, " ioremap");
3535 3536

	if (v->flags & VM_ALLOC)
3537
		seq_puts(m, " vmalloc");
3538 3539

	if (v->flags & VM_MAP)
3540
		seq_puts(m, " vmap");
3541 3542

	if (v->flags & VM_USERMAP)
3543
		seq_puts(m, " user");
3544

3545 3546 3547
	if (v->flags & VM_DMA_COHERENT)
		seq_puts(m, " dma-coherent");

D
David Rientjes 已提交
3548
	if (is_vmalloc_addr(v->pages))
3549
		seq_puts(m, " vpages");
3550

E
Eric Dumazet 已提交
3551
	show_numa_info(m, v);
3552
	seq_putc(m, '\n');
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562

	/*
	 * As a final step, dump "unpurged" areas. Note,
	 * that entire "/proc/vmallocinfo" output will not
	 * be address sorted, because the purge list is not
	 * sorted.
	 */
	if (list_is_last(&va->list, &vmap_area_list))
		show_purge_info(m);

3563 3564 3565
	return 0;
}

3566
static const struct seq_operations vmalloc_op = {
3567 3568 3569 3570 3571
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};
3572 3573 3574

static int __init proc_vmalloc_init(void)
{
3575
	if (IS_ENABLED(CONFIG_NUMA))
3576
		proc_create_seq_private("vmallocinfo", 0400, NULL,
3577 3578
				&vmalloc_op,
				nr_node_ids * sizeof(unsigned int), NULL);
3579
	else
3580
		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3581 3582 3583
	return 0;
}
module_init(proc_vmalloc_init);
3584

3585
#endif