intel_pm.c 266.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61 62 63 64 65 66 67 68 69 70 71 72 73
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
		 * Display WA#0390: skl,kbl
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

74
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
75 76 77
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

78 79
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
80

81
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
82 83
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
84

85 86
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
87 88 89
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
90

91
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
92 93
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
94 95 96 97 98 99

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
100 101
}

102
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
103
{
104
	gen9_init_clock_gating(dev_priv);
105

106 107 108 109
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

110 111
	/*
	 * FIXME:
112
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
113 114
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
115
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
116 117 118 119 120

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
121 122
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
123 124
}

125 126
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
127
	u32 val;
128 129 130 131 132 133 134 135 136
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
137 138 139 140 141 142 143 144 145 146

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

147 148 149 150 151
	/* Display WA #1133: WaFbcSkipSegments:glk */
	val = I915_READ(ILK_DPFC_CHICKEN);
	val &= ~GLK_SKIP_SEG_COUNT_MASK;
	val |= GLK_SKIP_SEG_EN | GLK_SKIP_SEG_COUNT(1);
	I915_WRITE(ILK_DPFC_CHICKEN, val);
152 153
}

154
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

192
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

219
	dev_priv->ips.r_t = dev_priv->mem_freq;
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
251
		dev_priv->ips.c_m = 0;
252
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
253
		dev_priv->ips.c_m = 1;
254
	} else {
255
		dev_priv->ips.c_m = 2;
256 257 258
	}
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

297 298
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

359 360 361
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

362
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
363
{
364
	bool was_enabled;
365
	u32 val;
366

367
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
368
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
369
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
370
		POSTING_READ(FW_BLC_SELF_VLV);
371
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
372
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
373
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
374
		POSTING_READ(FW_BLC_SELF);
375
	} else if (IS_PINEVIEW(dev_priv)) {
376 377 378 379 380 381
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
382
		I915_WRITE(DSPFW3, val);
383
		POSTING_READ(DSPFW3);
384
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
385
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
386 387 388
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
389
		POSTING_READ(FW_BLC_SELF);
390
	} else if (IS_I915GM(dev_priv)) {
391 392 393 394 395
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
396
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
397 398 399
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
400
		POSTING_READ(INSTPM);
401
	} else {
402
		return false;
403
	}
404

405 406
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

407 408 409 410 411
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
412 413
}

V
Ville Syrjälä 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
451
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
452
{
453 454
	bool ret;

455
	mutex_lock(&dev_priv->wm.wm_mutex);
456
	ret = _intel_set_memory_cxsr(dev_priv, enable);
457 458 459 460
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
461
	mutex_unlock(&dev_priv->wm.wm_mutex);
462 463

	return ret;
464
}
465

466 467 468 469 470 471 472 473 474 475 476 477 478 479
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
480
static const int pessimal_latency_ns = 5000;
481

482 483 484
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

485
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
486
{
487
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
488
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
489
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
490 491
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
492

493
	switch (pipe) {
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
514 515
		MISSING_CASE(pipe);
		return;
516 517
	}

518 519 520 521
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
522 523
}

524
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
525 526 527 528 529 530 531 532 533 534 535 536 537 538
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

539
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

555
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
572 573 574 575 576
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
577 578
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
579 580 581 582 583
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
584 585
};
static const struct intel_watermark_params pineview_cursor_wm = {
586 587 588 589 590
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
591 592
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
593 594 595 596 597
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
598 599
};
static const struct intel_watermark_params i965_cursor_wm_info = {
600 601 602 603 604
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
605 606
};
static const struct intel_watermark_params i945_wm_info = {
607 608 609 610 611
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
612 613
};
static const struct intel_watermark_params i915_wm_info = {
614 615 616 617 618
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
619
};
620
static const struct intel_watermark_params i830_a_wm_info = {
621 622 623 624 625
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
626
};
627 628 629 630 631 632 633
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
634
static const struct intel_watermark_params i845_wm_info = {
635 636 637 638 639
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
640 641
};

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

738 739
/**
 * intel_calculate_wm - calculate watermark level
740
 * @pixel_rate: pixel clock
741
 * @wm: chip FIFO params
742
 * @cpp: bytes per pixel
743 744 745 746 747 748 749 750 751 752 753 754 755
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
756 757 758 759
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
760
{
761
	int entries, wm_size;
762 763 764 765 766 767 768

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
769 770 771 772 773
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
774

775 776
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
777 778

	/* Don't promote wm_size to unsigned... */
779
	if (wm_size > wm->max_wm)
780 781 782
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
783 784 785 786 787 788 789 790 791 792 793

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

794 795 796
	return wm_size;
}

797 798 799 800 801 802 803 804 805 806
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

807 808 809 810 811
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

835
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
836
{
837
	struct intel_crtc *crtc, *enabled = NULL;
838

839
	for_each_intel_crtc(&dev_priv->drm, crtc) {
840
		if (intel_crtc_active(crtc)) {
841 842 843 844 845 846 847 848 849
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

850
static void pineview_update_wm(struct intel_crtc *unused_crtc)
851
{
852
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
853
	struct intel_crtc *crtc;
854 855
	const struct cxsr_latency *latency;
	u32 reg;
856
	unsigned int wm;
857

858 859 860 861
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
862 863
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
864
		intel_set_memory_cxsr(dev_priv, false);
865 866 867
		return;
	}

868
	crtc = single_enabled_crtc(dev_priv);
869
	if (crtc) {
870 871 872 873
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
874
		int cpp = fb->format->cpp[0];
875
		int clock = adjusted_mode->crtc_clock;
876 877 878 879

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
880
					cpp, latency->display_sr);
881 882
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
883
		reg |= FW_WM(wm, SR);
884 885 886 887 888 889
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
890
					4, latency->cursor_sr);
891 892
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
893
		reg |= FW_WM(wm, CURSOR_SR);
894 895 896 897 898
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
899
					cpp, latency->display_hpll_disable);
900 901
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
902
		reg |= FW_WM(wm, HPLL_SR);
903 904 905 906 907
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
908
					4, latency->cursor_hpll_disable);
909 910
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
911
		reg |= FW_WM(wm, HPLL_CURSOR);
912 913 914
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

915
		intel_set_memory_cxsr(dev_priv, true);
916
	} else {
917
		intel_set_memory_cxsr(dev_priv, false);
918 919 920
	}
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

938 939
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
940
{
941 942 943 944 945
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
963

964
	POSTING_READ(DSPFW1);
965 966
}

967 968 969
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

970
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
971 972
				const struct vlv_wm_values *wm)
{
973 974 975
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
976 977
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

978 979 980 981 982 983
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
984

985 986 987 988 989 990 991 992 993 994 995
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

996
	I915_WRITE(DSPFW1,
997
		   FW_WM(wm->sr.plane, SR) |
998 999 1000
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1001
	I915_WRITE(DSPFW2,
1002 1003 1004
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1005
	I915_WRITE(DSPFW3,
1006
		   FW_WM(wm->sr.cursor, CURSOR_SR));
1007 1008 1009

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1010 1011
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1012
		I915_WRITE(DSPFW8_CHV,
1013 1014
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1015
		I915_WRITE(DSPFW9_CHV,
1016 1017
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1018
		I915_WRITE(DSPHOWM,
1019
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1020 1021 1022 1023 1024 1025 1026 1027 1028
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1029 1030
	} else {
		I915_WRITE(DSPFW7,
1031 1032
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1033
		I915_WRITE(DSPHOWM,
1034
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1035 1036 1037 1038 1039 1040
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1041 1042 1043
	}

	POSTING_READ(DSPFW1);
1044 1045
}

1046 1047
#undef FW_WM_VLV

1048 1049 1050 1051 1052
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1053
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1054

1055
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
	int clock, htotal, cpp, width, wm;
	int latency = dev_priv->wm.pri_latency[level] * 10;

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
		int small, large;

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

	return min_t(int, wm, USHRT_MAX);
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1330 1331
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1332 1333 1334 1335 1336
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1337 1338 1339 1340
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1341 1342 1343
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1344
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
	const struct g4x_wm_state *active = &crtc->wm.active.g4x;
	enum plane_id plane_id;

	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
		!crtc_state->disable_cxsr;
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1566 1567
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1568 1569
				   unsigned int htotal,
				   unsigned int width,
1570
				   unsigned int cpp,
1571 1572 1573 1574
				   unsigned int latency)
{
	unsigned int ret;

1575 1576
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1577 1578 1579 1580 1581
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1582
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1583 1584 1585 1586
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1587 1588
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1589 1590 1591
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1592 1593

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1594 1595 1596
	}
}

1597 1598
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1599 1600
				     int level)
{
1601
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1602
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1603 1604
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1605
	int clock, htotal, cpp, width, wm;
1606 1607 1608 1609

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1610
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1611 1612
		return 0;

1613
	cpp = plane_state->base.fb->format->cpp[0];
1614 1615 1616
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1617

1618
	if (plane->id == PLANE_CURSOR) {
1619 1620 1621 1622 1623 1624 1625 1626
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1627
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1628 1629 1630 1631 1632 1633
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1634 1635 1636 1637 1638 1639
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1640
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1641
{
1642
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1643
	const struct g4x_pipe_wm *raw =
1644
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1645
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1646 1647 1648
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1649
	int fifo_extra, fifo_left = fifo_size;
1650
	int sprite0_fifo_extra = 0;
1651 1652
	unsigned int total_rate;
	enum plane_id plane_id;
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1665 1666
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1667 1668
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1669

1670 1671
	if (total_rate > fifo_size)
		return -EINVAL;
1672

1673 1674
	if (total_rate == 0)
		total_rate = 1;
1675

1676
	for_each_plane_id_on_crtc(crtc, plane_id) {
1677 1678
		unsigned int rate;

1679 1680
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1681 1682 1683
			continue;
		}

1684 1685 1686
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1687 1688
	}

1689 1690 1691
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1692 1693 1694
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1695 1696

	/* spread the remainder evenly */
1697
	for_each_plane_id_on_crtc(crtc, plane_id) {
1698 1699 1700 1701 1702
		int plane_extra;

		if (fifo_left == 0)
			break;

1703
		if ((active_planes & BIT(plane_id)) == 0)
1704 1705 1706
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1707
		fifo_state->plane[plane_id] += plane_extra;
1708 1709 1710
		fifo_left -= plane_extra;
	}

1711 1712 1713 1714 1715 1716 1717 1718 1719
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1720 1721
}

1722 1723 1724 1725 1726 1727
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1728
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1739 1740 1741 1742 1743 1744 1745 1746
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1747 1748 1749 1750
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1751
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1752
				 int level, enum plane_id plane_id, u16 value)
1753
{
1754
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1755
	int num_levels = intel_wm_num_levels(dev_priv);
1756
	bool dirty = false;
1757

1758
	for (; level < num_levels; level++) {
1759
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1760

1761
		dirty |= raw->plane[plane_id] != value;
1762
		raw->plane[plane_id] = value;
1763
	}
1764 1765

	return dirty;
1766 1767
}

1768 1769
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1770
{
1771 1772
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1773
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1774
	int level;
1775
	bool dirty = false;
1776

1777
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1778 1779
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1780
	}
1781

1782
	for (level = 0; level < num_levels; level++) {
1783
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1784 1785
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1786

1787 1788
		if (wm > max_wm)
			break;
1789

1790
		dirty |= raw->plane[plane_id] != wm;
1791 1792
		raw->plane[plane_id] = wm;
	}
1793

1794
	/* mark all higher levels as invalid */
1795
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1796

1797 1798
out:
	if (dirty)
1799
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1800 1801 1802 1803 1804 1805
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1806
}
1807

1808 1809
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1810
{
1811
	const struct g4x_pipe_wm *raw =
1812 1813 1814
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1815

1816 1817
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1818

1819
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1820
{
1821 1822 1823 1824
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1838
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1839 1840
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1841 1842 1843
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1844
	unsigned int dirty = 0;
1845

1846 1847 1848 1849
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1850 1851
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1852

1853
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1872
			intel_atomic_get_old_crtc_state(state, crtc);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1884
	}
1885

1886
	/* initially allow all levels */
1887
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1888 1889 1890 1891 1892
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1893
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1894

1895
	for (level = 0; level < wm_state->num_levels; level++) {
1896
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1897
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1898

1899
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1900
			break;
1901

1902 1903 1904 1905 1906 1907 1908 1909
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1910
						 raw->plane[PLANE_SPRITE0],
1911 1912
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1913

1914 1915 1916
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1917 1918
	}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1929 1930
}

1931 1932 1933
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1934 1935
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1936
{
1937
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1938
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1939 1940
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1941
	int sprite0_start, sprite1_start, fifo_size;
1942

1943 1944 1945
	if (!crtc_state->fifo_changed)
		return;

1946 1947 1948
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1949

1950 1951
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1952

1953 1954
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1965

1966 1967 1968
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1969 1970
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1982 1983
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1984 1985
		break;
	case PIPE_B:
1986 1987
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1999 2000
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2001 2002
		break;
	case PIPE_C:
2003 2004
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2016 2017
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2018 2019 2020 2021
		break;
	default:
		break;
	}
2022

2023
	POSTING_READ_FW(DSPARB);
2024

2025
	spin_unlock(&dev_priv->uncore.lock);
2026 2027 2028 2029
}

#undef VLV_FIFO

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2040 2041
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2064 2065
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
2066 2067 2068 2069

	return 0;
}

2070
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2071 2072 2073 2074 2075
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2076
	wm->level = dev_priv->wm.max_level;
2077 2078
	wm->cxsr = true;

2079
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2080
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2095 2096 2097
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2098
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2099
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2100 2101 2102
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2103
		if (crtc->active && wm->cxsr)
2104 2105
			wm->sr = wm_state->sr[wm->level];

2106 2107 2108 2109
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2110 2111 2112
	}
}

2113
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2114
{
2115 2116
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2117

2118
	vlv_merge_wm(dev_priv, &new_wm);
2119

2120
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2121 2122
		return;

2123
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2124 2125
		chv_set_memory_dvfs(dev_priv, false);

2126
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2127 2128
		chv_set_memory_pm5(dev_priv, false);

2129
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2130
		_intel_set_memory_cxsr(dev_priv, false);
2131

2132
	vlv_write_wm_values(dev_priv, &new_wm);
2133

2134
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2135
		_intel_set_memory_cxsr(dev_priv, true);
2136

2137
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2138 2139
		chv_set_memory_pm5(dev_priv, true);

2140
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2141 2142
		chv_set_memory_dvfs(dev_priv, true);

2143
	*old_wm = new_wm;
2144 2145
}

2146 2147 2148 2149 2150 2151 2152
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2169 2170 2171 2172
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2173
static void i965_update_wm(struct intel_crtc *unused_crtc)
2174
{
2175
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2176
	struct intel_crtc *crtc;
2177 2178
	int srwm = 1;
	int cursor_sr = 16;
2179
	bool cxsr_enabled;
2180 2181

	/* Calc sr entries for one plane configs */
2182
	crtc = single_enabled_crtc(dev_priv);
2183 2184 2185
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2186 2187 2188 2189
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2190
		int clock = adjusted_mode->crtc_clock;
2191
		int htotal = adjusted_mode->crtc_htotal;
2192
		int hdisplay = crtc->config->pipe_src_w;
2193
		int cpp = fb->format->cpp[0];
2194 2195
		int entries;

2196 2197
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2198 2199 2200 2201 2202 2203 2204 2205
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2206 2207 2208
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2209
		entries = DIV_ROUND_UP(entries,
2210 2211
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2212

2213
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2214 2215 2216 2217 2218 2219
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2220
		cxsr_enabled = true;
2221
	} else {
2222
		cxsr_enabled = false;
2223
		/* Turn off self refresh if both pipes are enabled */
2224
		intel_set_memory_cxsr(dev_priv, false);
2225 2226 2227 2228 2229 2230
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2231 2232 2233 2234 2235 2236
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2237
	/* update cursor SR watermark */
2238
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2239 2240 2241

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2242 2243
}

2244 2245
#undef FW_WM

2246
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2247
{
2248
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2249 2250 2251 2252 2253 2254
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2255
	struct intel_crtc *crtc, *enabled = NULL;
2256

2257
	if (IS_I945GM(dev_priv))
2258
		wm_info = &i945_wm_info;
2259
	else if (!IS_GEN2(dev_priv))
2260 2261
		wm_info = &i915_wm_info;
	else
2262
		wm_info = &i830_a_wm_info;
2263

2264
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2265
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
2266 2267 2268 2269 2270 2271 2272
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2273
		if (IS_GEN2(dev_priv))
2274
			cpp = 4;
2275
		else
2276
			cpp = fb->format->cpp[0];
2277

2278
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2279
					       wm_info, fifo_size, cpp,
2280
					       pessimal_latency_ns);
2281
		enabled = crtc;
2282
	} else {
2283
		planea_wm = fifo_size - wm_info->guard_size;
2284 2285 2286 2287
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2288
	if (IS_GEN2(dev_priv))
2289
		wm_info = &i830_bc_wm_info;
2290

2291
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2292
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
2293 2294 2295 2296 2297 2298 2299
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2300
		if (IS_GEN2(dev_priv))
2301
			cpp = 4;
2302
		else
2303
			cpp = fb->format->cpp[0];
2304

2305
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2306
					       wm_info, fifo_size, cpp,
2307
					       pessimal_latency_ns);
2308 2309 2310 2311
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2312
	} else {
2313
		planeb_wm = fifo_size - wm_info->guard_size;
2314 2315 2316
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2317 2318 2319

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2320
	if (IS_I915GM(dev_priv) && enabled) {
2321
		struct drm_i915_gem_object *obj;
2322

2323
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2324 2325

		/* self-refresh seems busted with untiled */
2326
		if (!i915_gem_object_is_tiled(obj))
2327 2328 2329
			enabled = NULL;
	}

2330 2331 2332 2333 2334 2335
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2336
	intel_set_memory_cxsr(dev_priv, false);
2337 2338

	/* Calc sr entries for one plane configs */
2339
	if (HAS_FW_BLC(dev_priv) && enabled) {
2340 2341
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2342 2343 2344 2345
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2346
		int clock = adjusted_mode->crtc_clock;
2347
		int htotal = adjusted_mode->crtc_htotal;
2348 2349
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2350 2351
		int entries;

2352
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2353
			cpp = 4;
2354
		else
2355
			cpp = fb->format->cpp[0];
2356

2357 2358
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2359 2360 2361 2362 2363 2364
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2365
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2366 2367
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2368
		else
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2385 2386
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2387 2388
}

2389
static void i845_update_wm(struct intel_crtc *unused_crtc)
2390
{
2391
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2392
	struct intel_crtc *crtc;
2393
	const struct drm_display_mode *adjusted_mode;
2394 2395 2396
	uint32_t fwater_lo;
	int planea_wm;

2397
	crtc = single_enabled_crtc(dev_priv);
2398 2399 2400
	if (crtc == NULL)
		return;

2401
	adjusted_mode = &crtc->config->base.adjusted_mode;
2402
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2403
				       &i845_wm_info,
2404
				       dev_priv->display.get_fifo_size(dev_priv, 0),
2405
				       4, pessimal_latency_ns);
2406 2407 2408 2409 2410 2411 2412 2413
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2414
/* latency must be in 0.1us units. */
2415 2416 2417
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2418
{
2419
	unsigned int ret;
2420

2421 2422
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2423 2424 2425 2426

	return ret;
}

2427
/* latency must be in 0.1us units. */
2428 2429 2430 2431 2432
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2433
{
2434
	unsigned int ret;
2435

2436 2437
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2438
	ret = DIV_ROUND_UP(ret, 64) + 2;
2439

2440 2441 2442
	return ret;
}

2443
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2444
			   uint8_t cpp)
2445
{
2446 2447 2448 2449 2450 2451
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2452
	if (WARN_ON(!cpp))
2453 2454 2455 2456
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2457
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2458 2459
}

2460
struct ilk_wm_maximums {
2461 2462 2463 2464 2465 2466
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2467 2468 2469 2470
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2471
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2472
				   const struct intel_plane_state *pstate,
2473 2474
				   uint32_t mem_value,
				   bool is_lp)
2475
{
2476
	uint32_t method1, method2;
2477
	int cpp;
2478

2479
	if (!intel_wm_plane_visible(cstate, pstate))
2480 2481
		return 0;

2482
	cpp = pstate->base.fb->format->cpp[0];
2483

2484
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2485 2486 2487 2488

	if (!is_lp)
		return method1;

2489
	method2 = ilk_wm_method2(cstate->pixel_rate,
2490
				 cstate->base.adjusted_mode.crtc_htotal,
2491
				 drm_rect_width(&pstate->base.dst),
2492
				 cpp, mem_value);
2493 2494

	return min(method1, method2);
2495 2496
}

2497 2498 2499 2500
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2501
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2502
				   const struct intel_plane_state *pstate,
2503 2504 2505
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2506
	int cpp;
2507

2508
	if (!intel_wm_plane_visible(cstate, pstate))
2509 2510
		return 0;

2511
	cpp = pstate->base.fb->format->cpp[0];
2512

2513 2514
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2515
				 cstate->base.adjusted_mode.crtc_htotal,
2516
				 drm_rect_width(&pstate->base.dst),
2517
				 cpp, mem_value);
2518 2519 2520
	return min(method1, method2);
}

2521 2522 2523 2524
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2525
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2526
				   const struct intel_plane_state *pstate,
2527 2528
				   uint32_t mem_value)
{
2529 2530
	int cpp;

2531
	if (!intel_wm_plane_visible(cstate, pstate))
2532 2533
		return 0;

2534 2535
	cpp = pstate->base.fb->format->cpp[0];

2536
	return ilk_wm_method2(cstate->pixel_rate,
2537
			      cstate->base.adjusted_mode.crtc_htotal,
2538
			      pstate->base.crtc_w, cpp, mem_value);
2539 2540
}

2541
/* Only for WM_LP. */
2542
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2543
				   const struct intel_plane_state *pstate,
2544
				   uint32_t pri_val)
2545
{
2546
	int cpp;
2547

2548
	if (!intel_wm_plane_visible(cstate, pstate))
2549 2550
		return 0;

2551
	cpp = pstate->base.fb->format->cpp[0];
2552

2553
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2554 2555
}

2556 2557
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2558
{
2559
	if (INTEL_GEN(dev_priv) >= 8)
2560
		return 3072;
2561
	else if (INTEL_GEN(dev_priv) >= 7)
2562 2563 2564 2565 2566
		return 768;
	else
		return 512;
}

2567 2568 2569
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2570
{
2571
	if (INTEL_GEN(dev_priv) >= 8)
2572 2573
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2574
	else if (INTEL_GEN(dev_priv) >= 7)
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2585 2586
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2587
{
2588
	if (INTEL_GEN(dev_priv) >= 7)
2589 2590 2591 2592 2593
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2594
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2595
{
2596
	if (INTEL_GEN(dev_priv) >= 8)
2597 2598 2599 2600 2601
		return 31;
	else
		return 15;
}

2602 2603 2604
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2605
				     const struct intel_wm_config *config,
2606 2607 2608
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2609 2610
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2611 2612

	/* if sprites aren't enabled, sprites get nothing */
2613
	if (is_sprite && !config->sprites_enabled)
2614 2615 2616
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2617
	if (level == 0 || config->num_pipes_active > 1) {
2618
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2619 2620 2621 2622 2623 2624

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2625
		if (INTEL_GEN(dev_priv) <= 6)
2626 2627 2628
			fifo_size /= 2;
	}

2629
	if (config->sprites_enabled) {
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2641
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2642 2643 2644 2645
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2646 2647
				      int level,
				      const struct intel_wm_config *config)
2648 2649
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2650
	if (level > 0 && config->num_pipes_active > 1)
2651 2652 2653
		return 64;

	/* otherwise just report max that registers can hold */
2654
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2655 2656
}

2657
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2658 2659 2660
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2661
				    struct ilk_wm_maximums *max)
2662
{
2663 2664 2665
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2666
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2667 2668
}

2669
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2670 2671 2672
					int level,
					struct ilk_wm_maximums *max)
{
2673 2674 2675 2676
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2677 2678
}

2679
static bool ilk_validate_wm_level(int level,
2680
				  const struct ilk_wm_maximums *max,
2681
				  struct intel_wm_level *result)
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2720
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2721
				 const struct intel_crtc *intel_crtc,
2722
				 int level,
2723
				 struct intel_crtc_state *cstate,
2724 2725 2726
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2727
				 struct intel_wm_level *result)
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2752 2753 2754
	result->enable = true;
}

2755
static uint32_t
2756
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2757
{
2758 2759
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2760 2761
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2762
	u32 linetime, ips_linetime;
2763

2764 2765 2766 2767
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2768
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2769
		return 0;
2770

2771 2772 2773
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2774 2775 2776
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2777
					 intel_state->cdclk.logical.cdclk);
2778

2779 2780
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2781 2782
}

2783 2784
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2785
{
2786
	if (INTEL_GEN(dev_priv) >= 9) {
2787
		uint32_t val;
2788
		int ret, i;
2789
		int level, max_level = ilk_wm_max_level(dev_priv);
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2845
		/*
2846
		 * WaWmMemoryReadLatency:skl+,glk
2847
		 *
2848
		 * punit doesn't take into account the read latency so we need
2849 2850
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2851
		 */
2852 2853 2854 2855 2856
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2857
				wm[level] += 2;
2858
			}
2859 2860
		}

2861
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2862 2863 2864 2865 2866
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2867 2868 2869 2870
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2871
	} else if (INTEL_GEN(dev_priv) >= 6) {
2872 2873 2874 2875 2876 2877
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2878
	} else if (INTEL_GEN(dev_priv) >= 5) {
2879 2880 2881 2882 2883 2884
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2885 2886
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2887 2888 2889
	}
}

2890 2891
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2892 2893
{
	/* ILK sprite LP0 latency is 1300 ns */
2894
	if (IS_GEN5(dev_priv))
2895 2896 2897
		wm[0] = 13;
}

2898 2899
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2900 2901
{
	/* ILK cursor LP0 latency is 1300 ns */
2902
	if (IS_GEN5(dev_priv))
2903 2904 2905
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2906
	if (IS_IVYBRIDGE(dev_priv))
2907 2908 2909
		wm[3] *= 2;
}

2910
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2911 2912
{
	/* how many WM levels are we expecting */
2913
	if (INTEL_GEN(dev_priv) >= 9)
2914
		return 7;
2915
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2916
		return 4;
2917
	else if (INTEL_GEN(dev_priv) >= 6)
2918
		return 3;
2919
	else
2920 2921
		return 2;
}
2922

2923
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2924
				   const char *name,
2925
				   const uint16_t wm[8])
2926
{
2927
	int level, max_level = ilk_wm_max_level(dev_priv);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2938 2939 2940 2941
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2942
		if (INTEL_GEN(dev_priv) >= 9)
2943 2944
			latency *= 10;
		else if (level > 0)
2945 2946 2947 2948 2949 2950 2951 2952
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2953 2954 2955
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2956
	int level, max_level = ilk_wm_max_level(dev_priv);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2968
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2984 2985 2986
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2987 2988
}

2989
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2990
{
2991
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2992 2993 2994 2995 2996 2997

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2998
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2999
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3000

3001 3002 3003
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3004

3005
	if (IS_GEN6(dev_priv))
3006
		snb_wm_latency_quirk(dev_priv);
3007 3008
}

3009
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3010
{
3011
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3012
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3013 3014
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3038
/* Compute new watermarks for the pipe */
3039
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3040
{
3041 3042
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3043
	struct intel_pipe_wm *pipe_wm;
3044
	struct drm_device *dev = state->dev;
3045
	const struct drm_i915_private *dev_priv = to_i915(dev);
3046
	struct intel_plane *intel_plane;
3047
	struct intel_plane_state *pristate = NULL;
3048
	struct intel_plane_state *sprstate = NULL;
3049
	struct intel_plane_state *curstate = NULL;
3050
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3051
	struct ilk_wm_maximums max;
3052

3053
	pipe_wm = &cstate->wm.ilk.optimal;
3054

3055
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3056 3057 3058 3059 3060 3061
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
3062 3063

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3064
			pristate = ps;
3065
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3066
			sprstate = ps;
3067
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
3068
			curstate = ps;
3069 3070
	}

3071
	pipe_wm->pipe_enabled = cstate->base.active;
3072
	if (sprstate) {
3073 3074 3075 3076
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3077 3078
	}

3079 3080
	usable_level = max_level;

3081
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3082
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3083
		usable_level = 1;
3084 3085

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3086
	if (pipe_wm->sprites_scaled)
3087
		usable_level = 0;
3088

3089
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3090 3091 3092 3093
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
3094

3095
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3096
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3097

3098
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3099
		return -EINVAL;
3100

3101
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3102 3103

	for (level = 1; level <= max_level; level++) {
3104
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
3105

3106
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3107
				     pristate, sprstate, curstate, wm);
3108 3109 3110 3111 3112 3113

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3114 3115 3116 3117 3118 3119
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
3120
			usable_level = level;
3121 3122
	}

3123
	return 0;
3124 3125
}

3126 3127 3128 3129 3130 3131 3132 3133 3134
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3135
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3136
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
3137
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3138 3139 3140 3141 3142 3143

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3144
	*a = newstate->wm.ilk.optimal;
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3173 3174
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3175 3176 3177 3178

	return 0;
}

3179 3180 3181 3182 3183 3184 3185 3186 3187
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3188 3189
	ret_wm->enable = true;

3190
	for_each_intel_crtc(dev, intel_crtc) {
3191
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3192 3193 3194 3195
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3196

3197 3198 3199 3200 3201
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3202
		if (!wm->enable)
3203
			ret_wm->enable = false;
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3216
			 const struct intel_wm_config *config,
3217
			 const struct ilk_wm_maximums *max,
3218 3219
			 struct intel_pipe_wm *merged)
{
3220
	struct drm_i915_private *dev_priv = to_i915(dev);
3221
	int level, max_level = ilk_wm_max_level(dev_priv);
3222
	int last_enabled_level = max_level;
3223

3224
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3225
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3226
	    config->num_pipes_active > 1)
3227
		last_enabled_level = 0;
3228

3229
	/* ILK: FBC WM must be disabled always */
3230
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3231 3232 3233 3234 3235 3236 3237

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3238 3239 3240 3241 3242
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3243 3244 3245 3246 3247 3248

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3249 3250
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3251 3252 3253
			wm->fbc_val = 0;
		}
	}
3254 3255 3256 3257 3258 3259 3260

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3261
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3262
	    intel_fbc_is_active(dev_priv)) {
3263 3264 3265 3266 3267 3268
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3269 3270
}

3271 3272 3273 3274 3275 3276
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3277 3278 3279
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3280
	struct drm_i915_private *dev_priv = to_i915(dev);
3281

3282
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3283 3284 3285 3286 3287
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3288
static void ilk_compute_wm_results(struct drm_device *dev,
3289
				   const struct intel_pipe_wm *merged,
3290
				   enum intel_ddb_partitioning partitioning,
3291
				   struct ilk_wm_values *results)
3292
{
3293
	struct drm_i915_private *dev_priv = to_i915(dev);
3294 3295
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3296

3297
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3298
	results->partitioning = partitioning;
3299

3300
	/* LP1+ register values */
3301
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3302
		const struct intel_wm_level *r;
3303

3304
		level = ilk_wm_lp_to_level(wm_lp, merged);
3305

3306
		r = &merged->wm[level];
3307

3308 3309 3310 3311 3312
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3313
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3314 3315 3316
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3317 3318 3319
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3320
		if (INTEL_GEN(dev_priv) >= 8)
3321 3322 3323 3324 3325 3326
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3327 3328 3329 3330
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3331
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3332 3333 3334 3335
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3336
	}
3337

3338
	/* LP0 register values */
3339
	for_each_intel_crtc(dev, intel_crtc) {
3340
		enum pipe pipe = intel_crtc->pipe;
3341 3342
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3343 3344 3345 3346

		if (WARN_ON(!r->enable))
			continue;

3347
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3348

3349 3350 3351 3352
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3353 3354 3355
	}
}

3356 3357
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3358
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3359 3360
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3361
{
3362
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3363
	int level1 = 0, level2 = 0;
3364

3365 3366 3367 3368 3369
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3370 3371
	}

3372 3373
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3374 3375 3376
			return r2;
		else
			return r1;
3377
	} else if (level1 > level2) {
3378 3379 3380 3381 3382 3383
		return r1;
	} else {
		return r2;
	}
}

3384 3385 3386 3387 3388 3389 3390 3391
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3392
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3393 3394
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3395 3396 3397 3398 3399
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3400
	for_each_pipe(dev_priv, pipe) {
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3444 3445
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3446
{
3447
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3448
	bool changed = false;
3449

3450 3451 3452
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3453
		changed = true;
3454 3455 3456 3457
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3458
		changed = true;
3459 3460 3461 3462
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3463
		changed = true;
3464
	}
3465

3466 3467 3468 3469
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3470

3471 3472 3473 3474 3475 3476 3477
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3478 3479
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3480
{
3481
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3482 3483 3484
	unsigned int dirty;
	uint32_t val;

3485
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3486 3487 3488 3489 3490
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3491
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3492
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3493
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3494
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3495
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3496 3497
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3498
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3499
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3500
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3501
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3502
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3503 3504
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3505
	if (dirty & WM_DIRTY_DDB) {
3506
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3521 3522
	}

3523
	if (dirty & WM_DIRTY_FBC) {
3524 3525 3526 3527 3528 3529 3530 3531
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3532 3533 3534 3535
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3536
	if (INTEL_GEN(dev_priv) >= 7) {
3537 3538 3539 3540 3541
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3542

3543
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3544
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3545
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3546
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3547
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3548
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3549 3550

	dev_priv->wm.hw = *results;
3551 3552
}

3553
bool ilk_disable_lp_wm(struct drm_device *dev)
3554
{
3555
	struct drm_i915_private *dev_priv = to_i915(dev);
3556 3557 3558 3559

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3560 3561 3562 3563 3564 3565 3566 3567
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3568
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3569 3570 3571 3572 3573
		return true;

	return false;
}

3574 3575 3576
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3577 3578
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CANNONLAKE(dev_priv))
3579 3580 3581 3582 3583 3584 3585
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3586 3587
}

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3600
intel_enable_sagv(struct drm_i915_private *dev_priv)
3601 3602 3603
{
	int ret;

3604 3605 3606 3607
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3623
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3624
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3625
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3626 3627 3628 3629 3630 3631
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3632
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3633 3634 3635 3636
	return 0;
}

int
3637
intel_disable_sagv(struct drm_i915_private *dev_priv)
3638
{
3639
	int ret;
3640

3641 3642 3643 3644
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3645 3646 3647 3648 3649 3650
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3651 3652 3653 3654
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3655 3656 3657 3658 3659 3660
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3661
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3662
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3663
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3664
		return 0;
3665 3666 3667
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3668 3669
	}

3670
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3671 3672 3673
	return 0;
}

3674
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3675 3676 3677 3678
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3679 3680
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3681
	struct intel_crtc_state *cstate;
3682
	enum pipe pipe;
3683
	int level, latency;
3684
	int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
3685

3686 3687 3688
	if (!intel_has_sagv(dev_priv))
		return false;

3689
	/*
3690
	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3702
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3703
	cstate = to_intel_crtc_state(crtc->base.state);
3704

3705
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3706 3707
		return false;

3708
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3709 3710
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3711

3712
		/* Skip this plane if it's not enabled */
3713
		if (!wm->wm[0].plane_en)
3714 3715 3716
			continue;

		/* Find the highest enabled wm level for this plane */
3717
		for (level = ilk_wm_max_level(dev_priv);
3718
		     !wm->wm[level].plane_en; --level)
3719 3720
		     { }

3721 3722 3723
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3724
		    plane->base.state->fb->modifier ==
3725 3726 3727
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3728
		/*
3729 3730 3731
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
		 * can't enable the SAGV.
3732
		 */
3733
		if (latency < sagv_block_time_us)
3734 3735 3736 3737 3738 3739
			return false;
	}

	return true;
}

3740 3741
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3742
				   const struct intel_crtc_state *cstate,
3743 3744
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3745
{
3746 3747 3748
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3749
	struct drm_crtc *for_crtc = cstate->base.crtc;
3750 3751
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3752

3753
	if (WARN_ON(!state) || !cstate->base.active) {
3754 3755
		alloc->start = 0;
		alloc->end = 0;
3756
		*num_active = hweight32(dev_priv->active_crtcs);
3757 3758 3759
		return;
	}

3760 3761 3762 3763 3764
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3765 3766
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3767 3768 3769

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3770
	/*
3771 3772 3773 3774 3775 3776
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3777
	 */
3778
	if (!intel_state->active_pipe_changes) {
3779 3780 3781 3782 3783
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3784
		return;
3785
	}
3786 3787 3788 3789 3790 3791

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3792 3793
}

3794
static unsigned int skl_cursor_allocation(int num_active)
3795
{
3796
	if (num_active == 1)
3797 3798 3799 3800 3801
		return 32;

	return 8;
}

3802 3803 3804 3805
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3806 3807
	if (entry->end)
		entry->end += 1;
3808 3809
}

3810 3811
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3812
{
3813
	struct intel_crtc *crtc;
3814

3815 3816
	memset(ddb, 0, sizeof(*ddb));

3817
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3818
		enum intel_display_power_domain power_domain;
3819 3820
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3821 3822 3823

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3824 3825
			continue;

3826 3827 3828 3829 3830 3831 3832
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3833

3834 3835
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3836 3837

		intel_display_power_put(dev_priv, power_domain);
3838 3839 3840
	}
}

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
3857
static uint_fixed_16_16_t
3858 3859
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3860
{
3861
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3862
	uint32_t src_w, src_h, dst_w, dst_h;
3863 3864
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
3865

3866
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3867
		return u32_to_fixed16(0);
3868 3869

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3870
	if (plane->id == PLANE_CURSOR) {
3871 3872 3873 3874
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
3875 3876
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
3877 3878 3879
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
3880 3881 3882 3883 3884
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
3885 3886
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
3887 3888 3889 3890
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

3891 3892 3893 3894
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3895

3896
	return mul_fixed16(downscale_w, downscale_h);
3897 3898
}

3899 3900 3901
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
3902
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
		uint32_t src_w, src_h, dst_w, dst_h;
		uint32_t pfit_size = crtc_state->pch_pfit.size;
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

3921 3922 3923 3924
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
3940
	int crtc_clock, dotclk;
3941 3942
	uint32_t pipe_max_pixel_rate;
	uint_fixed_16_16_t pipe_downscale;
3943
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3944 3945 3946 3947 3948 3949

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
3950
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

3968
		max_downscale = max_fixed16(plane_downscale, max_downscale);
3969 3970 3971 3972 3973 3974
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3975 3976 3977 3978 3979 3980
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

	if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3981 3982

	if (pipe_max_pixel_rate < crtc_clock) {
3983
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3984 3985 3986 3987 3988 3989
		return -EINVAL;
	}

	return 0;
}

3990
static unsigned int
3991 3992 3993
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3994
{
3995
	struct intel_plane *plane = to_intel_plane(pstate->plane);
3996
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3997
	uint32_t data_rate;
3998
	uint32_t width = 0, height = 0;
3999 4000
	struct drm_framebuffer *fb;
	u32 format;
4001
	uint_fixed_16_16_t down_scale_amount;
4002

4003
	if (!intel_pstate->base.visible)
4004
		return 0;
4005 4006

	fb = pstate->fb;
V
Ville Syrjälä 已提交
4007
	format = fb->format->format;
4008

4009
	if (plane->id == PLANE_CURSOR)
4010 4011 4012
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
4013

4014 4015 4016 4017 4018
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4019 4020
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4021

4022
	/* for planar format */
4023
	if (format == DRM_FORMAT_NV12) {
4024
		if (y)  /* y-plane data rate */
4025
			data_rate = width * height *
4026
				fb->format->cpp[0];
4027
		else    /* uv-plane data rate */
4028
			data_rate = (width / 2) * (height / 2) *
4029
				fb->format->cpp[1];
4030 4031
	} else {
		/* for packed formats */
4032
		data_rate = width * height * fb->format->cpp[0];
4033 4034
	}

4035
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4036

4037
	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4038 4039 4040 4041 4042 4043 4044 4045
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
4046 4047 4048
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
4049
{
4050 4051
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4052 4053
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4054
	unsigned int total_data_rate = 0;
4055 4056 4057

	if (WARN_ON(!state))
		return 0;
4058

4059
	/* Calculate and cache data rate for each plane */
4060
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4061 4062
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
4063 4064 4065 4066

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
4067
		plane_data_rate[plane_id] = rate;
4068 4069

		total_data_rate += rate;
4070 4071 4072 4073

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
4074
		plane_y_data_rate[plane_id] = rate;
4075

4076
		total_data_rate += rate;
4077 4078 4079 4080 4081
	}

	return total_data_rate;
}

4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
4096
	if (y && fb->format->format != DRM_FORMAT_NV12)
4097 4098 4099
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
4100
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4101 4102 4103
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4104 4105
		return 8;

4106 4107 4108 4109 4110
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4111 4112
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4113 4114

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
4115
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4116 4117 4118 4119
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
4120
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
4121
		plane_bpp = fb->format->cpp[1];
4122
	else
4123
		plane_bpp = fb->format->cpp[0];
4124

4125
	if (drm_rotation_90_or_270(pstate->rotation)) {
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4149 4150 4151 4152 4153 4154 4155 4156
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4157
		enum plane_id plane_id = to_intel_plane(plane)->id;
4158

4159
		if (plane_id == PLANE_CURSOR)
4160 4161 4162 4163 4164
			continue;

		if (!pstate->visible)
			continue;

4165 4166
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4167 4168 4169 4170 4171
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4172
static int
4173
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4174 4175
		      struct skl_ddb_allocation *ddb /* out */)
{
4176
	struct drm_atomic_state *state = cstate->base.state;
4177
	struct drm_crtc *crtc = cstate->base.crtc;
4178 4179 4180
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4181
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4182
	uint16_t alloc_size, start;
4183 4184
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
4185
	unsigned int total_data_rate;
4186
	enum plane_id plane_id;
4187
	int num_active;
4188 4189
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4190
	uint16_t total_min_blocks = 0;
4191

4192 4193 4194 4195
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

4196 4197 4198
	if (WARN_ON(!state))
		return 0;

4199
	if (!cstate->base.active) {
4200
		alloc->start = alloc->end = 0;
4201 4202 4203
		return 0;
	}

4204
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4205
	alloc_size = skl_ddb_entry_size(alloc);
4206
	if (alloc_size == 0)
4207
		return 0;
4208

4209
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4210

4211 4212 4213 4214 4215
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4216

4217
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4218 4219
		total_min_blocks += minimum[plane_id];
		total_min_blocks += y_minimum[plane_id];
4220 4221
	}

4222 4223 4224 4225 4226 4227 4228
	if (total_min_blocks > alloc_size) {
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
							alloc_size);
		return -EINVAL;
	}

4229 4230
	alloc_size -= total_min_blocks;
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4231 4232
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4233
	/*
4234 4235
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4236 4237 4238
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4239 4240 4241
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
4242
	if (total_data_rate == 0)
4243
		return 0;
4244

4245
	start = alloc->start;
4246
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4247
		unsigned int data_rate, y_data_rate;
4248
		uint16_t plane_blocks, y_plane_blocks = 0;
4249

4250
		if (plane_id == PLANE_CURSOR)
4251 4252
			continue;

4253
		data_rate = plane_data_rate[plane_id];
4254 4255

		/*
4256
		 * allocation for (packed formats) or (uv-plane part of planar format):
4257 4258 4259
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4260 4261 4262
		plane_blocks = minimum[plane_id];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4263

4264 4265
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4266 4267
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4268
		}
4269

4270 4271
		start += plane_blocks;

4272 4273 4274
		/*
		 * allocation for y_plane part of planar format:
		 */
4275
		y_data_rate = plane_y_data_rate[plane_id];
4276

4277 4278 4279 4280
		y_plane_blocks = y_minimum[plane_id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);

4281
		if (y_data_rate) {
4282 4283
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4284
		}
4285 4286

		start += y_plane_blocks;
4287 4288
	}

4289
	return 0;
4290 4291
}

4292 4293
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4294
 * for the read latency) and cpp should always be <= 8, so that
4295 4296 4297
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4298 4299 4300
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
	       uint8_t cpp, uint32_t latency)
4301
{
4302 4303
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4304 4305

	if (latency == 0)
4306
		return FP_16_16_MAX;
4307

4308
	wm_intermediate_val = latency * pixel_rate * cpp;
4309
	ret = div_fixed16(wm_intermediate_val, 1000 * 512);
4310 4311 4312 4313

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4314 4315 4316
	return ret;
}

4317 4318 4319 4320
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4321
{
4322
	uint32_t wm_intermediate_val;
4323
	uint_fixed_16_16_t ret;
4324 4325

	if (latency == 0)
4326
		return FP_16_16_MAX;
4327 4328

	wm_intermediate_val = latency * pixel_rate;
4329 4330
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4331
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4332 4333 4334
	return ret;
}

4335 4336 4337 4338 4339 4340 4341 4342
static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state *cstate)
{
	uint32_t pixel_rate;
	uint32_t crtc_htotal;
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4343
		return u32_to_fixed16(0);
4344 4345 4346 4347

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4348
		return u32_to_fixed16(0);
4349 4350

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4351
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4352 4353 4354 4355

	return linetime_us;
}

4356 4357 4358
static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4359 4360
{
	uint64_t adjusted_pixel_rate;
4361
	uint_fixed_16_16_t downscale_amount;
4362 4363

	/* Shouldn't reach here on disabled planes... */
4364
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4365 4366 4367 4368 4369 4370
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4371
	adjusted_pixel_rate = cstate->pixel_rate;
4372
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4373

4374 4375
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4376 4377
}

4378 4379 4380 4381 4382
static int
skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
			    struct intel_crtc_state *cstate,
			    const struct intel_plane_state *intel_pstate,
			    struct skl_wm_params *wp)
4383
{
4384
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4385 4386
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4387
	uint32_t interm_pbpl;
4388 4389 4390
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4391

4392
	if (!intel_wm_plane_visible(cstate, intel_pstate))
4393
		return 0;
4394

4395 4396 4397 4398 4399 4400 4401
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4402

4403
	if (plane->id == PLANE_CURSOR) {
4404
		wp->width = intel_pstate->base.crtc_w;
4405
	} else {
4406 4407 4408 4409 4410
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4411
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4412
	}
4413

4414 4415 4416 4417
	wp->cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
							    fb->format->cpp[0];
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4418

4419
	if (drm_rotation_90_or_270(pstate->rotation)) {
4420

4421
		switch (wp->cpp) {
4422
		case 1:
4423
			wp->y_min_scanlines = 16;
4424 4425
			break;
		case 2:
4426
			wp->y_min_scanlines = 8;
4427 4428
			break;
		case 4:
4429
			wp->y_min_scanlines = 4;
4430
			break;
4431
		default:
4432
			MISSING_CASE(wp->cpp);
4433
			return -EINVAL;
4434 4435
		}
	} else {
4436
		wp->y_min_scanlines = 4;
4437 4438
	}

4439
	if (apply_memory_bw_wa)
4440
		wp->y_min_scanlines *= 2;
4441

4442 4443 4444 4445
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
					   wp->y_min_scanlines, 512);
4446 4447 4448 4449

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4450 4451 4452 4453 4454
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
	} else if (wp->x_tiled && IS_GEN9(dev_priv)) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512);
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4455
	} else {
4456 4457
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512) + 1;
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4458 4459
	}

4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				const struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				const struct skl_wm_params *wp,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
{
	const struct drm_plane_state *pstate = &intel_pstate->base;
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
	uint32_t res_blocks, res_lines;
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);

	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
		*enabled = false;
		return 0;
	}

	/* Display WA #1141: kbl,cfl */
4494 4495
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4496 4497 4498 4499 4500 4501 4502 4503 4504
	    dev_priv->ipc_enabled)
		latency += 4;

	if (apply_memory_bw_wa && wp->x_tiled)
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
				 wp->cpp, latency);
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4505
				 cstate->base.adjusted_mode.crtc_htotal,
4506
				 latency,
4507
				 wp->plane_blocks_per_line);
4508

4509 4510
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4511
	} else {
4512 4513
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
		     512 < 1) && (wp->plane_bytes_per_line / 512 < 1))
4514
			selected_result = method2;
4515
		else if (ddb_allocation >=
4516
			 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4517
			selected_result = min_fixed16(method1, method2);
4518
		else if (latency >= wp->linetime_us)
4519
			selected_result = min_fixed16(method1, method2);
4520 4521 4522
		else
			selected_result = method1;
	}
4523

4524
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4525
	res_lines = div_round_up_fixed16(selected_result,
4526
					 wp->plane_blocks_per_line);
4527

4528
	/* Display WA #1125: skl,bxt,kbl,glk */
4529 4530
	if (level == 0 && wp->rc_surface)
		res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4531 4532

	/* Display WA #1126: skl,bxt,kbl,glk */
4533
	if (level >= 1 && level <= 7) {
4534 4535 4536 4537
		if (wp->y_tiled) {
			res_blocks += fixed16_to_u32_round_up(
							wp->y_tile_minimum);
			res_lines += wp->y_min_scanlines;
4538
		} else {
4539
			res_blocks++;
4540
		}
4541
	}
4542

4543 4544
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
4545

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			struct drm_plane *plane = pstate->plane;

			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4561
	}
4562 4563 4564

	*out_blocks = res_blocks;
	*out_lines = res_lines;
4565
	*enabled = true;
4566

4567
	return 0;
4568 4569
}

4570
static int
4571
skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4572
		      struct skl_ddb_allocation *ddb,
4573 4574
		      struct intel_crtc_state *cstate,
		      const struct intel_plane_state *intel_pstate,
4575
		      const struct skl_wm_params *wm_params,
4576
		      struct skl_plane_wm *wm)
4577
{
4578 4579 4580 4581 4582
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_plane *plane = intel_pstate->base.plane;
	struct intel_plane *intel_plane = to_intel_plane(plane);
	uint16_t ddb_blocks;
	enum pipe pipe = intel_crtc->pipe;
4583
	int level, max_level = ilk_wm_max_level(dev_priv);
4584
	int ret;
L
Lyude 已提交
4585

4586 4587
	if (WARN_ON(!intel_pstate->base.fb))
		return -EINVAL;
4588

4589 4590
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);

4591 4592 4593 4594 4595 4596
	for (level = 0; level <= max_level; level++) {
		struct skl_wm_level *result = &wm->wm[level];

		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
4597
					   ddb_blocks,
4598
					   level,
4599
					   wm_params,
4600
					   &result->plane_res_b,
4601 4602
					   &result->plane_res_l,
					   &result->plane_en);
4603 4604 4605
		if (ret)
			return ret;
	}
4606 4607

	return 0;
4608 4609
}

4610
static uint32_t
4611
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4612
{
M
Mahesh Kumar 已提交
4613 4614
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4615
	uint_fixed_16_16_t linetime_us;
M
Mahesh Kumar 已提交
4616
	uint32_t linetime_wm;
4617

4618
	linetime_us = intel_get_linetime_us(cstate);
4619

4620
	if (is_fixed16_zero(linetime_us))
4621
		return 0;
4622

4623
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4624

4625 4626 4627 4628
	/* Display WA #1135: bxt:ALL GLK:ALL */
	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4629 4630

	return linetime_wm;
4631 4632
}

4633
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4634 4635 4636
				      struct skl_wm_params *wp,
				      struct skl_wm_level *wm_l0,
				      uint16_t ddb_allocation,
4637
				      struct skl_wm_level *trans_wm /* out */)
4638
{
4639 4640 4641 4642 4643 4644
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	uint16_t trans_min, trans_y_tile_min;
	const uint16_t trans_amount = 10; /* This is configurable amount */
	uint16_t trans_offset_b, res_blocks;

4645
	if (!cstate->base.active)
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
		goto exit;

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
		goto exit;

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
		goto exit;

	if (INTEL_GEN(dev_priv) >= 10)
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

	if (wp->y_tiled) {
		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
							wp->y_tile_minimum);
		res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
				trans_offset_b;
	} else {
		res_blocks = wm_l0->plane_res_b + trans_offset_b;

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

	res_blocks += 1;

	if (res_blocks < ddb_allocation) {
		trans_wm->plane_res_b = res_blocks;
		trans_wm->plane_en = true;
4680
		return;
4681
	}
4682

4683
exit:
L
Lyude 已提交
4684
	trans_wm->plane_en = false;
4685 4686
}

4687 4688 4689
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4690
{
4691
	struct drm_device *dev = cstate->base.crtc->dev;
4692
	struct drm_crtc_state *crtc_state = &cstate->base;
4693
	const struct drm_i915_private *dev_priv = to_i915(dev);
4694 4695
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
L
Lyude 已提交
4696
	struct skl_plane_wm *wm;
4697
	int ret;
4698

L
Lyude 已提交
4699 4700 4701 4702 4703 4704
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4705 4706 4707 4708
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
4709
		struct skl_wm_params wm_params;
4710 4711
		enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
		uint16_t ddb_blocks;
4712 4713

		wm = &pipe_wm->planes[plane_id];
4714
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4715 4716 4717 4718 4719 4720
		memset(&wm_params, 0, sizeof(struct skl_wm_params));

		ret = skl_compute_plane_wm_params(dev_priv, cstate,
						  intel_pstate, &wm_params);
		if (ret)
			return ret;
L
Lyude 已提交
4721

4722
		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4723
					    intel_pstate, &wm_params, wm);
4724 4725
		if (ret)
			return ret;
4726 4727
		skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
					  ddb_blocks, &wm->trans_wm);
4728
	}
4729
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4730

4731
	return 0;
4732 4733
}

4734 4735
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4736 4737 4738 4739 4740 4741 4742 4743
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4759 4760 4761
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4762
			       enum plane_id plane_id)
4763 4764 4765 4766
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4767
	int level, max_level = ilk_wm_max_level(dev_priv);
4768 4769 4770
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4771
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4772
				   &wm->wm[level]);
4773
	}
4774
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4775
			   &wm->trans_wm);
4776

4777 4778 4779 4780
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4781 4782
}

4783 4784 4785
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4786 4787 4788 4789
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4790
	int level, max_level = ilk_wm_max_level(dev_priv);
4791 4792 4793
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4794 4795
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4796
	}
4797
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4798

4799
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4800
			    &ddb->plane[pipe][PLANE_CURSOR]);
4801 4802
}

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4817 4818
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4819
{
4820
	return a->start < b->end && b->start < a->end;
4821 4822
}

4823 4824 4825
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4826
{
4827
	int i;
4828

4829 4830 4831
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
4832
			return true;
4833

4834
	return false;
4835 4836
}

4837
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4838
			      const struct skl_pipe_wm *old_pipe_wm,
4839
			      struct skl_pipe_wm *pipe_wm, /* out */
4840
			      struct skl_ddb_allocation *ddb, /* out */
4841
			      bool *changed /* out */)
4842
{
4843
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4844
	int ret;
4845

4846 4847 4848
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4849

4850
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4851 4852 4853
		*changed = false;
	else
		*changed = true;
4854

4855
	return 0;
4856 4857
}

4858 4859 4860 4861 4862 4863 4864
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4865
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4866 4867 4868 4869 4870
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4871
static int
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
		enum plane_id plane_id = to_intel_plane(plane)->id;

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

static int
skl_compute_ddb(struct drm_atomic_state *state)
4907 4908 4909 4910 4911
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4912
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4913
	uint32_t realloc_pipes = pipes_modified(state);
4914 4915 4916 4917 4918 4919 4920 4921
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4922 4923 4924 4925 4926 4927
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4928 4929
		intel_state->active_pipe_changes = ~0;

4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4953
	if (intel_state->active_pipe_changes) {
4954
		realloc_pipes = ~0;
4955 4956
		intel_state->wm_results.dirty_pipes = ~0;
	}
4957

4958 4959 4960 4961 4962 4963
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4964 4965 4966 4967 4968 4969
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);
4970 4971 4972 4973 4974 4975 4976 4977

		ret = skl_allocate_pipe_ddb(cstate, ddb);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(cstate);
		if (ret)
			return ret;
4978 4979 4980 4981 4982
	}

	return 0;
}

4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5006
	int i;
5007

5008
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5009 5010
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
5011

5012
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5013
			enum plane_id plane_id = intel_plane->id;
5014 5015
			const struct skl_ddb_entry *old, *new;

5016 5017
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
5018 5019 5020 5021

			if (skl_ddb_entry_equal(old, new))
				continue;

5022 5023 5024 5025 5026
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
5027 5028 5029 5030
		}
	}
}

5031 5032 5033 5034 5035
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
5036 5037
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
5038
	struct drm_device *dev = state->dev;
5039
	struct skl_pipe_wm *pipe_wm;
5040
	bool changed = false;
5041
	int ret, i;
5042

5043 5044 5045 5046 5047 5048 5049
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
	if (to_i915(dev)->wm.distrust_bios_wm)
		changed = true;

5050 5051 5052 5053 5054 5055 5056 5057
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5058
	for_each_new_crtc_in_state(state, crtc, cstate, i)
5059
		changed = true;
5060

5061 5062 5063
	if (!changed)
		return 0;

5064 5065 5066
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5067
	ret = skl_compute_ddb(state);
5068 5069 5070
	if (ret)
		return ret;

5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
5081
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5082 5083
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
5084 5085
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5086 5087

		pipe_wm = &intel_cstate->wm.skl.optimal;
5088 5089
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

5103 5104
	skl_print_wm_changes(state);

5105 5106 5107
	return 0;
}

5108 5109 5110 5111 5112 5113
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5114
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5115
	enum pipe pipe = crtc->pipe;
5116
	enum plane_id plane_id;
5117 5118 5119

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5120 5121

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5122

5123 5124 5125 5126 5127 5128 5129 5130
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
5131 5132
}

5133 5134
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5135
{
5136
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5137
	struct drm_device *dev = intel_crtc->base.dev;
5138
	struct drm_i915_private *dev_priv = to_i915(dev);
5139
	struct skl_wm_values *results = &state->wm_results;
5140
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5141
	enum pipe pipe = intel_crtc->pipe;
5142

5143
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5144 5145
		return;

5146
	mutex_lock(&dev_priv->wm.wm_mutex);
5147

5148 5149
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5150 5151

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
5152 5153

	mutex_unlock(&dev_priv->wm.wm_mutex);
5154 5155
}

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5174
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5175
{
5176
	struct drm_device *dev = &dev_priv->drm;
5177
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5178
	struct ilk_wm_maximums max;
5179
	struct intel_wm_config config = {};
5180
	struct ilk_wm_values results = {};
5181
	enum intel_ddb_partitioning partitioning;
5182

5183 5184 5185 5186
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5187 5188

	/* 5/6 split only in single pipe config on IVB+ */
5189
	if (INTEL_GEN(dev_priv) >= 7 &&
5190 5191 5192
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5193

5194
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5195
	} else {
5196
		best_lp_wm = &lp_wm_1_2;
5197 5198
	}

5199
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5200
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5201

5202
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5203

5204
	ilk_write_wm_values(dev_priv, &results);
5205 5206
}

5207 5208
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5209
{
5210 5211
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5212

5213
	mutex_lock(&dev_priv->wm.wm_mutex);
5214
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5215 5216 5217
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5218

5219 5220
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5221 5222 5223
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5224

5225 5226
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5227
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5228 5229 5230
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5231 5232
}

5233 5234
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
5235
{
5236 5237 5238 5239
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5240 5241
}

5242 5243
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
5244
{
5245
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5246 5247
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5248 5249
	int level, max_level;
	enum plane_id plane_id;
5250
	uint32_t val;
5251

5252
	max_level = ilk_wm_max_level(dev_priv);
5253

5254 5255
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5256

5257
		for (level = 0; level <= max_level; level++) {
5258 5259
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5260 5261
			else
				val = I915_READ(CUR_WM(pipe, level));
5262

5263
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5264 5265
		}

5266 5267
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5268 5269 5270 5271
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5272 5273
	}

5274 5275
	if (!intel_crtc->active)
		return;
5276

5277
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5278 5279 5280 5281
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5282
	struct drm_i915_private *dev_priv = to_i915(dev);
5283
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5284
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5285
	struct drm_crtc *crtc;
5286 5287
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5288

5289
	skl_ddb_get_hw_state(dev_priv, ddb);
5290 5291 5292 5293 5294 5295
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5296
		if (intel_crtc->active)
5297 5298
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5299

5300 5301 5302 5303 5304 5305 5306
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
5307 5308
}

5309 5310 5311
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5312
	struct drm_i915_private *dev_priv = to_i915(dev);
5313
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5314
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5315
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5316
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5317
	enum pipe pipe = intel_crtc->pipe;
5318
	static const i915_reg_t wm0_pipe_reg[] = {
5319 5320 5321 5322 5323 5324
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5325
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5326
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5327

5328 5329
	memset(active, 0, sizeof(*active));

5330
	active->pipe_enabled = intel_crtc->active;
5331 5332

	if (active->pipe_enabled) {
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5347
		int level, max_level = ilk_wm_max_level(dev_priv);
5348 5349 5350 5351 5352 5353 5354 5355 5356

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5357 5358

	intel_crtc->wm.active.ilk = *active;
5359 5360
}

5361 5362 5363 5364 5365
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5392 5393 5394 5395 5396 5397 5398 5399 5400
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5401
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5402
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5403
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5404
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5405
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5406
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5407
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5408 5409 5410 5411 5412
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5413 5414 5415
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5416 5417

	tmp = I915_READ(DSPFW2);
5418 5419 5420
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5421 5422 5423 5424 5425 5426

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5427 5428
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5429 5430

		tmp = I915_READ(DSPFW8_CHV);
5431 5432
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5433 5434

		tmp = I915_READ(DSPFW9_CHV);
5435 5436
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5437 5438 5439

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5440 5441 5442 5443 5444 5445 5446 5447 5448
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5449 5450
	} else {
		tmp = I915_READ(DSPFW7);
5451 5452
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5453 5454 5455

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5456 5457 5458 5459 5460 5461
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5462 5463 5464 5465 5466 5467
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5609 5610 5611 5612
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5613
	struct intel_crtc *crtc;
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5628 5629 5630 5631 5632 5633 5634 5635 5636
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5637
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5651 5652 5653 5654

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5671
			struct g4x_pipe_wm *raw =
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5693
		crtc_state->wm.vlv.intermediate = *active;
5694

5695
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5696 5697 5698 5699 5700
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5701
	}
5702 5703 5704 5705 5706

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
5731
			struct g4x_pipe_wm *raw =
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5756 5757
void ilk_wm_get_hw_state(struct drm_device *dev)
{
5758
	struct drm_i915_private *dev_priv = to_i915(dev);
5759
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5760 5761
	struct drm_crtc *crtc;

5762
	for_each_crtc(dev, crtc)
5763 5764 5765 5766 5767 5768 5769
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5770
	if (INTEL_GEN(dev_priv) >= 7) {
5771 5772 5773
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
5774

5775
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5776 5777
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5778
	else if (IS_IVYBRIDGE(dev_priv))
5779 5780
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5781 5782 5783 5784 5785

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
5818
void intel_update_watermarks(struct intel_crtc *crtc)
5819
{
5820
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5821 5822

	if (dev_priv->display.update_wm)
5823
		dev_priv->display.update_wm(crtc);
5824 5825
}

5826 5827 5828 5829
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

5830 5831 5832 5833 5834 5835
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv)) {
		dev_priv->ipc_enabled = false;
		return;
	}

5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	dev_priv->ipc_enabled = false;
	if (!HAS_IPC(dev_priv))
		return;

	dev_priv->ipc_enabled = true;
	intel_enable_ipc(dev_priv);
}

5856
/*
5857 5858 5859 5860 5861 5862 5863 5864
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

5865
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5866 5867 5868
{
	u16 rgvswctl;

5869
	lockdep_assert_held(&mchdev_lock);
5870

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

5888
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5889
{
5890
	u32 rgvmodectl;
5891 5892
	u8 fmax, fmin, fstart, vstart;

5893 5894
	spin_lock_irq(&mchdev_lock);

5895 5896
	rgvmodectl = I915_READ(MEMMODECTL);

5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

5917
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5918 5919
		PXVFREQ_PX_SHIFT;

5920 5921
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
5922

5923 5924 5925
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

5942
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5943
		DRM_ERROR("stuck trying to change perf mode\n");
5944
	mdelay(1);
5945

5946
	ironlake_set_drps(dev_priv, fstart);
5947

5948 5949
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5950
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5951
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5952
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5953 5954

	spin_unlock_irq(&mchdev_lock);
5955 5956
}

5957
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5958
{
5959 5960 5961 5962 5963
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5964 5965 5966 5967 5968 5969 5970 5971 5972

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5973
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5974
	mdelay(1);
5975 5976
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5977
	mdelay(1);
5978

5979
	spin_unlock_irq(&mchdev_lock);
5980 5981
}

5982 5983 5984 5985 5986
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
5987
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5988
{
5989
	u32 limits;
5990

5991 5992 5993 5994 5995 5996
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
5997
	if (INTEL_GEN(dev_priv) >= 9) {
5998 5999 6000 6001 6002 6003 6004 6005
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
6006 6007 6008 6009

	return limits;
}

6010 6011 6012
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
6013 6014
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6015 6016 6017 6018

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
6019 6020
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
6021 6022 6023 6024
			new_power = BETWEEN;
		break;

	case BETWEEN:
6025 6026
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
6027
			new_power = LOW_POWER;
6028 6029
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
6030 6031 6032 6033
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
6034 6035
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
6036 6037 6038 6039
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
6040
	if (val <= dev_priv->rps.min_freq_softlimit)
6041
		new_power = LOW_POWER;
6042
	if (val >= dev_priv->rps.max_freq_softlimit)
6043 6044 6045 6046 6047 6048 6049 6050
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6051 6052
		ei_up = 16000;
		threshold_up = 95;
6053 6054

		/* Downclock if less than 85% busy over 32ms */
6055 6056
		ei_down = 32000;
		threshold_down = 85;
6057 6058 6059 6060
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6061 6062
		ei_up = 13000;
		threshold_up = 90;
6063 6064

		/* Downclock if less than 75% busy over 32ms */
6065 6066
		ei_down = 32000;
		threshold_down = 75;
6067 6068 6069 6070
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6071 6072
		ei_up = 10000;
		threshold_up = 85;
6073 6074

		/* Downclock if less than 60% busy over 32ms */
6075 6076
		ei_down = 32000;
		threshold_down = 60;
6077 6078 6079
		break;
	}

6080 6081 6082 6083 6084 6085
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6086
	I915_WRITE(GEN6_RP_UP_EI,
6087
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6088
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6089 6090
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6091 6092

	I915_WRITE(GEN6_RP_DOWN_EI,
6093
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6094
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6105

6106
skip_hw_write:
6107
	dev_priv->rps.power = new_power;
6108 6109
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
6110 6111 6112
	dev_priv->rps.last_adj = 0;
}

6113 6114 6115 6116
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

6117
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6118
	if (val > dev_priv->rps.min_freq_softlimit)
6119
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6120
	if (val < dev_priv->rps.max_freq_softlimit)
6121
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6122

6123 6124
	mask &= dev_priv->pm_rps_events;

6125
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6126 6127
}

6128 6129 6130
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6131
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6132
{
C
Chris Wilson 已提交
6133 6134 6135 6136 6137
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
6138

6139
		if (INTEL_GEN(dev_priv) >= 9)
6140 6141
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6142
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6143 6144 6145 6146 6147 6148 6149
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6150
	}
6151 6152 6153 6154

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6155
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6156
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6157

6158
	dev_priv->rps.cur_freq = val;
6159
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6160 6161

	return 0;
6162 6163
}

6164
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6165
{
6166 6167
	int err;

6168
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6169 6170 6171
		      "Odd GPU freq value\n"))
		val &= ~1;

6172 6173
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6174
	if (val != dev_priv->rps.cur_freq) {
6175 6176 6177 6178
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6179
		gen6_set_rps_thresholds(dev_priv, val);
6180
	}
6181 6182 6183

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6184 6185

	return 0;
6186 6187
}

6188
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6189 6190
 *
 * * If Gfx is Idle, then
6191 6192 6193
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6194 6195 6196
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6197
	u32 val = dev_priv->rps.idle_freq;
6198
	int err;
6199

6200
	if (dev_priv->rps.cur_freq <= val)
6201 6202
		return;

6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6215
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6216
	err = valleyview_set_rps(dev_priv, val);
6217
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6218 6219 6220

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6221 6222
}

6223 6224 6225 6226
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
6227 6228
		u8 freq;

6229
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6230 6231 6232
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
6233

6234 6235
		gen6_enable_rps_interrupts(dev_priv);

6236 6237 6238 6239 6240 6241
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

6242
		if (intel_set_rps(dev_priv,
6243
				  clamp(freq,
6244 6245 6246
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6247 6248 6249 6250
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

6251 6252
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6253 6254 6255 6256 6257 6258 6259
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6260
	mutex_lock(&dev_priv->rps.hw_lock);
6261
	if (dev_priv->rps.enabled) {
6262
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6263
			vlv_set_rps_idle(dev_priv);
6264
		else
6265
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
6266
		dev_priv->rps.last_adj = 0;
6267 6268
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6269
	}
6270
	mutex_unlock(&dev_priv->rps.hw_lock);
6271 6272
}

6273 6274
void gen6_rps_boost(struct drm_i915_gem_request *rq,
		    struct intel_rps_client *rps)
6275
{
6276
	struct drm_i915_private *i915 = rq->i915;
6277
	unsigned long flags;
6278 6279
	bool boost;

6280 6281 6282
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6283
	if (!i915->rps.enabled)
6284
		return;
6285

6286
	boost = false;
6287
	spin_lock_irqsave(&rq->lock, flags);
6288 6289 6290 6291
	if (!rq->waitboost && !i915_gem_request_completed(rq)) {
		atomic_inc(&i915->rps.num_waiters);
		rq->waitboost = true;
		boost = true;
6292
	}
6293
	spin_unlock_irqrestore(&rq->lock, flags);
6294 6295 6296 6297 6298 6299 6300
	if (!boost)
		return;

	if (READ_ONCE(i915->rps.cur_freq) < i915->rps.boost_freq)
		schedule_work(&i915->rps.work);

	atomic_inc(rps ? &rps->boosts : &i915->rps.boosts);
6301 6302
}

6303
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6304
{
6305 6306
	int err;

6307 6308 6309 6310
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

6311 6312 6313 6314 6315
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

6316
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6317
		err = valleyview_set_rps(dev_priv, val);
6318
	else
6319 6320 6321
		err = gen6_set_rps(dev_priv, val);

	return err;
6322 6323
}

6324
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6325 6326
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6327
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6328 6329
}

6330
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6331 6332 6333 6334
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6335
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6336 6337
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6338
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6339
	I915_WRITE(GEN6_RP_CONTROL, 0);
6340 6341
}

6342
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6343 6344 6345 6346
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6347
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6348
{
6349 6350
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
6351
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6352

6353
	I915_WRITE(GEN6_RC_CONTROL, 0);
6354

6355
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6356 6357
}

6358
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
6359
{
6360
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6361 6362 6363 6364 6365
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
6366
	if (HAS_RC6p(dev_priv))
6367 6368 6369 6370 6371
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6372 6373

	else
6374 6375
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
6376 6377
}

6378
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6379
{
6380
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6381 6382
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6394 6395

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6396
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6397 6398 6399 6400 6401 6402 6403 6404
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6405 6406 6407
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
6408
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6409 6410 6411 6412 6413 6414 6415
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6416
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6417 6418 6419
		enable_rc6 = false;
	}

6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6434 6435 6436 6437 6438 6439
		enable_rc6 = false;
	}

	return enable_rc6;
}

6440
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6441
{
6442
	/* No RC6 before Ironlake and code is gone for ilk. */
6443
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
6444 6445
		return 0;

6446 6447 6448
	if (!enable_rc6)
		return 0;

6449
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6450 6451 6452 6453
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

6454
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
6455 6456 6457
	if (enable_rc6 >= 0) {
		int mask;

6458
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
6459 6460 6461 6462 6463 6464
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
6465 6466 6467
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
6468 6469 6470

		return enable_rc6 & mask;
	}
6471

6472
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
6473
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6474 6475

	return INTEL_RC6_ENABLE;
6476 6477
}

6478
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6479 6480
{
	/* All of these values are in units of 50MHz */
6481

6482
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6483
	if (IS_GEN9_LP(dev_priv)) {
6484
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6485 6486 6487 6488
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
6489
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6490 6491 6492 6493
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
6494
	/* hw_max = RP0 until we check for overclocking */
6495
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
6496

6497
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6498
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6499
	    IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6500 6501 6502 6503 6504
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6505
			dev_priv->rps.efficient_freq =
6506 6507 6508 6509
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
6510 6511
	}

6512
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6513
		/* Store the frequency values in 16.66 MHZ units, which is
6514 6515
		 * the natural hardware unit for SKL
		 */
6516 6517 6518 6519 6520 6521
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
6522 6523
}

6524
static void reset_rps(struct drm_i915_private *dev_priv,
6525
		      int (*set)(struct drm_i915_private *, u8))
6526 6527 6528 6529 6530 6531 6532
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

6533 6534
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6535 6536
}

J
Jesse Barnes 已提交
6537
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6538
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6539 6540 6541
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6542 6543 6544 6545 6546 6547 6548 6549
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6550 6551
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6552 6553 6554
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6555
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6556 6557 6558 6559

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6560
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6561
{
6562
	struct intel_engine_cs *engine;
6563
	enum intel_engine_id id;
Z
Zhe Wang 已提交
6564 6565 6566 6567 6568 6569 6570
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6571
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6572 6573 6574 6575 6576

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
6577 6578

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6579
	if (IS_SKYLAKE(dev_priv))
6580 6581 6582
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
6583 6584
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6585
	for_each_engine(engine, dev_priv, id)
6586
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6587

6588
	if (HAS_GUC(dev_priv))
6589 6590
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6591 6592
	I915_WRITE(GEN6_RC_SLEEP, 0);

6593 6594 6595 6596
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
6597
	/* 3a: Enable RC6 */
6598
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
6599
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6600
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6601 6602 6603
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
6604

6605 6606
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6607
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6608
	 */
6609
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6610 6611 6612 6613
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6614

6615
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6616 6617
}

6618
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6619
{
6620
	struct intel_engine_cs *engine;
6621
	enum intel_engine_id id;
6622
	uint32_t rc6_mask = 0;
6623 6624 6625 6626 6627 6628

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6629
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6630 6631 6632 6633 6634 6635 6636 6637

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6638
	for_each_engine(engine, dev_priv, id)
6639
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6640
	I915_WRITE(GEN6_RC_SLEEP, 0);
6641
	if (IS_BROADWELL(dev_priv))
6642 6643 6644
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
6645 6646

	/* 3: Enable RC6 */
6647
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6648
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6649 6650
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
6651 6652 6653 6654 6655 6656 6657
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
6658 6659

	/* 4 Program defaults and thresholds for RPS*/
6660 6661 6662 6663
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6678 6679

	/* 5: Enable RPS */
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

6690
	reset_rps(dev_priv, gen6_set_rps);
6691

6692
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6693 6694
}

6695
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6696
{
6697
	struct intel_engine_cs *engine;
6698
	enum intel_engine_id id;
6699
	u32 rc6vids, rc6_mask = 0;
6700 6701
	u32 gtfifodbg;
	int rc6_mode;
6702
	int ret;
6703

6704
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6705

6706 6707 6708 6709 6710 6711 6712 6713 6714
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
6715 6716
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6717 6718 6719 6720
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6721
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6732
	for_each_engine(engine, dev_priv, id)
6733
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6734 6735 6736

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6737
	if (IS_IVYBRIDGE(dev_priv))
6738 6739 6740
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6741
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6742 6743
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

6744
	/* Check if we are enabling RC6 */
6745
	rc6_mode = intel_enable_rc6();
6746 6747 6748
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

6749
	/* We don't use those on Haswell */
6750
	if (!IS_HASWELL(dev_priv)) {
6751 6752
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6753

6754 6755 6756
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
6757

6758
	intel_print_rc6_info(dev_priv, rc6_mask);
6759 6760 6761 6762 6763 6764

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

6765 6766
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6767 6768
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

6769
	reset_rps(dev_priv, gen6_set_rps);
6770

6771 6772
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6773
	if (IS_GEN6(dev_priv) && ret) {
6774
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6775
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6776 6777 6778 6779 6780 6781 6782 6783 6784
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

6785
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6786 6787
}

6788
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6789 6790
{
	int min_freq = 15;
6791 6792
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
6793
	unsigned int max_gpu_freq, min_gpu_freq;
6794
	int scaling_factor = 180;
6795
	struct cpufreq_policy *policy;
6796

6797
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6798

6799 6800 6801 6802 6803 6804 6805 6806 6807
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
6808
		max_ia_freq = tsc_khz;
6809
	}
6810 6811 6812 6813

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

6814
	min_ring_freq = I915_READ(DCLK) & 0xf;
6815 6816
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6817

6818
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6819 6820 6821 6822 6823 6824 6825 6826
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

6827 6828 6829 6830 6831
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
6832 6833
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
6834 6835
		unsigned int ia_freq = 0, ring_freq = 0;

6836
		if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6837 6838 6839 6840 6841
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
6842
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
6843 6844
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
6845
		} else if (IS_HASWELL(dev_priv)) {
6846
			ring_freq = mult_frac(gpu_freq, 5, 4);
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
6863

B
Ben Widawsky 已提交
6864 6865
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6866 6867 6868
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
6869 6870 6871
	}
}

6872
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6873 6874 6875
{
	u32 val, rp0;

6876
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6877

6878
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
6893
	}
6894 6895 6896

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

6910 6911 6912 6913
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

6914 6915 6916
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

6917 6918 6919
	return rp1;
}

6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

6942
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6943 6944 6945
{
	u32 val, rp0;

6946
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

6959
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6960
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6961
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6962 6963 6964 6965 6966
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

6967
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6968
{
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
6980 6981
}

6982 6983 6984 6985 6986 6987 6988 6989 6990
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

6991 6992 6993 6994 6995 6996 6997 6998 6999

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7000
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7001
{
7002
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
7003
	unsigned long pctx_paddr, paddr;
7004 7005 7006 7007 7008
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7009
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7010
		paddr = (dev_priv->mm.stolen_base +
7011
			 (ggtt->stolen_size - pctx_size));
7012 7013 7014 7015

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7016 7017

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7018 7019
}

7020
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
7033
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7034
								      pcbr_offset,
7035
								      I915_GTT_OFFSET_NONE,
7036 7037 7038 7039
								      pctx_size);
		goto out;
	}

7040 7041
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7042 7043 7044 7045 7046 7047 7048 7049
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7050
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7051 7052
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7053
		goto out;
7054 7055 7056 7057 7058 7059
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7060
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7061 7062 7063
	dev_priv->vlv_pctx = pctx;
}

7064
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7065 7066 7067 7068
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
7069
	i915_gem_object_put(dev_priv->vlv_pctx);
7070 7071 7072
	dev_priv->vlv_pctx = NULL;
}

7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

7084
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7085
{
7086
	u32 val;
7087

7088
	valleyview_setup_pctx(dev_priv);
7089

7090 7091
	vlv_init_gpll_ref_freq(dev_priv);

7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7105
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7106

7107 7108 7109
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7110
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
7111 7112 7113 7114
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7115
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7116 7117
			 dev_priv->rps.efficient_freq);

7118 7119
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7120
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7121 7122
			 dev_priv->rps.rp1_freq);

7123 7124
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7125
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7126 7127 7128
			 dev_priv->rps.min_freq);
}

7129
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7130
{
7131
	u32 val;
7132

7133
	cherryview_setup_pctx(dev_priv);
7134

7135 7136
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7137
	mutex_lock(&dev_priv->sb_lock);
7138
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7139
	mutex_unlock(&dev_priv->sb_lock);
7140

7141 7142 7143 7144
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7145
	default:
7146 7147 7148
		dev_priv->mem_freq = 1600;
		break;
	}
7149
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7150

7151 7152 7153
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7154
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
7155 7156 7157 7158
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7159
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7160 7161
			 dev_priv->rps.efficient_freq);

7162 7163
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7164
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7165 7166
			 dev_priv->rps.rp1_freq);

7167
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
7168
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7169
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7170 7171
			 dev_priv->rps.min_freq);

7172 7173 7174 7175 7176
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
7177 7178
}

7179
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7180
{
7181
	valleyview_cleanup_pctx(dev_priv);
7182 7183
}

7184
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7185
{
7186
	struct intel_engine_cs *engine;
7187
	enum intel_engine_id id;
7188
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
7189 7190 7191

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

7192 7193
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7194 7195 7196 7197 7198 7199 7200 7201 7202 7203
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7204
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7205

7206 7207 7208
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7209 7210 7211 7212 7213
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7214
	for_each_engine(engine, dev_priv, id)
7215
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7216 7217
	I915_WRITE(GEN6_RC_SLEEP, 0);

7218 7219
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7231 7232
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
7233
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7234 7235 7236

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7237
	/* 4 Program defaults and thresholds for RPS*/
7238
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7239 7240 7241 7242 7243 7244 7245 7246 7247 7248
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7249
		   GEN6_RP_MEDIA_IS_GFX |
7250 7251 7252 7253
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7254 7255 7256 7257 7258 7259
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7260 7261
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7262 7263 7264
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7265
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7266 7267
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7268
	reset_rps(dev_priv, valleyview_set_rps);
7269

7270
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7271 7272
}

7273
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7274
{
7275
	struct intel_engine_cs *engine;
7276
	enum intel_engine_id id;
7277
	u32 gtfifodbg, val, rc6_mode = 0;
7278 7279 7280

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

7281 7282
	valleyview_check_pctx(dev_priv);

7283 7284
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7285 7286
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7287 7288 7289
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7290
	/* If VLV, Forcewake all wells, else re-direct to regular path */
7291
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7292

7293 7294 7295
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7296
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7316
	for_each_engine(engine, dev_priv, id)
7317
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7318

7319
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7320 7321

	/* allows RC6 residency counter to work */
7322
	I915_WRITE(VLV_COUNTER_CONTROL,
7323 7324
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7325
				      VLV_RENDER_RC0_COUNT_EN |
7326 7327
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7328

7329
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
7330
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
7331

7332
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
7333

7334
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7335

D
Deepak S 已提交
7336 7337 7338 7339 7340 7341
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7342
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7343

7344 7345 7346
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7347
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7348 7349
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7350
	reset_rps(dev_priv, valleyview_set_rps);
7351

7352
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7353 7354
}

7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7384
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7385 7386 7387 7388 7389 7390
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7391
	lockdep_assert_held(&mchdev_lock);
7392

7393
	diff1 = now - dev_priv->ips.last_time1;
7394 7395 7396 7397 7398 7399 7400

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7401
		return dev_priv->ips.chipset_power;
7402 7403 7404 7405 7406 7407 7408 7409

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7410 7411
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7412 7413
		diff += total_count;
	} else {
7414
		diff = total_count - dev_priv->ips.last_count1;
7415 7416 7417
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7418 7419
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7420 7421 7422 7423 7424 7425 7426 7427 7428 7429
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7430 7431
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7432

7433
	dev_priv->ips.chipset_power = ret;
7434 7435 7436 7437

	return ret;
}

7438 7439 7440 7441
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7442
	if (INTEL_INFO(dev_priv)->gen != 5)
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7481
{
7482 7483 7484
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7485
	if (INTEL_INFO(dev_priv)->is_mobile)
7486 7487 7488
		return vm > 0 ? vm : 0;

	return vd;
7489 7490
}

7491
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7492
{
7493
	u64 now, diff, diffms;
7494 7495
	u32 count;

7496
	lockdep_assert_held(&mchdev_lock);
7497

7498 7499 7500
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7501 7502 7503 7504 7505 7506 7507

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7508 7509
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7510 7511
		diff += count;
	} else {
7512
		diff = count - dev_priv->ips.last_count2;
7513 7514
	}

7515 7516
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7517 7518 7519 7520

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7521
	dev_priv->ips.gfx_power = diff;
7522 7523
}

7524 7525
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7526
	if (INTEL_INFO(dev_priv)->gen != 5)
7527 7528
		return;

7529
	spin_lock_irq(&mchdev_lock);
7530 7531 7532

	__i915_update_gfx_val(dev_priv);

7533
	spin_unlock_irq(&mchdev_lock);
7534 7535
}

7536
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7537 7538 7539 7540
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7541
	lockdep_assert_held(&mchdev_lock);
7542

7543
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7563
	corr2 = (corr * dev_priv->ips.corr);
7564 7565 7566 7567

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7568
	__i915_update_gfx_val(dev_priv);
7569

7570
	return dev_priv->ips.gfx_power + state2;
7571 7572
}

7573 7574 7575 7576
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7577
	if (INTEL_INFO(dev_priv)->gen != 5)
7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7600
	spin_lock_irq(&mchdev_lock);
7601 7602 7603 7604
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7605 7606
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7607 7608 7609 7610

	ret = chipset_val + graphics_val;

out_unlock:
7611
	spin_unlock_irq(&mchdev_lock);
7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7627
	spin_lock_irq(&mchdev_lock);
7628 7629 7630 7631 7632 7633
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7634 7635
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7636 7637

out_unlock:
7638
	spin_unlock_irq(&mchdev_lock);
7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7655
	spin_lock_irq(&mchdev_lock);
7656 7657 7658 7659 7660 7661
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7662 7663
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
7664 7665

out_unlock:
7666
	spin_unlock_irq(&mchdev_lock);
7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

7681
	spin_lock_irq(&mchdev_lock);
7682 7683
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
7684
	spin_unlock_irq(&mchdev_lock);
7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7701
	spin_lock_irq(&mchdev_lock);
7702 7703 7704 7705 7706 7707
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7708
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
7709

7710
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7711 7712 7713
		ret = false;

out_unlock:
7714
	spin_unlock_irq(&mchdev_lock);
7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7742 7743
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7744
	spin_lock_irq(&mchdev_lock);
7745
	i915_mch_dev = dev_priv;
7746
	spin_unlock_irq(&mchdev_lock);
7747 7748 7749 7750 7751 7752

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7753
	spin_lock_irq(&mchdev_lock);
7754
	i915_mch_dev = NULL;
7755
	spin_unlock_irq(&mchdev_lock);
7756
}
7757

7758
static void intel_init_emon(struct drm_i915_private *dev_priv)
7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7775
		I915_WRITE(PEW(i), 0);
7776
	for (i = 0; i < 3; i++)
7777
		I915_WRITE(DEW(i), 0);
7778 7779 7780

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7781
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7802
		I915_WRITE(PXW(i), val);
7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7818
		I915_WRITE(PXWL(i), 0);
7819 7820 7821 7822 7823 7824

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7825
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7826 7827
}

7828
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7829
{
7830 7831 7832 7833
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
7834
	if (!i915_modparams.enable_rc6) {
7835 7836 7837
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
7838

7839
	mutex_lock(&dev_priv->drm.struct_mutex);
7840 7841 7842
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
7843 7844 7845 7846
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7847
	else if (INTEL_GEN(dev_priv) >= 6)
7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

7877 7878 7879
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

7880
	mutex_unlock(&dev_priv->rps.hw_lock);
7881
	mutex_unlock(&dev_priv->drm.struct_mutex);
7882 7883

	intel_autoenable_gt_powersave(dev_priv);
7884 7885
}

7886
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7887
{
7888
	if (IS_VALLEYVIEW(dev_priv))
7889
		valleyview_cleanup_gt_powersave(dev_priv);
7890

7891
	if (!i915_modparams.enable_rc6)
7892
		intel_runtime_pm_put(dev_priv);
7893 7894
}

7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

7914 7915 7916 7917
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
7918 7919

	gen6_reset_rps_interrupts(dev_priv);
7920 7921
}

7922
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7923
{
7924 7925
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
7926

7927
	mutex_lock(&dev_priv->rps.hw_lock);
7928

7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
7940
	}
7941 7942 7943

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
7944 7945
}

7946
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7947
{
7948 7949 7950
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
7951 7952
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
7953

7954 7955 7956
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
7957

7958
	mutex_lock(&dev_priv->rps.hw_lock);
7959 7960 7961 7962 7963

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
7964
	} else if (INTEL_GEN(dev_priv) >= 9) {
7965 7966
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
7967
		if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv))
7968
			gen6_update_ring_freq(dev_priv);
7969 7970
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
7971
		gen6_update_ring_freq(dev_priv);
7972
	} else if (INTEL_GEN(dev_priv) >= 6) {
7973
		gen6_enable_rps(dev_priv);
7974
		gen6_update_ring_freq(dev_priv);
7975 7976 7977
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
7978
	}
7979 7980 7981 7982 7983 7984 7985

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

7986
	dev_priv->rps.enabled = true;
7987 7988
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
7989

7990 7991 7992 7993 7994 7995 7996 7997 7998 7999
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

8000
	rcs = dev_priv->engine[RCS];
8001
	if (rcs->last_retired_context)
8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

8013
	if (!i915_modparams.enable_execlists && i915_switch_context(req) == 0)
8014 8015 8016
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
8017
	i915_add_request(req);
8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

8053
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8054 8055 8056 8057 8058 8059 8060 8061 8062
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8063
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8064
{
8065
	enum pipe pipe;
8066

8067
	for_each_pipe(dev_priv, pipe) {
8068 8069 8070
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8071 8072 8073

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8074 8075 8076
	}
}

8077
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

8089
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8090
{
8091
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8092

8093 8094 8095 8096
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8097 8098 8099
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8117
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8118 8119 8120
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8121

8122
	ilk_init_lp_watermarks(dev_priv);
8123 8124 8125 8126 8127 8128 8129 8130

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8131
	if (IS_IRONLAKE_M(dev_priv)) {
8132
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8133 8134 8135 8136 8137 8138 8139 8140
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8141 8142
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8143 8144 8145 8146 8147 8148
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8149

8150
	/* WaDisableRenderCachePipelinedFlush:ilk */
8151 8152
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8153

8154 8155 8156
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8157
	g4x_disable_trickle_feed(dev_priv);
8158

8159
	ibx_init_clock_gating(dev_priv);
8160 8161
}

8162
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8163 8164
{
	int pipe;
8165
	uint32_t val;
8166 8167 8168 8169 8170 8171

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8172 8173 8174
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8175 8176
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8177 8178 8179
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8180
	for_each_pipe(dev_priv, pipe) {
8181 8182 8183
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8184
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8185
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8186 8187 8188
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8189 8190
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8191
	/* WADP0ClockGatingDisable */
8192
	for_each_pipe(dev_priv, pipe) {
8193 8194 8195
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8196 8197
}

8198
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8199 8200 8201 8202
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
8203 8204 8205
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8206 8207
}

8208
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8209
{
8210
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8211

8212
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8213 8214 8215 8216 8217

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8218
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8219 8220 8221
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8222 8223 8224
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8225 8226 8227
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8228 8229 8230 8231
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8232 8233
	 */
	I915_WRITE(GEN6_GT_MODE,
8234
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8235

8236
	ilk_init_lp_watermarks(dev_priv);
8237 8238

	I915_WRITE(CACHE_MODE_0,
8239
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8255
	 *
8256 8257
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8258 8259 8260 8261 8262
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8263
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8264 8265
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8266

8267 8268 8269 8270 8271 8272 8273 8274
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8275 8276 8277 8278 8279 8280 8281 8282
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8283 8284
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8285 8286 8287 8288 8289 8290 8291
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8292 8293 8294 8295
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8296

8297
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8298

8299
	cpt_init_clock_gating(dev_priv);
8300

8301
	gen6_check_mch_setup(dev_priv);
8302 8303 8304 8305 8306 8307
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8308
	/*
8309
	 * WaVSThreadDispatchOverride:ivb,vlv
8310 8311 8312 8313
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8314 8315 8316 8317 8318 8319 8320 8321
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8322
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8323 8324 8325 8326 8327
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8328
	if (HAS_PCH_LPT_LP(dev_priv))
8329 8330 8331
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8332 8333

	/* WADPOClockGatingDisable:hsw */
8334 8335
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8336
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8337 8338
}

8339
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8340
{
8341
	if (HAS_PCH_LPT_LP(dev_priv)) {
8342 8343 8344 8345 8346 8347 8348
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

8372 8373 8374 8375 8376 8377
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

	/* Wa #1181 */
8378 8379
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8380 8381
}

8382
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8383
{
8384
	u32 val;
8385 8386
	cnp_init_clock_gating(dev_priv);

8387 8388 8389 8390
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
		I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE,
			   I915_READ(SLICE_UNIT_LEVEL_CLKGATE) |
			   SARBUNIT_CLKGATE_DIS);
8404 8405 8406 8407 8408 8409

	/* Display WA #1133: WaFbcSkipSegments:cnl */
	val = I915_READ(ILK_DPFC_CHICKEN);
	val &= ~GLK_SKIP_SEG_COUNT_MASK;
	val |= GLK_SKIP_SEG_EN | GLK_SKIP_SEG_COUNT(1);
	I915_WRITE(ILK_DPFC_CHICKEN, val);
8410 8411
}

8412 8413 8414 8415 8416 8417 8418 8419 8420 8421
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8422
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8423
{
8424
	gen9_init_clock_gating(dev_priv);
8425 8426 8427 8428 8429

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8430 8431 8432 8433 8434

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8435

8436
	/* WaFbcNukeOnHostModify:kbl */
8437 8438
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8439 8440
}

8441
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8442
{
8443
	gen9_init_clock_gating(dev_priv);
8444 8445 8446 8447

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8448 8449 8450 8451

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8452 8453
}

8454
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8455
{
8456
	enum pipe pipe;
B
Ben Widawsky 已提交
8457

8458
	ilk_init_lp_watermarks(dev_priv);
8459

8460
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8461
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8462

8463
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8464 8465 8466
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8467
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8468
	for_each_pipe(dev_priv, pipe) {
8469
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8470
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8471
			   BDW_DPRS_MASK_VBLANK_SRD);
8472
	}
8473

8474 8475 8476 8477 8478
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8479

8480 8481
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8482 8483 8484 8485

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8486

8487 8488
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8489

8490 8491 8492 8493 8494 8495 8496
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

8497 8498 8499 8500
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8501
	lpt_init_clock_gating(dev_priv);
8502 8503 8504 8505 8506 8507 8508 8509

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8510 8511
}

8512
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8513
{
8514
	ilk_init_lp_watermarks(dev_priv);
8515

8516 8517 8518 8519 8520
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8521
	/* This is required by WaCatErrorRejectionIssue:hsw */
8522 8523 8524 8525
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8526 8527 8528
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8529

8530 8531 8532
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8533 8534 8535 8536
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8537
	/* WaDisable4x2SubspanOptimization:hsw */
8538 8539
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8540

8541 8542 8543
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8544 8545 8546 8547
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8548 8549
	 */
	I915_WRITE(GEN7_GT_MODE,
8550
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8551

8552 8553 8554 8555
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8556
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8557 8558
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8559 8560 8561
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
8562

8563
	lpt_init_clock_gating(dev_priv);
8564 8565
}

8566
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8567
{
8568
	uint32_t snpcr;
8569

8570
	ilk_init_lp_watermarks(dev_priv);
8571

8572
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8573

8574
	/* WaDisableEarlyCull:ivb */
8575 8576 8577
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8578
	/* WaDisableBackToBackFlipFix:ivb */
8579 8580 8581 8582
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8583
	/* WaDisablePSDDualDispatchEnable:ivb */
8584
	if (IS_IVB_GT1(dev_priv))
8585 8586 8587
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8588 8589 8590
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8591
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8592 8593 8594
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8595
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8596 8597 8598
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8599
		   GEN7_WA_L3_CHICKEN_MODE);
8600
	if (IS_IVB_GT1(dev_priv))
8601 8602
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8603 8604 8605 8606
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8607 8608
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8609
	}
8610

8611
	/* WaForceL3Serialization:ivb */
8612 8613 8614
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8615
	/*
8616
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8617
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8618 8619
	 */
	I915_WRITE(GEN6_UCGCTL2,
8620
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8621

8622
	/* This is required by WaCatErrorRejectionIssue:ivb */
8623 8624 8625 8626
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8627
	g4x_disable_trickle_feed(dev_priv);
8628 8629

	gen7_setup_fixed_func_scheduler(dev_priv);
8630

8631 8632 8633 8634 8635
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8636

8637
	/* WaDisable4x2SubspanOptimization:ivb */
8638 8639
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8640

8641 8642 8643
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8644 8645 8646 8647
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8648 8649
	 */
	I915_WRITE(GEN7_GT_MODE,
8650
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8651

8652 8653 8654 8655
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8656

8657
	if (!HAS_PCH_NOP(dev_priv))
8658
		cpt_init_clock_gating(dev_priv);
8659

8660
	gen6_check_mch_setup(dev_priv);
8661 8662
}

8663
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8664
{
8665
	/* WaDisableEarlyCull:vlv */
8666 8667 8668
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8669
	/* WaDisableBackToBackFlipFix:vlv */
8670 8671 8672 8673
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8674
	/* WaPsdDispatchEnable:vlv */
8675
	/* WaDisablePSDDualDispatchEnable:vlv */
8676
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8677 8678
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8679

8680 8681 8682
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8683
	/* WaForceL3Serialization:vlv */
8684 8685 8686
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8687
	/* WaDisableDopClockGating:vlv */
8688 8689 8690
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8691
	/* This is required by WaCatErrorRejectionIssue:vlv */
8692 8693 8694 8695
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8696 8697
	gen7_setup_fixed_func_scheduler(dev_priv);

8698
	/*
8699
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8700
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8701 8702
	 */
	I915_WRITE(GEN6_UCGCTL2,
8703
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8704

8705 8706 8707 8708 8709
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8710

8711 8712 8713 8714
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8715 8716
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8717

8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8729 8730 8731 8732 8733 8734
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8735
	/*
8736
	 * WaDisableVLVClockGating_VBIIssue:vlv
8737 8738 8739
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8740
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8741 8742
}

8743
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8744
{
8745 8746 8747 8748 8749
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8750 8751 8752 8753

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8754 8755 8756 8757

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8758 8759 8760 8761

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8762

8763 8764 8765 8766 8767 8768 8769
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

8770 8771 8772 8773 8774
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8775 8776
}

8777
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8789
	if (IS_GM45(dev_priv))
8790 8791
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8792 8793 8794 8795

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8796

8797 8798 8799
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8800
	g4x_disable_trickle_feed(dev_priv);
8801 8802
}

8803
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8804 8805 8806 8807 8808 8809
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
8810 8811
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8812 8813 8814

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8815 8816
}

8817
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8818 8819 8820 8821 8822 8823 8824
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8825 8826
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8827 8828 8829

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8830 8831
}

8832
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8833 8834 8835 8836 8837 8838
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8839

8840
	if (IS_PINEVIEW(dev_priv))
8841
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8842 8843 8844

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8845 8846

	/* interrupts should cause a wake up from C3 */
8847
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8848 8849 8850

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8851 8852 8853

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8854 8855
}

8856
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8857 8858
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8859 8860 8861 8862

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8863 8864 8865

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8866 8867
}

8868
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8869
{
8870 8871 8872
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8873 8874
}

8875
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8876
{
8877
	dev_priv->display.init_clock_gating(dev_priv);
8878 8879
}

8880
void intel_suspend_hw(struct drm_i915_private *dev_priv)
8881
{
8882 8883
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
8884 8885
}

8886
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
8902
	if (IS_CANNONLAKE(dev_priv))
8903
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
8904 8905
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
8906
	else if (IS_SKYLAKE(dev_priv))
8907
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
8908
	else if (IS_KABYLAKE(dev_priv))
8909
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
8910
	else if (IS_BROXTON(dev_priv))
8911
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8912 8913
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
8914
	else if (IS_BROADWELL(dev_priv))
8915
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
8916
	else if (IS_CHERRYVIEW(dev_priv))
8917
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
8918
	else if (IS_HASWELL(dev_priv))
8919
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
8920
	else if (IS_IVYBRIDGE(dev_priv))
8921
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
8922
	else if (IS_VALLEYVIEW(dev_priv))
8923
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
8924 8925 8926
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
8927
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
8928 8929
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8930
	else if (IS_I965GM(dev_priv))
8931
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
8932
	else if (IS_I965G(dev_priv))
8933
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

8946
/* Set up chip specific power management-related functions */
8947
void intel_init_pm(struct drm_i915_private *dev_priv)
8948
{
8949
	intel_fbc_init(dev_priv);
8950

8951
	/* For cxsr */
8952
	if (IS_PINEVIEW(dev_priv))
8953
		i915_pineview_get_mem_freq(dev_priv);
8954
	else if (IS_GEN5(dev_priv))
8955
		i915_ironlake_get_mem_freq(dev_priv);
8956

8957
	/* For FIFO watermark updates */
8958
	if (INTEL_GEN(dev_priv) >= 9) {
8959
		skl_setup_wm_latency(dev_priv);
8960
		dev_priv->display.initial_watermarks = skl_initial_wm;
8961
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8962
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
8963
	} else if (HAS_PCH_SPLIT(dev_priv)) {
8964
		ilk_setup_wm_latency(dev_priv);
8965

8966
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8967
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8968
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8969
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8970
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8971 8972 8973 8974 8975 8976
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
8977 8978 8979 8980
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
8981
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8982
		vlv_setup_wm_latency(dev_priv);
8983
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8984
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8985
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8986
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8987
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8988 8989 8990 8991 8992 8993
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8994
	} else if (IS_PINEVIEW(dev_priv)) {
8995
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8996 8997 8998 8999 9000 9001 9002 9003 9004
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9005
			intel_set_memory_cxsr(dev_priv, false);
9006 9007 9008
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9009
	} else if (IS_GEN4(dev_priv)) {
9010
		dev_priv->display.update_wm = i965_update_wm;
9011
	} else if (IS_GEN3(dev_priv)) {
9012 9013
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9014
	} else if (IS_GEN2(dev_priv)) {
9015
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9016
			dev_priv->display.update_wm = i845_update_wm;
9017
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9018 9019
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9020
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9021 9022 9023
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9024 9025 9026
	}
}

9027 9028 9029 9030 9031 9032 9033 9034 9035
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9036
		return -ENODEV;
9037 9038 9039
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9040
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9041 9042 9043 9044
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9045
		MISSING_CASE(flags);
9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9072
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9073
{
9074 9075
	int status;

9076
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
9077

9078 9079 9080 9081 9082 9083
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9084 9085
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9086 9087 9088
		return -EAGAIN;
	}

9089 9090 9091
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9092

9093 9094 9095
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9096 9097
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9098 9099 9100
		return -ETIMEDOUT;
	}

9101 9102
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9103

9104 9105 9106 9107 9108 9109
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9110 9111
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9112 9113 9114
		return status;
	}

B
Ben Widawsky 已提交
9115 9116 9117
	return 0;
}

9118
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
9119
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
9120
{
9121 9122
	int status;

9123
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
9124

9125 9126 9127 9128 9129 9130
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9131 9132
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9133 9134 9135
		return -EAGAIN;
	}

9136
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9137
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9138
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9139

9140 9141 9142
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9143 9144
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9145 9146 9147
		return -ETIMEDOUT;
	}

9148
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9149

9150 9151 9152 9153 9154 9155
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9156 9157
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9158 9159 9160
		return status;
	}

B
Ben Widawsky 已提交
9161 9162
	return 0;
}
9163

9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9185
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9186 9187
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9188
 * for @timeout_base_ms and if this times out for another 50 ms with
9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9224
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9225
	 * account for interrupts that could reduce the number of these
9226 9227
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9228 9229 9230 9231
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9232
	ret = wait_for_atomic(COND, 50);
9233 9234 9235 9236 9237 9238 9239
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9240 9241
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9242 9243 9244 9245 9246
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
9247 9248
}

9249
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9250
{
9251
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
9252 9253
}

9254
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9255
{
9256 9257 9258 9259 9260
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
9261 9262
}

9263
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9264
{
9265
	/* CHV needs even values */
9266
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
9267 9268
}

9269
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9270
{
9271
	if (INTEL_GEN(dev_priv) >= 9)
9272 9273
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9274
	else if (IS_CHERRYVIEW(dev_priv))
9275
		return chv_gpu_freq(dev_priv, val);
9276
	else if (IS_VALLEYVIEW(dev_priv))
9277 9278 9279
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9280 9281
}

9282 9283
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9284
	if (INTEL_GEN(dev_priv) >= 9)
9285 9286
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9287
	else if (IS_CHERRYVIEW(dev_priv))
9288
		return chv_freq_opcode(dev_priv, val);
9289
	else if (IS_VALLEYVIEW(dev_priv))
9290 9291
		return byt_freq_opcode(dev_priv, val);
	else
9292
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9293
}
9294

9295
void intel_pm_setup(struct drm_i915_private *dev_priv)
9296
{
D
Daniel Vetter 已提交
9297 9298
	mutex_init(&dev_priv->rps.hw_lock);

9299 9300
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
9301
	atomic_set(&dev_priv->rps.num_waiters, 0);
9302

9303
	dev_priv->pm.suspended = false;
9304
	atomic_set(&dev_priv->pm.wakeref_count, 0);
9305
}
9306

9307 9308 9309
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9310
	u32 lower, upper, tmp;
9311
	int loop = 2;
9312 9313 9314 9315 9316 9317 9318 9319 9320

	/* The register accessed do not need forcewake. We borrow
	 * uncore lock to prevent concurrent access to range reg.
	 */
	spin_lock_irq(&dev_priv->uncore.lock);

	/* vlv and chv residency counters are 40 bits in width.
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9321 9322 9323 9324 9325
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9326
	 */
9327 9328
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9340
	} while (upper != tmp && --loop);
9341

9342 9343 9344 9345 9346
	/* Everywhere else we always use VLV_COUNTER_CONTROL with the
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9347 9348 9349 9350 9351
	spin_unlock_irq(&dev_priv->uncore.lock);

	return lower | (u64)upper << 8;
}

9352 9353
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   const i915_reg_t reg)
9354
{
9355
	u64 time_hw, units, div;
9356 9357 9358 9359 9360 9361 9362 9363

	if (!intel_enable_rc6())
		return 0;

	intel_runtime_pm_get(dev_priv);

	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9364
		units = 1000;
9365 9366
		div = dev_priv->czclk_freq;

9367
		time_hw = vlv_residency_raw(dev_priv, reg);
9368
	} else if (IS_GEN9_LP(dev_priv)) {
9369
		units = 1000;
9370 9371
		div = 1200;		/* 833.33ns */

9372 9373 9374 9375 9376 9377 9378
		time_hw = I915_READ(reg);
	} else {
		units = 128000; /* 1.28us */
		div = 100000;

		time_hw = I915_READ(reg);
	}
9379 9380

	intel_runtime_pm_put(dev_priv);
9381
	return DIV_ROUND_UP_ULL(time_hw * units, div);
9382
}