intel_pm.c 270.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */

56
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
57
{
58 59 60
	if (HAS_LLC(dev_priv)) {
		/*
		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
61
		 * Display WA #0390: skl,kbl
62 63 64 65 66 67 68 69 70
		 *
		 * Must match Sampler, Pixel Back End, and Media. See
		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
		 */
		I915_WRITE(CHICKEN_PAR1_1,
			   I915_READ(CHICKEN_PAR1_1) |
			   SKL_DE_COMPRESSED_HASH_MODE);
	}

71
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
72 73 74
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

75
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
76 77
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
78

79 80
	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
81 82 83
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
84

85
	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
86 87
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
88 89 90 91 92 93

	if (IS_SKYLAKE(dev_priv)) {
		/* WaDisableDopClockGating */
		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	}
94 95
}

96
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
97
{
98
	gen9_init_clock_gating(dev_priv);
99

100 101 102 103
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

104 105
	/*
	 * FIXME:
106
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
107 108
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
109
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
110 111 112 113 114

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
115 116
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118
}

119 120 121 122 123 124 125 126 127 128 129
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
130 131 132 133 134 135 136 137 138 139

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

140 141
}

142
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

180
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

207
	dev_priv->ips.r_t = dev_priv->mem_freq;
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
239
		dev_priv->ips.c_m = 0;
240
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
241
		dev_priv->ips.c_m = 1;
242
	} else {
243
		dev_priv->ips.c_m = 2;
244 245 246
	}
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

285 286
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

309 310 311 312
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

313
	mutex_lock(&dev_priv->pcu_lock);
314 315 316 317 318 319 320 321 322 323 324 325 326 327

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

328
	mutex_unlock(&dev_priv->pcu_lock);
329 330
}

331 332 333 334
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

335
	mutex_lock(&dev_priv->pcu_lock);
336 337 338 339 340 341 342 343

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

344
	mutex_unlock(&dev_priv->pcu_lock);
345 346
}

347 348 349
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

350
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
351
{
352
	bool was_enabled;
353
	u32 val;
354

355
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
356
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
357
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
358
		POSTING_READ(FW_BLC_SELF_VLV);
359
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
362
		POSTING_READ(FW_BLC_SELF);
363
	} else if (IS_PINEVIEW(dev_priv)) {
364 365 366 367 368 369
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
370
		I915_WRITE(DSPFW3, val);
371
		POSTING_READ(DSPFW3);
372
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
373
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
374 375 376
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
377
		POSTING_READ(FW_BLC_SELF);
378
	} else if (IS_I915GM(dev_priv)) {
379 380 381 382 383
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
384
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
385 386 387
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
388
		POSTING_READ(INSTPM);
389
	} else {
390
		return false;
391
	}
392

393 394
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

395 396 397 398 399
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
400 401
}

V
Ville Syrjälä 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
439
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
440
{
441 442
	bool ret;

443
	mutex_lock(&dev_priv->wm.wm_mutex);
444
	ret = _intel_set_memory_cxsr(dev_priv, enable);
445 446 447 448
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
449
	mutex_unlock(&dev_priv->wm.wm_mutex);
450 451

	return ret;
452
}
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
468
static const int pessimal_latency_ns = 5000;
469

470 471 472
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

473
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
474
{
475
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
476
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
477
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
478 479
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
480

481
	switch (pipe) {
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
502 503
		MISSING_CASE(pipe);
		return;
504 505
	}

506 507 508 509
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
510 511
}

512 513
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
514 515 516 517 518
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
519
	if (i9xx_plane == PLANE_B)
520 521
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

522 523
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
524 525 526 527

	return size;
}

528 529
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
530 531 532 533 534
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
535
	if (i9xx_plane == PLANE_B)
536 537 538
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

539 540
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
541 542 543 544

	return size;
}

545 546
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
			      enum i9xx_plane_id i9xx_plane)
547 548 549 550 551 552 553
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

554 555
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
		      dsparb, plane_name(i9xx_plane), size);
556 557 558 559 560 561

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
562 563 564 565 566
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
567 568
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
569 570 571 572 573
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574 575
};
static const struct intel_watermark_params pineview_cursor_wm = {
576 577 578 579 580
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 582
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
583 584 585 586 587
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588 589
};
static const struct intel_watermark_params i965_cursor_wm_info = {
590 591 592 593 594
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
595 596
};
static const struct intel_watermark_params i945_wm_info = {
597 598 599 600 601
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
602 603
};
static const struct intel_watermark_params i915_wm_info = {
604 605 606 607 608
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
609
};
610
static const struct intel_watermark_params i830_a_wm_info = {
611 612 613 614 615
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
616
};
617 618 619 620 621 622 623
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
624
static const struct intel_watermark_params i845_wm_info = {
625 626 627 628 629
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
630 631
};

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

728 729
/**
 * intel_calculate_wm - calculate watermark level
730
 * @pixel_rate: pixel clock
731
 * @wm: chip FIFO params
732
 * @fifo_size: size of the FIFO buffer
733
 * @cpp: bytes per pixel
734 735 736 737 738 739 740 741 742 743 744 745 746
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
747 748 749 750
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
751
{
752
	int entries, wm_size;
753 754 755 756 757 758 759

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
760 761 762 763 764
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
765

766 767
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
768 769

	/* Don't promote wm_size to unsigned... */
770
	if (wm_size > wm->max_wm)
771 772 773
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
774 775 776 777 778 779 780 781 782 783 784

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

785 786 787
	return wm_size;
}

788 789 790 791 792 793 794 795 796 797
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

798 799 800 801 802
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

826
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
827
{
828
	struct intel_crtc *crtc, *enabled = NULL;
829

830
	for_each_intel_crtc(&dev_priv->drm, crtc) {
831
		if (intel_crtc_active(crtc)) {
832 833 834 835 836 837 838 839 840
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

841
static void pineview_update_wm(struct intel_crtc *unused_crtc)
842
{
843
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
844
	struct intel_crtc *crtc;
845 846
	const struct cxsr_latency *latency;
	u32 reg;
847
	unsigned int wm;
848

849 850 851 852
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
853 854
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
855
		intel_set_memory_cxsr(dev_priv, false);
856 857 858
		return;
	}

859
	crtc = single_enabled_crtc(dev_priv);
860
	if (crtc) {
861 862 863 864
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
865
		int cpp = fb->format->cpp[0];
866
		int clock = adjusted_mode->crtc_clock;
867 868 869 870

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
871
					cpp, latency->display_sr);
872 873
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
874
		reg |= FW_WM(wm, SR);
875 876 877 878 879 880
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
881
					4, latency->cursor_sr);
882 883
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
884
		reg |= FW_WM(wm, CURSOR_SR);
885 886 887 888 889
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
890
					cpp, latency->display_hpll_disable);
891 892
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
893
		reg |= FW_WM(wm, HPLL_SR);
894 895 896 897 898
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
899
					4, latency->cursor_hpll_disable);
900 901
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
902
		reg |= FW_WM(wm, HPLL_CURSOR);
903 904 905
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

906
		intel_set_memory_cxsr(dev_priv, true);
907
	} else {
908
		intel_set_memory_cxsr(dev_priv, false);
909 910 911
	}
}

912 913 914 915 916 917 918 919 920 921
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
922
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
923 924 925 926 927 928
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

929 930
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
931
{
932 933 934 935 936
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
954

955
	POSTING_READ(DSPFW1);
956 957
}

958 959 960
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

961
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
962 963
				const struct vlv_wm_values *wm)
{
964 965 966
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
967 968
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

969 970 971 972 973 974
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
975

976 977 978 979 980 981 982 983 984 985 986
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

987
	I915_WRITE(DSPFW1,
988
		   FW_WM(wm->sr.plane, SR) |
989 990 991
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
992
	I915_WRITE(DSPFW2,
993 994 995
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
996
	I915_WRITE(DSPFW3,
997
		   FW_WM(wm->sr.cursor, CURSOR_SR));
998 999 1000

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
1001 1002
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1003
		I915_WRITE(DSPFW8_CHV,
1004 1005
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1006
		I915_WRITE(DSPFW9_CHV,
1007 1008
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1009
		I915_WRITE(DSPHOWM,
1010
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1011 1012 1013 1014 1015 1016 1017 1018 1019
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1020 1021
	} else {
		I915_WRITE(DSPFW7,
1022 1023
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1024
		I915_WRITE(DSPHOWM,
1025
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1026 1027 1028 1029 1030 1031
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1032 1033 1034
	}

	POSTING_READ(DSPFW1);
1035 1036
}

1037 1038
#undef FW_WM_VLV

1039 1040 1041 1042 1043
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1044
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1045

1046
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1099 1100
	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
	unsigned int clock, htotal, cpp, width, wm;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
1139
		unsigned int small, large;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

1152
	return min_t(unsigned int, wm, USHRT_MAX);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
1321 1322
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1323 1324 1325 1326 1327
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

1328 1329 1330 1331
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1332 1333 1334
		    old_plane_state->base.crtc != &crtc->base)
			continue;

1335
		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
1403
				       struct intel_crtc_state *new_crtc_state)
1404
{
1405 1406 1407 1408 1409 1410 1411
	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412 1413
	enum plane_id plane_id;

1414 1415 1416 1417 1418 1419 1420 1421
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		intermediate->hpll_en = false;
		goto out;
	}

1422
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423
		!new_crtc_state->disable_cxsr;
1424
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425
		!new_crtc_state->disable_cxsr;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

1467
out:
1468 1469 1470 1471 1472
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473
		new_crtc_state->wm.need_postvbl_update = true;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1570 1571
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572 1573
				   unsigned int htotal,
				   unsigned int width,
1574
				   unsigned int cpp,
1575 1576 1577 1578
				   unsigned int latency)
{
	unsigned int ret;

1579 1580
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1581 1582 1583 1584 1585
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1586
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1587 1588 1589 1590
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1591 1592
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1593 1594 1595
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1596 1597

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1598 1599 1600
	}
}

1601 1602
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1603 1604
				     int level)
{
1605
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607 1608
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1609
	unsigned int clock, htotal, cpp, width, wm;
1610 1611 1612 1613

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1614
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1615 1616
		return 0;

1617
	cpp = plane_state->base.fb->format->cpp[0];
1618 1619 1620
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1621

1622
	if (plane->id == PLANE_CURSOR) {
1623 1624 1625 1626 1627 1628 1629 1630
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1631
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1632 1633 1634
				    dev_priv->wm.pri_latency[level] * 10);
	}

1635
	return min_t(unsigned int, wm, USHRT_MAX);
1636 1637
}

1638 1639 1640 1641 1642 1643
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1644
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1645
{
1646
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647
	const struct g4x_pipe_wm *raw =
1648
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650 1651 1652
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1653
	int fifo_extra, fifo_left = fifo_size;
1654
	int sprite0_fifo_extra = 0;
1655 1656
	unsigned int total_rate;
	enum plane_id plane_id;
1657

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1669 1670
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1671 1672
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1673

1674 1675
	if (total_rate > fifo_size)
		return -EINVAL;
1676

1677 1678
	if (total_rate == 0)
		total_rate = 1;
1679

1680
	for_each_plane_id_on_crtc(crtc, plane_id) {
1681 1682
		unsigned int rate;

1683 1684
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1685 1686 1687
			continue;
		}

1688 1689 1690
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1691 1692
	}

1693 1694 1695
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1696 1697 1698
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1699 1700

	/* spread the remainder evenly */
1701
	for_each_plane_id_on_crtc(crtc, plane_id) {
1702 1703 1704 1705 1706
		int plane_extra;

		if (fifo_left == 0)
			break;

1707
		if ((active_planes & BIT(plane_id)) == 0)
1708 1709 1710
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1711
		fifo_state->plane[plane_id] += plane_extra;
1712 1713 1714
		fifo_left -= plane_extra;
	}

1715 1716 1717 1718 1719 1720 1721 1722 1723
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1724 1725
}

1726 1727 1728 1729 1730 1731
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1732
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1743 1744 1745 1746 1747 1748 1749 1750
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1751 1752 1753 1754
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1755
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756
				 int level, enum plane_id plane_id, u16 value)
1757
{
1758
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759
	int num_levels = intel_wm_num_levels(dev_priv);
1760
	bool dirty = false;
1761

1762
	for (; level < num_levels; level++) {
1763
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1764

1765
		dirty |= raw->plane[plane_id] != value;
1766
		raw->plane[plane_id] = value;
1767
	}
1768 1769

	return dirty;
1770 1771
}

1772 1773
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1774
{
1775 1776
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1777
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1778
	int level;
1779
	bool dirty = false;
1780

1781
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782 1783
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1784
	}
1785

1786
	for (level = 0; level < num_levels; level++) {
1787
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788 1789
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1790

1791 1792
		if (wm > max_wm)
			break;
1793

1794
		dirty |= raw->plane[plane_id] != wm;
1795 1796
		raw->plane[plane_id] = wm;
	}
1797

1798
	/* mark all higher levels as invalid */
1799
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1800

1801 1802
out:
	if (dirty)
1803
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1804 1805 1806 1807 1808 1809
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1810
}
1811

1812 1813
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1814
{
1815
	const struct g4x_pipe_wm *raw =
1816 1817 1818
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1819

1820 1821
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1822

1823
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1824
{
1825 1826 1827 1828
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1842
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843 1844
	const struct intel_plane_state *old_plane_state;
	const struct intel_plane_state *new_plane_state;
1845 1846 1847
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1848
	unsigned int dirty = 0;
1849

1850 1851 1852 1853
	for_each_oldnew_intel_plane_in_state(state, plane,
					     old_plane_state,
					     new_plane_state, i) {
		if (new_plane_state->base.crtc != &crtc->base &&
1854 1855
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1856

1857
		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
1876
			intel_atomic_get_old_crtc_state(state, crtc);
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1888
	}
1889

1890
	/* initially allow all levels */
1891
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1892 1893 1894 1895 1896
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1897
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1898

1899
	for (level = 0; level < wm_state->num_levels; level++) {
1900
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1902

1903
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1904
			break;
1905

1906 1907 1908 1909 1910 1911 1912 1913
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914
						 raw->plane[PLANE_SPRITE0],
1915 1916
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1917

1918 1919 1920
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1921 1922
	}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1933 1934
}

1935 1936 1937
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1938 1939
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1940
{
1941
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943 1944
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1945
	int sprite0_start, sprite1_start, fifo_size;
1946

1947 1948 1949
	if (!crtc_state->fifo_changed)
		return;

1950 1951 1952
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1953

1954 1955
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1956

1957 1958
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1969

1970 1971 1972
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1973 1974
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1986 1987
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1988 1989
		break;
	case PIPE_B:
1990 1991
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

2003 2004
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
2005 2006
		break;
	case PIPE_C:
2007 2008
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

2020 2021
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
2022 2023 2024 2025
		break;
	default:
		break;
	}
2026

2027
	POSTING_READ_FW(DSPARB);
2028

2029
	spin_unlock(&dev_priv->uncore.lock);
2030 2031 2032 2033
}

#undef VLV_FIFO

2034 2035
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
2036
				       struct intel_crtc_state *new_crtc_state)
2037
{
2038 2039 2040 2041 2042 2043 2044
	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(new_crtc_state->base.state);
	const struct intel_crtc_state *old_crtc_state =
		intel_atomic_get_old_crtc_state(intel_state, crtc);
	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2045 2046
	int level;

2047 2048 2049 2050 2051 2052 2053
	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
		*intermediate = *optimal;

		intermediate->cxsr = false;
		goto out;
	}

2054
	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2055
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2056
		!new_crtc_state->disable_cxsr;
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

2075
out:
2076 2077 2078 2079
	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2080
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2081
		new_crtc_state->wm.need_postvbl_update = true;
2082 2083 2084 2085

	return 0;
}

2086
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2087 2088 2089 2090 2091
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2092
	wm->level = dev_priv->wm.max_level;
2093 2094
	wm->cxsr = true;

2095
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2096
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2111 2112 2113
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2114
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2115
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2116 2117 2118
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2119
		if (crtc->active && wm->cxsr)
2120 2121
			wm->sr = wm_state->sr[wm->level];

2122 2123 2124 2125
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2126 2127 2128
	}
}

2129
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2130
{
2131 2132
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2133

2134
	vlv_merge_wm(dev_priv, &new_wm);
2135

2136
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2137 2138
		return;

2139
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2140 2141
		chv_set_memory_dvfs(dev_priv, false);

2142
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2143 2144
		chv_set_memory_pm5(dev_priv, false);

2145
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2146
		_intel_set_memory_cxsr(dev_priv, false);
2147

2148
	vlv_write_wm_values(dev_priv, &new_wm);
2149

2150
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2151
		_intel_set_memory_cxsr(dev_priv, true);
2152

2153
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2154 2155
		chv_set_memory_pm5(dev_priv, true);

2156
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2157 2158
		chv_set_memory_dvfs(dev_priv, true);

2159
	*old_wm = new_wm;
2160 2161
}

2162 2163 2164 2165 2166 2167 2168
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2185 2186 2187 2188
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2189
static void i965_update_wm(struct intel_crtc *unused_crtc)
2190
{
2191
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2192
	struct intel_crtc *crtc;
2193 2194
	int srwm = 1;
	int cursor_sr = 16;
2195
	bool cxsr_enabled;
2196 2197

	/* Calc sr entries for one plane configs */
2198
	crtc = single_enabled_crtc(dev_priv);
2199 2200 2201
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2202 2203 2204 2205
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2206
		int clock = adjusted_mode->crtc_clock;
2207
		int htotal = adjusted_mode->crtc_htotal;
2208
		int hdisplay = crtc->config->pipe_src_w;
2209
		int cpp = fb->format->cpp[0];
2210 2211
		int entries;

2212 2213
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2214 2215 2216 2217 2218 2219 2220 2221
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2222 2223 2224
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2225
		entries = DIV_ROUND_UP(entries,
2226 2227
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2228

2229
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2230 2231 2232 2233 2234 2235
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2236
		cxsr_enabled = true;
2237
	} else {
2238
		cxsr_enabled = false;
2239
		/* Turn off self refresh if both pipes are enabled */
2240
		intel_set_memory_cxsr(dev_priv, false);
2241 2242 2243 2244 2245 2246
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2247 2248 2249 2250 2251 2252
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2253
	/* update cursor SR watermark */
2254
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2255 2256 2257

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2258 2259
}

2260 2261
#undef FW_WM

2262
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2263
{
2264
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2265 2266 2267 2268 2269 2270
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2271
	struct intel_crtc *crtc, *enabled = NULL;
2272

2273
	if (IS_I945GM(dev_priv))
2274
		wm_info = &i945_wm_info;
2275
	else if (!IS_GEN2(dev_priv))
2276 2277
		wm_info = &i915_wm_info;
	else
2278
		wm_info = &i830_a_wm_info;
2279

2280 2281
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2282 2283 2284 2285 2286 2287 2288
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2289
		if (IS_GEN2(dev_priv))
2290
			cpp = 4;
2291
		else
2292
			cpp = fb->format->cpp[0];
2293

2294
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2295
					       wm_info, fifo_size, cpp,
2296
					       pessimal_latency_ns);
2297
		enabled = crtc;
2298
	} else {
2299
		planea_wm = fifo_size - wm_info->guard_size;
2300 2301 2302 2303
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2304
	if (IS_GEN2(dev_priv))
2305
		wm_info = &i830_bc_wm_info;
2306

2307 2308
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2309 2310 2311 2312 2313 2314 2315
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2316
		if (IS_GEN2(dev_priv))
2317
			cpp = 4;
2318
		else
2319
			cpp = fb->format->cpp[0];
2320

2321
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2322
					       wm_info, fifo_size, cpp,
2323
					       pessimal_latency_ns);
2324 2325 2326 2327
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2328
	} else {
2329
		planeb_wm = fifo_size - wm_info->guard_size;
2330 2331 2332
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2333 2334 2335

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2336
	if (IS_I915GM(dev_priv) && enabled) {
2337
		struct drm_i915_gem_object *obj;
2338

2339
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2340 2341

		/* self-refresh seems busted with untiled */
2342
		if (!i915_gem_object_is_tiled(obj))
2343 2344 2345
			enabled = NULL;
	}

2346 2347 2348 2349 2350 2351
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2352
	intel_set_memory_cxsr(dev_priv, false);
2353 2354

	/* Calc sr entries for one plane configs */
2355
	if (HAS_FW_BLC(dev_priv) && enabled) {
2356 2357
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2358 2359 2360 2361
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2362
		int clock = adjusted_mode->crtc_clock;
2363
		int htotal = adjusted_mode->crtc_htotal;
2364 2365
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2366 2367
		int entries;

2368
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2369
			cpp = 4;
2370
		else
2371
			cpp = fb->format->cpp[0];
2372

2373 2374
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2375 2376 2377 2378 2379 2380
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2381
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2382 2383
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2384
		else
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2401 2402
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2403 2404
}

2405
static void i845_update_wm(struct intel_crtc *unused_crtc)
2406
{
2407
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2408
	struct intel_crtc *crtc;
2409
	const struct drm_display_mode *adjusted_mode;
2410 2411 2412
	uint32_t fwater_lo;
	int planea_wm;

2413
	crtc = single_enabled_crtc(dev_priv);
2414 2415 2416
	if (crtc == NULL)
		return;

2417
	adjusted_mode = &crtc->config->base.adjusted_mode;
2418
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2419
				       &i845_wm_info,
2420
				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2421
				       4, pessimal_latency_ns);
2422 2423 2424 2425 2426 2427 2428 2429
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2430
/* latency must be in 0.1us units. */
2431 2432 2433
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2434
{
2435
	unsigned int ret;
2436

2437 2438
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2439 2440 2441 2442

	return ret;
}

2443
/* latency must be in 0.1us units. */
2444 2445 2446 2447 2448
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2449
{
2450
	unsigned int ret;
2451

2452 2453
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2454
	ret = DIV_ROUND_UP(ret, 64) + 2;
2455

2456 2457 2458
	return ret;
}

2459
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2460
			   uint8_t cpp)
2461
{
2462 2463 2464 2465 2466 2467
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2468
	if (WARN_ON(!cpp))
2469 2470 2471 2472
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2473
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2474 2475
}

2476
struct ilk_wm_maximums {
2477 2478 2479 2480 2481 2482
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2483 2484 2485 2486
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2487
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2488
				   const struct intel_plane_state *pstate,
2489 2490
				   uint32_t mem_value,
				   bool is_lp)
2491
{
2492
	uint32_t method1, method2;
2493
	int cpp;
2494

2495
	if (!intel_wm_plane_visible(cstate, pstate))
2496 2497
		return 0;

2498
	cpp = pstate->base.fb->format->cpp[0];
2499

2500
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2501 2502 2503 2504

	if (!is_lp)
		return method1;

2505
	method2 = ilk_wm_method2(cstate->pixel_rate,
2506
				 cstate->base.adjusted_mode.crtc_htotal,
2507
				 drm_rect_width(&pstate->base.dst),
2508
				 cpp, mem_value);
2509 2510

	return min(method1, method2);
2511 2512
}

2513 2514 2515 2516
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2517
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2518
				   const struct intel_plane_state *pstate,
2519 2520 2521
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2522
	int cpp;
2523

2524
	if (!intel_wm_plane_visible(cstate, pstate))
2525 2526
		return 0;

2527
	cpp = pstate->base.fb->format->cpp[0];
2528

2529 2530
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2531
				 cstate->base.adjusted_mode.crtc_htotal,
2532
				 drm_rect_width(&pstate->base.dst),
2533
				 cpp, mem_value);
2534 2535 2536
	return min(method1, method2);
}

2537 2538 2539 2540
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2541
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2542
				   const struct intel_plane_state *pstate,
2543 2544
				   uint32_t mem_value)
{
2545 2546
	int cpp;

2547
	if (!intel_wm_plane_visible(cstate, pstate))
2548 2549
		return 0;

2550 2551
	cpp = pstate->base.fb->format->cpp[0];

2552
	return ilk_wm_method2(cstate->pixel_rate,
2553
			      cstate->base.adjusted_mode.crtc_htotal,
2554
			      pstate->base.crtc_w, cpp, mem_value);
2555 2556
}

2557
/* Only for WM_LP. */
2558
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2559
				   const struct intel_plane_state *pstate,
2560
				   uint32_t pri_val)
2561
{
2562
	int cpp;
2563

2564
	if (!intel_wm_plane_visible(cstate, pstate))
2565 2566
		return 0;

2567
	cpp = pstate->base.fb->format->cpp[0];
2568

2569
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2570 2571
}

2572 2573
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2574
{
2575
	if (INTEL_GEN(dev_priv) >= 8)
2576
		return 3072;
2577
	else if (INTEL_GEN(dev_priv) >= 7)
2578 2579 2580 2581 2582
		return 768;
	else
		return 512;
}

2583 2584 2585
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2586
{
2587
	if (INTEL_GEN(dev_priv) >= 8)
2588 2589
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2590
	else if (INTEL_GEN(dev_priv) >= 7)
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2601 2602
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2603
{
2604
	if (INTEL_GEN(dev_priv) >= 7)
2605 2606 2607 2608 2609
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2610
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2611
{
2612
	if (INTEL_GEN(dev_priv) >= 8)
2613 2614 2615 2616 2617
		return 31;
	else
		return 15;
}

2618 2619 2620
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2621
				     const struct intel_wm_config *config,
2622 2623 2624
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2625 2626
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2627 2628

	/* if sprites aren't enabled, sprites get nothing */
2629
	if (is_sprite && !config->sprites_enabled)
2630 2631 2632
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2633
	if (level == 0 || config->num_pipes_active > 1) {
2634
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2635 2636 2637 2638 2639 2640

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2641
		if (INTEL_GEN(dev_priv) <= 6)
2642 2643 2644
			fifo_size /= 2;
	}

2645
	if (config->sprites_enabled) {
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2657
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2658 2659 2660 2661
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2662 2663
				      int level,
				      const struct intel_wm_config *config)
2664 2665
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2666
	if (level > 0 && config->num_pipes_active > 1)
2667 2668 2669
		return 64;

	/* otherwise just report max that registers can hold */
2670
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2671 2672
}

2673
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2674 2675 2676
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2677
				    struct ilk_wm_maximums *max)
2678
{
2679 2680 2681
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2682
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2683 2684
}

2685
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2686 2687 2688
					int level,
					struct ilk_wm_maximums *max)
{
2689 2690 2691 2692
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2693 2694
}

2695
static bool ilk_validate_wm_level(int level,
2696
				  const struct ilk_wm_maximums *max,
2697
				  struct intel_wm_level *result)
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2736
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2737
				 const struct intel_crtc *intel_crtc,
2738
				 int level,
2739
				 struct intel_crtc_state *cstate,
2740 2741 2742
				 const struct intel_plane_state *pristate,
				 const struct intel_plane_state *sprstate,
				 const struct intel_plane_state *curstate,
2743
				 struct intel_wm_level *result)
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2768 2769 2770
	result->enable = true;
}

2771
static uint32_t
2772
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2773
{
2774 2775
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2776 2777
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2778
	u32 linetime, ips_linetime;
2779

2780 2781 2782 2783
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2784
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2785
		return 0;
2786

2787 2788 2789
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2790 2791 2792
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2793
					 intel_state->cdclk.logical.cdclk);
2794

2795 2796
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2797 2798
}

2799 2800
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2801
{
2802
	if (INTEL_GEN(dev_priv) >= 9) {
2803
		uint32_t val;
2804
		int ret, i;
2805
		int level, max_level = ilk_wm_max_level(dev_priv);
2806 2807 2808

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
2809
		mutex_lock(&dev_priv->pcu_lock);
2810 2811 2812
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2813
		mutex_unlock(&dev_priv->pcu_lock);
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
2830
		mutex_lock(&dev_priv->pcu_lock);
2831 2832 2833
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
2834
		mutex_unlock(&dev_priv->pcu_lock);
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2861
		/*
2862
		 * WaWmMemoryReadLatency:skl+,glk
2863
		 *
2864
		 * punit doesn't take into account the read latency so we need
2865 2866
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2867
		 */
2868 2869 2870 2871 2872
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2873
				wm[level] += 2;
2874
			}
2875 2876
		}

2877
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2878 2879 2880 2881 2882
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2883 2884 2885 2886
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2887
	} else if (INTEL_GEN(dev_priv) >= 6) {
2888 2889 2890 2891 2892 2893
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2894
	} else if (INTEL_GEN(dev_priv) >= 5) {
2895 2896 2897 2898 2899 2900
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2901 2902
	} else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
2903 2904 2905
	}
}

2906 2907
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2908 2909
{
	/* ILK sprite LP0 latency is 1300 ns */
2910
	if (IS_GEN5(dev_priv))
2911 2912 2913
		wm[0] = 13;
}

2914 2915
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2916 2917
{
	/* ILK cursor LP0 latency is 1300 ns */
2918
	if (IS_GEN5(dev_priv))
2919 2920 2921
		wm[0] = 13;
}

2922
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2923 2924
{
	/* how many WM levels are we expecting */
2925
	if (INTEL_GEN(dev_priv) >= 9)
2926
		return 7;
2927
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2928
		return 4;
2929
	else if (INTEL_GEN(dev_priv) >= 6)
2930
		return 3;
2931
	else
2932 2933
		return 2;
}
2934

2935
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2936
				   const char *name,
2937
				   const uint16_t wm[8])
2938
{
2939
	int level, max_level = ilk_wm_max_level(dev_priv);
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2950 2951 2952 2953
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2954
		if (INTEL_GEN(dev_priv) >= 9)
2955 2956
			latency *= 10;
		else if (level > 0)
2957 2958 2959 2960 2961 2962 2963 2964
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2965 2966 2967
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2968
	int level, max_level = ilk_wm_max_level(dev_priv);
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2980
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2996 2997 2998
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2999 3000
}

3001
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3002
{
3003
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3004 3005 3006 3007 3008 3009

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

3010
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3011
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3012

3013 3014 3015
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3016

3017
	if (IS_GEN6(dev_priv))
3018
		snb_wm_latency_quirk(dev_priv);
3019 3020
}

3021
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3022
{
3023
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3024
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3025 3026
}

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3050
/* Compute new watermarks for the pipe */
3051
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3052
{
3053 3054
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3055
	struct intel_pipe_wm *pipe_wm;
3056
	struct drm_device *dev = state->dev;
3057
	const struct drm_i915_private *dev_priv = to_i915(dev);
3058 3059 3060 3061 3062
	struct drm_plane *plane;
	const struct drm_plane_state *plane_state;
	const struct intel_plane_state *pristate = NULL;
	const struct intel_plane_state *sprstate = NULL;
	const struct intel_plane_state *curstate = NULL;
3063
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3064
	struct ilk_wm_maximums max;
3065

3066
	pipe_wm = &cstate->wm.ilk.optimal;
3067

3068 3069
	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3070

3071
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3072
			pristate = ps;
3073
		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3074
			sprstate = ps;
3075
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3076
			curstate = ps;
3077 3078
	}

3079
	pipe_wm->pipe_enabled = cstate->base.active;
3080
	if (sprstate) {
3081 3082 3083 3084
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3085 3086
	}

3087 3088
	usable_level = max_level;

3089
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3090
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3091
		usable_level = 1;
3092 3093

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3094
	if (pipe_wm->sprites_scaled)
3095
		usable_level = 0;
3096

3097
	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3098 3099
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3100

3101
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3102
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3103

3104
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3105
		return -EINVAL;
3106

3107
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3108

3109 3110
	for (level = 1; level <= usable_level; level++) {
		struct intel_wm_level *wm = &pipe_wm->wm[level];
3111

3112
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3113
				     pristate, sprstate, curstate, wm);
3114 3115 3116 3117 3118 3119

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3120 3121 3122 3123
		if (!ilk_validate_wm_level(level, &max, wm)) {
			memset(wm, 0, sizeof(*wm));
			break;
		}
3124 3125
	}

3126
	return 0;
3127 3128
}

3129 3130 3131 3132 3133 3134 3135 3136 3137
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3138
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3139 3140 3141 3142 3143
	struct intel_atomic_state *intel_state =
		to_intel_atomic_state(newstate->base.state);
	const struct intel_crtc_state *oldstate =
		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3144
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3145 3146 3147 3148 3149 3150

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3151
	*a = newstate->wm.ilk.optimal;
3152 3153 3154
	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
		return 0;

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3183 3184
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3185 3186 3187 3188

	return 0;
}

3189 3190 3191 3192 3193 3194 3195 3196 3197
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3198 3199
	ret_wm->enable = true;

3200
	for_each_intel_crtc(dev, intel_crtc) {
3201
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3202 3203 3204 3205
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3206

3207 3208 3209 3210 3211
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3212
		if (!wm->enable)
3213
			ret_wm->enable = false;
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3226
			 const struct intel_wm_config *config,
3227
			 const struct ilk_wm_maximums *max,
3228 3229
			 struct intel_pipe_wm *merged)
{
3230
	struct drm_i915_private *dev_priv = to_i915(dev);
3231
	int level, max_level = ilk_wm_max_level(dev_priv);
3232
	int last_enabled_level = max_level;
3233

3234
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3235
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3236
	    config->num_pipes_active > 1)
3237
		last_enabled_level = 0;
3238

3239
	/* ILK: FBC WM must be disabled always */
3240
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3241 3242 3243 3244 3245 3246 3247

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3248 3249 3250 3251 3252
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3253 3254 3255 3256 3257 3258

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3259 3260
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3261 3262 3263
			wm->fbc_val = 0;
		}
	}
3264 3265 3266 3267 3268 3269 3270

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3271
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3272
	    intel_fbc_is_active(dev_priv)) {
3273 3274 3275 3276 3277 3278
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3279 3280
}

3281 3282 3283 3284 3285 3286
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3287 3288 3289
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3290
	struct drm_i915_private *dev_priv = to_i915(dev);
3291

3292
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3293 3294 3295 3296 3297
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3298
static void ilk_compute_wm_results(struct drm_device *dev,
3299
				   const struct intel_pipe_wm *merged,
3300
				   enum intel_ddb_partitioning partitioning,
3301
				   struct ilk_wm_values *results)
3302
{
3303
	struct drm_i915_private *dev_priv = to_i915(dev);
3304 3305
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3306

3307
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3308
	results->partitioning = partitioning;
3309

3310
	/* LP1+ register values */
3311
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3312
		const struct intel_wm_level *r;
3313

3314
		level = ilk_wm_lp_to_level(wm_lp, merged);
3315

3316
		r = &merged->wm[level];
3317

3318 3319 3320 3321 3322
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3323
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3324 3325 3326
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3327 3328 3329
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3330
		if (INTEL_GEN(dev_priv) >= 8)
3331 3332 3333 3334 3335 3336
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3337 3338 3339 3340
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3341
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3342 3343 3344 3345
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3346
	}
3347

3348
	/* LP0 register values */
3349
	for_each_intel_crtc(dev, intel_crtc) {
3350
		enum pipe pipe = intel_crtc->pipe;
3351 3352
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3353 3354 3355 3356

		if (WARN_ON(!r->enable))
			continue;

3357
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3358

3359 3360 3361 3362
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3363 3364 3365
	}
}

3366 3367
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3368
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3369 3370
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3371
{
3372
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3373
	int level1 = 0, level2 = 0;
3374

3375 3376 3377 3378 3379
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3380 3381
	}

3382 3383
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3384 3385 3386
			return r2;
		else
			return r1;
3387
	} else if (level1 > level2) {
3388 3389 3390 3391 3392 3393
		return r1;
	} else {
		return r2;
	}
}

3394 3395 3396 3397 3398 3399 3400 3401
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3402
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3403 3404
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3405 3406 3407 3408 3409
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3410
	for_each_pipe(dev_priv, pipe) {
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3454 3455
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3456
{
3457
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3458
	bool changed = false;
3459

3460 3461 3462
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3463
		changed = true;
3464 3465 3466 3467
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3468
		changed = true;
3469 3470 3471 3472
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3473
		changed = true;
3474
	}
3475

3476 3477 3478 3479
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3480

3481 3482 3483 3484 3485 3486 3487
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3488 3489
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3490
{
3491
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3492 3493 3494
	unsigned int dirty;
	uint32_t val;

3495
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3496 3497 3498 3499 3500
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3501
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3502
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3503
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3504
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3505
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3506 3507
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3508
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3509
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3510
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3511
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3512
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3513 3514
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3515
	if (dirty & WM_DIRTY_DDB) {
3516
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3531 3532
	}

3533
	if (dirty & WM_DIRTY_FBC) {
3534 3535 3536 3537 3538 3539 3540 3541
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3542 3543 3544 3545
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3546
	if (INTEL_GEN(dev_priv) >= 7) {
3547 3548 3549 3550 3551
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3552

3553
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3554
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3555
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3556
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3557
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3558
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3559 3560

	dev_priv->wm.hw = *results;
3561 3562
}

3563
bool ilk_disable_lp_wm(struct drm_device *dev)
3564
{
3565
	struct drm_i915_private *dev_priv = to_i915(dev);
3566 3567 3568 3569

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3570 3571 3572 3573 3574 3575 3576 3577
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3578
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3579 3580 3581 3582 3583
		return true;

	return false;
}

3584 3585 3586
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3587 3588
	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CANNONLAKE(dev_priv))
3589 3590 3591 3592 3593 3594 3595
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3596 3597
}

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3610
intel_enable_sagv(struct drm_i915_private *dev_priv)
3611 3612 3613
{
	int ret;

3614 3615 3616 3617
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3618 3619 3620
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
3621
	mutex_lock(&dev_priv->pcu_lock);
3622 3623 3624 3625 3626

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
3627
	mutex_unlock(&dev_priv->pcu_lock);
3628 3629 3630 3631 3632

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3633
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3634
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3635
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3636 3637 3638 3639 3640 3641
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3642
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3643 3644 3645 3646
	return 0;
}

int
3647
intel_disable_sagv(struct drm_i915_private *dev_priv)
3648
{
3649
	int ret;
3650

3651 3652 3653 3654
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3655 3656 3657
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
3658
	mutex_lock(&dev_priv->pcu_lock);
3659 3660

	/* bspec says to keep retrying for at least 1 ms */
3661 3662 3663 3664
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3665
	mutex_unlock(&dev_priv->pcu_lock);
3666 3667 3668 3669 3670

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3671
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3672
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3673
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3674
		return 0;
3675 3676 3677
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3678 3679
	}

3680
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3681 3682 3683
	return 0;
}

3684
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3685 3686 3687 3688
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3689 3690
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3691
	struct intel_crtc_state *cstate;
3692
	enum pipe pipe;
3693
	int level, latency;
3694
	int sagv_block_time_us;
3695

3696 3697 3698
	if (!intel_has_sagv(dev_priv))
		return false;

3699 3700 3701 3702 3703 3704 3705
	if (IS_GEN9(dev_priv))
		sagv_block_time_us = 30;
	else if (IS_GEN10(dev_priv))
		sagv_block_time_us = 20;
	else
		sagv_block_time_us = 10;

3706
	/*
3707
	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3719
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3720
	cstate = to_intel_crtc_state(crtc->base.state);
3721

3722
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3723 3724
		return false;

3725
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3726 3727
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3728

3729
		/* Skip this plane if it's not enabled */
3730
		if (!wm->wm[0].plane_en)
3731 3732 3733
			continue;

		/* Find the highest enabled wm level for this plane */
3734
		for (level = ilk_wm_max_level(dev_priv);
3735
		     !wm->wm[level].plane_en; --level)
3736 3737
		     { }

3738 3739 3740
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3741
		    plane->base.state->fb->modifier ==
3742 3743 3744
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3745
		/*
3746 3747 3748
		 * If any of the planes on this pipe don't enable wm levels that
		 * incur memory latencies higher than sagv_block_time_us we
		 * can't enable the SAGV.
3749
		 */
3750
		if (latency < sagv_block_time_us)
3751 3752 3753 3754 3755 3756
			return false;
	}

	return true;
}

3757 3758
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3759
				   const struct intel_crtc_state *cstate,
3760 3761
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3762
{
3763 3764 3765
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3766
	struct drm_crtc *for_crtc = cstate->base.crtc;
3767 3768
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3769

3770
	if (WARN_ON(!state) || !cstate->base.active) {
3771 3772
		alloc->start = 0;
		alloc->end = 0;
3773
		*num_active = hweight32(dev_priv->active_crtcs);
3774 3775 3776
		return;
	}

3777 3778 3779 3780 3781
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3782 3783
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3784

3785 3786
	if (INTEL_GEN(dev_priv) < 11)
		ddb_size -= 4; /* 4 blocks for bypass path allocation */
3787

3788
	/*
3789 3790 3791 3792 3793 3794
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3795
	 */
3796
	if (!intel_state->active_pipe_changes) {
3797 3798 3799 3800 3801
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3802
		return;
3803
	}
3804 3805 3806 3807 3808 3809

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3810 3811
}

3812
static unsigned int skl_cursor_allocation(int num_active)
3813
{
3814
	if (num_active == 1)
3815 3816 3817 3818 3819
		return 32;

	return 8;
}

3820 3821 3822 3823
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3824 3825
	if (entry->end)
		entry->end += 1;
3826 3827
}

3828 3829
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3830
{
3831
	struct intel_crtc *crtc;
3832

3833 3834
	memset(ddb, 0, sizeof(*ddb));

3835
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3836
		enum intel_display_power_domain power_domain;
3837 3838
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3839 3840 3841

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3842 3843
			continue;

3844 3845 3846 3847 3848 3849 3850
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3851

3852 3853
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3854 3855

		intel_display_power_put(dev_priv, power_domain);
3856 3857 3858
	}
}

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
3875
static uint_fixed_16_16_t
3876 3877
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3878
{
3879
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3880
	uint32_t src_w, src_h, dst_w, dst_h;
3881 3882
	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
	uint_fixed_16_16_t downscale_h, downscale_w;
3883

3884
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3885
		return u32_to_fixed16(0);
3886 3887

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3888
	if (plane->id == PLANE_CURSOR) {
3889 3890 3891 3892
		/*
		 * Cursors only support 0/180 degree rotation,
		 * hence no need to account for rotation here.
		 */
3893 3894
		src_w = pstate->base.src_w >> 16;
		src_h = pstate->base.src_h >> 16;
3895 3896 3897
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
3898 3899 3900 3901 3902
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
3903 3904
		src_w = drm_rect_width(&pstate->base.src) >> 16;
		src_h = drm_rect_height(&pstate->base.src) >> 16;
3905 3906 3907 3908
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

3909 3910 3911 3912
	fp_w_ratio = div_fixed16(src_w, dst_w);
	fp_h_ratio = div_fixed16(src_h, dst_h);
	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3913

3914
	return mul_fixed16(downscale_w, downscale_h);
3915 3916
}

3917 3918 3919
static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
{
3920
	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938

	if (!crtc_state->base.enable)
		return pipe_downscale;

	if (crtc_state->pch_pfit.enabled) {
		uint32_t src_w, src_h, dst_w, dst_h;
		uint32_t pfit_size = crtc_state->pch_pfit.size;
		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
		uint_fixed_16_16_t downscale_h, downscale_w;

		src_w = crtc_state->pipe_src_w;
		src_h = crtc_state->pipe_src_h;
		dst_w = pfit_size >> 16;
		dst_h = pfit_size & 0xffff;

		if (!dst_w || !dst_h)
			return pipe_downscale;

3939 3940 3941 3942
		fp_w_ratio = div_fixed16(src_w, dst_w);
		fp_h_ratio = div_fixed16(src_h, dst_h);
		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952

		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
	}

	return pipe_downscale;
}

int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
				  struct intel_crtc_state *cstate)
{
3953
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3954 3955 3956 3957 3958
	struct drm_crtc_state *crtc_state = &cstate->base;
	struct drm_atomic_state *state = crtc_state->state;
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
	struct intel_plane_state *intel_pstate;
3959
	int crtc_clock, dotclk;
3960 3961
	uint32_t pipe_max_pixel_rate;
	uint_fixed_16_16_t pipe_downscale;
3962
	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3963 3964 3965 3966 3967 3968

	if (!cstate->base.enable)
		return 0;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		uint_fixed_16_16_t plane_downscale;
3969
		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
		int bpp;

		if (!intel_wm_plane_visible(cstate,
					    to_intel_plane_state(pstate)))
			continue;

		if (WARN_ON(!pstate->fb))
			return -EINVAL;

		intel_pstate = to_intel_plane_state(pstate);
		plane_downscale = skl_plane_downscale_amount(cstate,
							     intel_pstate);
		bpp = pstate->fb->format->cpp[0] * 8;
		if (bpp == 64)
			plane_downscale = mul_fixed16(plane_downscale,
						      fp_9_div_8);

3987
		max_downscale = max_fixed16(plane_downscale, max_downscale);
3988 3989 3990 3991 3992 3993
	}
	pipe_downscale = skl_pipe_downscale_amount(cstate);

	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);

	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3994 3995
	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;

3996
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3997 3998 3999
		dotclk *= 2;

	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4000 4001

	if (pipe_max_pixel_rate < crtc_clock) {
4002
		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4003 4004 4005 4006 4007 4008
		return -EINVAL;
	}

	return 0;
}

4009
static unsigned int
4010 4011 4012
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
4013
{
4014
	struct intel_plane *plane = to_intel_plane(pstate->plane);
4015
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4016
	uint32_t data_rate;
4017
	uint32_t width = 0, height = 0;
4018 4019
	struct drm_framebuffer *fb;
	u32 format;
4020
	uint_fixed_16_16_t down_scale_amount;
4021

4022
	if (!intel_pstate->base.visible)
4023
		return 0;
4024 4025

	fb = pstate->fb;
V
Ville Syrjälä 已提交
4026
	format = fb->format->format;
4027

4028
	if (plane->id == PLANE_CURSOR)
4029 4030 4031
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
4032

4033 4034 4035 4036 4037
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4038 4039
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4040

4041
	/* for planar format */
4042
	if (format == DRM_FORMAT_NV12) {
4043
		if (y)  /* y-plane data rate */
4044
			data_rate = width * height *
4045
				fb->format->cpp[0];
4046
		else    /* uv-plane data rate */
4047
			data_rate = (width / 2) * (height / 2) *
4048
				fb->format->cpp[1];
4049 4050
	} else {
		/* for packed formats */
4051
		data_rate = width * height * fb->format->cpp[0];
4052 4053
	}

4054
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4055

4056
	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4057 4058 4059 4060 4061 4062 4063 4064
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
4065 4066 4067
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
4068
{
4069 4070
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
4071 4072
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
4073
	unsigned int total_data_rate = 0;
4074 4075 4076

	if (WARN_ON(!state))
		return 0;
4077

4078
	/* Calculate and cache data rate for each plane */
4079
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4080 4081
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
4082 4083 4084 4085

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
4086
		plane_data_rate[plane_id] = rate;
4087 4088

		total_data_rate += rate;
4089 4090 4091 4092

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
4093
		plane_y_data_rate[plane_id] = rate;
4094

4095
		total_data_rate += rate;
4096 4097 4098 4099 4100
	}

	return total_data_rate;
}

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
4115
	if (y && fb->format->format != DRM_FORMAT_NV12)
4116 4117 4118
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
4119
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4120 4121 4122
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4123 4124
		return 8;

4125 4126 4127 4128 4129
	/*
	 * Src coordinates are already rotated by 270 degrees for
	 * the 90/270 degree plane rotation cases (to match the
	 * GTT mapping), hence no need to account for rotation here.
	 */
4130 4131
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4132 4133

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
4134
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4135 4136 4137 4138
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
4139
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
4140
		plane_bpp = fb->format->cpp[1];
4141
	else
4142
		plane_bpp = fb->format->cpp[0];
4143

4144
	if (drm_rotation_90_or_270(pstate->rotation)) {
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4168 4169 4170 4171 4172 4173 4174 4175
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4176
		enum plane_id plane_id = to_intel_plane(plane)->id;
4177

4178
		if (plane_id == PLANE_CURSOR)
4179 4180 4181 4182 4183
			continue;

		if (!pstate->visible)
			continue;

4184 4185
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4186 4187 4188 4189 4190
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4191
static int
4192
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4193 4194
		      struct skl_ddb_allocation *ddb /* out */)
{
4195
	struct drm_atomic_state *state = cstate->base.state;
4196
	struct drm_crtc *crtc = cstate->base.crtc;
4197 4198 4199
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4200
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4201
	uint16_t alloc_size, start;
4202 4203
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
4204
	unsigned int total_data_rate;
4205
	enum plane_id plane_id;
4206
	int num_active;
4207 4208
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4209
	uint16_t total_min_blocks = 0;
4210

4211 4212 4213 4214
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

4215 4216 4217
	if (WARN_ON(!state))
		return 0;

4218
	if (!cstate->base.active) {
4219
		alloc->start = alloc->end = 0;
4220 4221 4222
		return 0;
	}

4223
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4224
	alloc_size = skl_ddb_entry_size(alloc);
4225
	if (alloc_size == 0)
4226
		return 0;
4227

4228
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4229

4230 4231 4232 4233 4234
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4235

4236
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4237 4238
		total_min_blocks += minimum[plane_id];
		total_min_blocks += y_minimum[plane_id];
4239 4240
	}

4241 4242 4243 4244 4245 4246 4247
	if (total_min_blocks > alloc_size) {
		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
							alloc_size);
		return -EINVAL;
	}

4248 4249
	alloc_size -= total_min_blocks;
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4250 4251
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4252
	/*
4253 4254
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4255 4256 4257
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4258 4259 4260
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
4261
	if (total_data_rate == 0)
4262
		return 0;
4263

4264
	start = alloc->start;
4265
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4266
		unsigned int data_rate, y_data_rate;
4267
		uint16_t plane_blocks, y_plane_blocks = 0;
4268

4269
		if (plane_id == PLANE_CURSOR)
4270 4271
			continue;

4272
		data_rate = plane_data_rate[plane_id];
4273 4274

		/*
4275
		 * allocation for (packed formats) or (uv-plane part of planar format):
4276 4277 4278
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4279 4280 4281
		plane_blocks = minimum[plane_id];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4282

4283 4284
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4285 4286
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4287
		}
4288

4289 4290
		start += plane_blocks;

4291 4292 4293
		/*
		 * allocation for y_plane part of planar format:
		 */
4294
		y_data_rate = plane_y_data_rate[plane_id];
4295

4296 4297 4298 4299
		y_plane_blocks = y_minimum[plane_id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);

4300
		if (y_data_rate) {
4301 4302
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4303
		}
4304 4305

		start += y_plane_blocks;
4306 4307
	}

4308
	return 0;
4309 4310
}

4311 4312
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4313
 * for the read latency) and cpp should always be <= 8, so that
4314 4315 4316
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4317 4318
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4319
	       uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4320
{
4321 4322
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4323 4324

	if (latency == 0)
4325
		return FP_16_16_MAX;
4326

4327
	wm_intermediate_val = latency * pixel_rate * cpp;
4328
	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4329 4330 4331 4332

	if (INTEL_GEN(dev_priv) >= 10)
		ret = add_fixed16_u32(ret, 1);

4333 4334 4335
	return ret;
}

4336 4337 4338 4339
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4340
{
4341
	uint32_t wm_intermediate_val;
4342
	uint_fixed_16_16_t ret;
4343 4344

	if (latency == 0)
4345
		return FP_16_16_MAX;
4346 4347

	wm_intermediate_val = latency * pixel_rate;
4348 4349
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
4350
	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4351 4352 4353
	return ret;
}

4354 4355 4356 4357 4358 4359 4360 4361
static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state *cstate)
{
	uint32_t pixel_rate;
	uint32_t crtc_htotal;
	uint_fixed_16_16_t linetime_us;

	if (!cstate->base.active)
4362
		return u32_to_fixed16(0);
4363 4364 4365 4366

	pixel_rate = cstate->pixel_rate;

	if (WARN_ON(pixel_rate == 0))
4367
		return u32_to_fixed16(0);
4368 4369

	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4370
	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4371 4372 4373 4374

	return linetime_us;
}

4375 4376 4377
static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
			      const struct intel_plane_state *pstate)
4378 4379
{
	uint64_t adjusted_pixel_rate;
4380
	uint_fixed_16_16_t downscale_amount;
4381 4382

	/* Shouldn't reach here on disabled planes... */
4383
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4384 4385 4386 4387 4388 4389
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4390
	adjusted_pixel_rate = cstate->pixel_rate;
4391
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4392

4393 4394
	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
					    downscale_amount);
4395 4396
}

4397 4398 4399 4400 4401
static int
skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
			    struct intel_crtc_state *cstate,
			    const struct intel_plane_state *intel_pstate,
			    struct skl_wm_params *wp)
4402
{
4403
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4404 4405
	const struct drm_plane_state *pstate = &intel_pstate->base;
	const struct drm_framebuffer *fb = pstate->fb;
4406
	uint32_t interm_pbpl;
4407 4408 4409
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4410

4411
	if (!intel_wm_plane_visible(cstate, intel_pstate))
4412
		return 0;
4413

4414 4415 4416 4417 4418 4419 4420
	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4421

4422
	if (plane->id == PLANE_CURSOR) {
4423
		wp->width = intel_pstate->base.crtc_w;
4424
	} else {
4425 4426 4427 4428 4429
		/*
		 * Src coordinates are already rotated by 270 degrees for
		 * the 90/270 degree plane rotation cases (to match the
		 * GTT mapping), hence no need to account for rotation here.
		 */
4430
		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4431
	}
4432

4433 4434 4435 4436
	wp->cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
							    fb->format->cpp[0];
	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
							     intel_pstate);
4437

4438 4439 4440 4441 4442 4443
	if (INTEL_GEN(dev_priv) >= 11 &&
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
		wp->dbuf_block_size = 256;
	else
		wp->dbuf_block_size = 512;

4444
	if (drm_rotation_90_or_270(pstate->rotation)) {
4445

4446
		switch (wp->cpp) {
4447
		case 1:
4448
			wp->y_min_scanlines = 16;
4449 4450
			break;
		case 2:
4451
			wp->y_min_scanlines = 8;
4452 4453
			break;
		case 4:
4454
			wp->y_min_scanlines = 4;
4455
			break;
4456
		default:
4457
			MISSING_CASE(wp->cpp);
4458
			return -EINVAL;
4459 4460
		}
	} else {
4461
		wp->y_min_scanlines = 4;
4462 4463
	}

4464
	if (apply_memory_bw_wa)
4465
		wp->y_min_scanlines *= 2;
4466

4467 4468 4469
	wp->plane_bytes_per_line = wp->width * wp->cpp;
	if (wp->y_tiled) {
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4470 4471
					   wp->y_min_scanlines,
					   wp->dbuf_block_size);
4472 4473 4474 4475

		if (INTEL_GEN(dev_priv) >= 10)
			interm_pbpl++;

4476 4477 4478
		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
							wp->y_min_scanlines);
	} else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4479 4480
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size);
4481
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4482
	} else {
4483 4484
		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
					   wp->dbuf_block_size) + 1;
4485
		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4486 4487
	}

4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
					     wp->plane_blocks_per_line);
	wp->linetime_us = fixed16_to_u32_round_up(
					intel_get_linetime_us(cstate));

	return 0;
}

static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				const struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				const struct skl_wm_params *wp,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
{
	const struct drm_plane_state *pstate = &intel_pstate->base;
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t selected_result;
	uint32_t res_blocks, res_lines;
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4514
	uint32_t min_disp_buf_needed;
4515 4516 4517 4518 4519 4520 4521 4522

	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
		*enabled = false;
		return 0;
	}

	/* Display WA #1141: kbl,cfl */
4523 4524
	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4525 4526 4527 4528 4529 4530 4531
	    dev_priv->ipc_enabled)
		latency += 4;

	if (apply_memory_bw_wa && wp->x_tiled)
		latency += 15;

	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4532
				 wp->cpp, latency, wp->dbuf_block_size);
4533
	method2 = skl_wm_method2(wp->plane_pixel_rate,
4534
				 cstate->base.adjusted_mode.crtc_htotal,
4535
				 latency,
4536
				 wp->plane_blocks_per_line);
4537

4538 4539
	if (wp->y_tiled) {
		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4540
	} else {
4541
		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4542 4543
		     wp->dbuf_block_size < 1) &&
		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4544
			selected_result = method2;
4545
		else if (ddb_allocation >=
4546
			 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4547
			selected_result = min_fixed16(method1, method2);
4548
		else if (latency >= wp->linetime_us)
4549
			selected_result = min_fixed16(method1, method2);
4550 4551 4552
		else
			selected_result = method1;
	}
4553

4554
	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4555
	res_lines = div_round_up_fixed16(selected_result,
4556
					 wp->plane_blocks_per_line);
4557

4558
	/* Display WA #1125: skl,bxt,kbl,glk */
4559 4560
	if (level == 0 && wp->rc_surface)
		res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4561 4562

	/* Display WA #1126: skl,bxt,kbl,glk */
4563
	if (level >= 1 && level <= 7) {
4564 4565 4566 4567
		if (wp->y_tiled) {
			res_blocks += fixed16_to_u32_round_up(
							wp->y_tile_minimum);
			res_lines += wp->y_min_scanlines;
4568
		} else {
4569
			res_blocks++;
4570
		}
4571
	}
4572

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	if (INTEL_GEN(dev_priv) >= 11) {
		if (wp->y_tiled) {
			uint32_t extra_lines;
			uint_fixed_16_16_t fp_min_disp_buf_needed;

			if (res_lines % wp->y_min_scanlines == 0)
				extra_lines = wp->y_min_scanlines;
			else
				extra_lines = wp->y_min_scanlines * 2 -
					      res_lines % wp->y_min_scanlines;

			fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
						extra_lines,
						wp->plane_blocks_per_line);
			min_disp_buf_needed = fixed16_to_u32_round_up(
						fp_min_disp_buf_needed);
		} else {
			min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
		}
	} else {
		min_disp_buf_needed = res_blocks;
	}

4596 4597
	if ((level > 0 && res_lines > 31) ||
	    res_blocks >= ddb_allocation ||
4598
	    min_disp_buf_needed >= ddb_allocation) {
4599
		*enabled = false;
4600

4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			struct drm_plane *plane = pstate->plane;

			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4616
	}
4617

4618 4619
	/* The number of lines are ignored for the level 0 watermark. */
	*out_lines = level ? res_lines : 0;
4620
	*out_blocks = res_blocks;
4621
	*enabled = true;
4622

4623
	return 0;
4624 4625
}

4626
static int
4627
skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4628
		      struct skl_ddb_allocation *ddb,
4629 4630
		      struct intel_crtc_state *cstate,
		      const struct intel_plane_state *intel_pstate,
4631
		      const struct skl_wm_params *wm_params,
4632
		      struct skl_plane_wm *wm)
4633
{
4634 4635 4636 4637 4638
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_plane *plane = intel_pstate->base.plane;
	struct intel_plane *intel_plane = to_intel_plane(plane);
	uint16_t ddb_blocks;
	enum pipe pipe = intel_crtc->pipe;
4639
	int level, max_level = ilk_wm_max_level(dev_priv);
4640
	int ret;
L
Lyude 已提交
4641

4642 4643
	if (WARN_ON(!intel_pstate->base.fb))
		return -EINVAL;
4644

4645 4646
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);

4647 4648 4649 4650 4651 4652
	for (level = 0; level <= max_level; level++) {
		struct skl_wm_level *result = &wm->wm[level];

		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
4653
					   ddb_blocks,
4654
					   level,
4655
					   wm_params,
4656
					   &result->plane_res_b,
4657 4658
					   &result->plane_res_l,
					   &result->plane_en);
4659 4660 4661
		if (ret)
			return ret;
	}
4662 4663

	return 0;
4664 4665
}

4666
static uint32_t
4667
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4668
{
M
Mahesh Kumar 已提交
4669 4670
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4671
	uint_fixed_16_16_t linetime_us;
M
Mahesh Kumar 已提交
4672
	uint32_t linetime_wm;
4673

4674
	linetime_us = intel_get_linetime_us(cstate);
4675

4676
	if (is_fixed16_zero(linetime_us))
4677
		return 0;
4678

4679
	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
M
Mahesh Kumar 已提交
4680

4681 4682 4683 4684
	/* Display WA #1135: bxt:ALL GLK:ALL */
	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
	    dev_priv->ipc_enabled)
		linetime_wm /= 2;
M
Mahesh Kumar 已提交
4685 4686

	return linetime_wm;
4687 4688
}

4689
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4690 4691 4692
				      struct skl_wm_params *wp,
				      struct skl_wm_level *wm_l0,
				      uint16_t ddb_allocation,
4693
				      struct skl_wm_level *trans_wm /* out */)
4694
{
4695 4696 4697 4698 4699 4700
	struct drm_device *dev = cstate->base.crtc->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	uint16_t trans_min, trans_y_tile_min;
	const uint16_t trans_amount = 10; /* This is configurable amount */
	uint16_t trans_offset_b, res_blocks;

4701
	if (!cstate->base.active)
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
		goto exit;

	/* Transition WM are not recommended by HW team for GEN9 */
	if (INTEL_GEN(dev_priv) <= 9)
		goto exit;

	/* Transition WM don't make any sense if ipc is disabled */
	if (!dev_priv->ipc_enabled)
		goto exit;

4712
	trans_min = 0;
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
	if (INTEL_GEN(dev_priv) >= 10)
		trans_min = 4;

	trans_offset_b = trans_min + trans_amount;

	if (wp->y_tiled) {
		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
							wp->y_tile_minimum);
		res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
				trans_offset_b;
	} else {
		res_blocks = wm_l0->plane_res_b + trans_offset_b;

		/* WA BUG:1938466 add one block for non y-tile planes */
		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
			res_blocks += 1;

	}

	res_blocks += 1;

	if (res_blocks < ddb_allocation) {
		trans_wm->plane_res_b = res_blocks;
		trans_wm->plane_en = true;
4737
		return;
4738
	}
4739

4740
exit:
L
Lyude 已提交
4741
	trans_wm->plane_en = false;
4742 4743
}

4744 4745 4746
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4747
{
4748
	struct drm_device *dev = cstate->base.crtc->dev;
4749
	struct drm_crtc_state *crtc_state = &cstate->base;
4750
	const struct drm_i915_private *dev_priv = to_i915(dev);
4751 4752
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
L
Lyude 已提交
4753
	struct skl_plane_wm *wm;
4754
	int ret;
4755

L
Lyude 已提交
4756 4757 4758 4759 4760 4761
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

4762 4763 4764 4765
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
		const struct intel_plane_state *intel_pstate =
						to_intel_plane_state(pstate);
		enum plane_id plane_id = to_intel_plane(plane)->id;
4766
		struct skl_wm_params wm_params;
4767 4768
		enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
		uint16_t ddb_blocks;
4769 4770

		wm = &pipe_wm->planes[plane_id];
4771
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4772 4773 4774 4775 4776 4777
		memset(&wm_params, 0, sizeof(struct skl_wm_params));

		ret = skl_compute_plane_wm_params(dev_priv, cstate,
						  intel_pstate, &wm_params);
		if (ret)
			return ret;
L
Lyude 已提交
4778

4779
		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4780
					    intel_pstate, &wm_params, wm);
4781 4782
		if (ret)
			return ret;
4783 4784
		skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
					  ddb_blocks, &wm->trans_wm);
4785
	}
4786
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4787

4788
	return 0;
4789 4790
}

4791 4792
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4793 4794 4795 4796 4797 4798 4799 4800
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4816 4817 4818
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4819
			       enum plane_id plane_id)
4820 4821 4822 4823
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4824
	int level, max_level = ilk_wm_max_level(dev_priv);
4825 4826 4827
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4828
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4829
				   &wm->wm[level]);
4830
	}
4831
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4832
			   &wm->trans_wm);
4833

4834 4835
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
4836 4837 4838 4839
	if (INTEL_GEN(dev_priv) < 11)
		skl_ddb_entry_write(dev_priv,
				    PLANE_NV12_BUF_CFG(pipe, plane_id),
				    &ddb->y_plane[pipe][plane_id]);
4840 4841
}

4842 4843 4844
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4845 4846 4847 4848
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4849
	int level, max_level = ilk_wm_max_level(dev_priv);
4850 4851 4852
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4853 4854
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4855
	}
4856
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4857

4858
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4859
			    &ddb->plane[pipe][PLANE_CURSOR]);
4860 4861
}

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4876 4877
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4878
{
4879
	return a->start < b->end && b->start < a->end;
4880 4881
}

4882 4883
bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
				 const struct skl_ddb_entry **entries,
4884 4885
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4886
{
4887
	enum pipe pipe;
4888

4889 4890 4891
	for_each_pipe(dev_priv, pipe) {
		if (pipe != ignore && entries[pipe] &&
		    skl_ddb_entries_overlap(ddb, entries[pipe]))
4892
			return true;
4893
	}
4894

4895
	return false;
4896 4897
}

4898
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4899
			      const struct skl_pipe_wm *old_pipe_wm,
4900
			      struct skl_pipe_wm *pipe_wm, /* out */
4901
			      struct skl_ddb_allocation *ddb, /* out */
4902
			      bool *changed /* out */)
4903
{
4904
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4905
	int ret;
4906

4907 4908 4909
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4910

4911
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4912 4913 4914
		*changed = false;
	else
		*changed = true;
4915

4916
	return 0;
4917 4918
}

4919 4920 4921 4922 4923 4924 4925
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4926
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4927 4928 4929 4930 4931
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4932
static int
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
		enum plane_id plane_id = to_intel_plane(plane)->id;

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

static int
skl_compute_ddb(struct drm_atomic_state *state)
4968 4969 4970 4971 4972
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4973
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4974
	uint32_t realloc_pipes = pipes_modified(state);
4975 4976 4977 4978 4979 4980 4981 4982
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4983 4984 4985 4986 4987 4988
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4989 4990
		intel_state->active_pipe_changes = ~0;

4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
5014
	if (intel_state->active_pipe_changes) {
5015
		realloc_pipes = ~0;
5016 5017
		intel_state->wm_results.dirty_pipes = ~0;
	}
5018

5019 5020 5021 5022 5023 5024
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

5025 5026 5027 5028 5029 5030
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);
5031 5032 5033 5034 5035 5036 5037 5038

		ret = skl_allocate_pipe_ddb(cstate, ddb);
		if (ret)
			return ret;

		ret = skl_ddb_add_affected_planes(cstate);
		if (ret)
			return ret;
5039 5040 5041 5042 5043
	}

	return 0;
}

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5067
	int i;
5068

5069
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5070 5071
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
5072

5073
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5074
			enum plane_id plane_id = intel_plane->id;
5075 5076
			const struct skl_ddb_entry *old, *new;

5077 5078
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
5079 5080 5081 5082

			if (skl_ddb_entry_equal(old, new))
				continue;

5083 5084 5085 5086 5087
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
5088 5089 5090 5091
		}
	}
}

5092 5093 5094 5095 5096
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
5097 5098
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
5099
	struct drm_device *dev = state->dev;
5100
	struct skl_pipe_wm *pipe_wm;
5101
	bool changed = false;
5102
	int ret, i;
5103

5104 5105 5106 5107 5108 5109 5110
	/*
	 * When we distrust bios wm we always need to recompute to set the
	 * expected DDB allocations for each CRTC.
	 */
	if (to_i915(dev)->wm.distrust_bios_wm)
		changed = true;

5111 5112 5113 5114 5115 5116 5117 5118
	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
5119
	for_each_new_crtc_in_state(state, crtc, cstate, i)
5120
		changed = true;
5121

5122 5123 5124
	if (!changed)
		return 0;

5125 5126 5127
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

5128
	ret = skl_compute_ddb(state);
5129 5130 5131
	if (ret)
		return ret;

5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
5142
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5143 5144
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
5145 5146
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5147 5148

		pipe_wm = &intel_cstate->wm.skl.optimal;
5149 5150
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

5164 5165
	skl_print_wm_changes(state);

5166 5167 5168
	return 0;
}

5169 5170 5171 5172 5173 5174
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5175
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5176
	enum pipe pipe = crtc->pipe;
5177
	enum plane_id plane_id;
5178 5179 5180

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
5181 5182

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5183

5184 5185 5186 5187 5188 5189 5190 5191
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
5192 5193
}

5194 5195
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
5196
{
5197
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5198
	struct drm_device *dev = intel_crtc->base.dev;
5199
	struct drm_i915_private *dev_priv = to_i915(dev);
5200
	struct skl_wm_values *results = &state->wm_results;
5201
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5202
	enum pipe pipe = intel_crtc->pipe;
5203

5204
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5205 5206
		return;

5207
	mutex_lock(&dev_priv->wm.wm_mutex);
5208

5209 5210
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
5211 5212

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
5213 5214

	mutex_unlock(&dev_priv->wm.wm_mutex);
5215 5216
}

5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

5235
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5236
{
5237
	struct drm_device *dev = &dev_priv->drm;
5238
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5239
	struct ilk_wm_maximums max;
5240
	struct intel_wm_config config = {};
5241
	struct ilk_wm_values results = {};
5242
	enum intel_ddb_partitioning partitioning;
5243

5244 5245 5246 5247
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5248 5249

	/* 5/6 split only in single pipe config on IVB+ */
5250
	if (INTEL_GEN(dev_priv) >= 7 &&
5251 5252 5253
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5254

5255
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5256
	} else {
5257
		best_lp_wm = &lp_wm_1_2;
5258 5259
	}

5260
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5261
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5262

5263
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5264

5265
	ilk_write_wm_values(dev_priv, &results);
5266 5267
}

5268 5269
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
5270
{
5271 5272
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5273

5274
	mutex_lock(&dev_priv->wm.wm_mutex);
5275
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5276 5277 5278
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
5279

5280 5281
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
5282 5283 5284
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5285

5286 5287
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
5288
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5289 5290 5291
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
5292 5293
}

5294 5295
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
5296
{
5297 5298 5299 5300
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
5301 5302
}

5303 5304
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
5305
{
5306
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5307 5308
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5309 5310
	int level, max_level;
	enum plane_id plane_id;
5311
	uint32_t val;
5312

5313
	max_level = ilk_wm_max_level(dev_priv);
5314

5315 5316
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5317

5318
		for (level = 0; level <= max_level; level++) {
5319 5320
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5321 5322
			else
				val = I915_READ(CUR_WM(pipe, level));
5323

5324
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5325 5326
		}

5327 5328
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5329 5330 5331 5332
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5333 5334
	}

5335 5336
	if (!intel_crtc->active)
		return;
5337

5338
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5339 5340 5341 5342
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5343
	struct drm_i915_private *dev_priv = to_i915(dev);
5344
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5345
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5346
	struct drm_crtc *crtc;
5347 5348
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5349

5350
	skl_ddb_get_hw_state(dev_priv, ddb);
5351 5352 5353 5354 5355 5356
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5357
		if (intel_crtc->active)
5358 5359
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5360

5361 5362 5363 5364 5365 5366 5367
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
5368 5369
}

5370 5371 5372
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5373
	struct drm_i915_private *dev_priv = to_i915(dev);
5374
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5375
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5376
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5377
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5378
	enum pipe pipe = intel_crtc->pipe;
5379
	static const i915_reg_t wm0_pipe_reg[] = {
5380 5381 5382 5383 5384 5385
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5386
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5387
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5388

5389 5390
	memset(active, 0, sizeof(*active));

5391
	active->pipe_enabled = intel_crtc->active;
5392 5393

	if (active->pipe_enabled) {
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5408
		int level, max_level = ilk_wm_max_level(dev_priv);
5409 5410 5411 5412 5413 5414 5415 5416 5417

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5418 5419

	intel_crtc->wm.active.ilk = *active;
5420 5421
}

5422 5423 5424 5425 5426
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5453 5454 5455 5456 5457 5458 5459 5460 5461
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5462
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5463
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5464
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5465
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5466
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5467
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5468
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5469 5470 5471 5472 5473
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5474 5475 5476
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5477 5478

	tmp = I915_READ(DSPFW2);
5479 5480 5481
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5482 5483 5484 5485 5486 5487

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5488 5489
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5490 5491

		tmp = I915_READ(DSPFW8_CHV);
5492 5493
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5494 5495

		tmp = I915_READ(DSPFW9_CHV);
5496 5497
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5498 5499 5500

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5501 5502 5503 5504 5505 5506 5507 5508 5509
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5510 5511
	} else {
		tmp = I915_READ(DSPFW7);
5512 5513
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5514 5515 5516

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5517 5518 5519 5520 5521 5522
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5523 5524 5525 5526 5527 5528
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5670 5671 5672 5673
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5674
	struct intel_crtc *crtc;
5675 5676 5677 5678 5679 5680 5681 5682
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
5683
		mutex_lock(&dev_priv->pcu_lock);
5684 5685 5686 5687 5688

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5689 5690 5691 5692 5693 5694 5695 5696 5697
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5698
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5712

5713
		mutex_unlock(&dev_priv->pcu_lock);
5714 5715
	}

5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5732
			struct g4x_pipe_wm *raw =
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5754
		crtc_state->wm.vlv.intermediate = *active;
5755

5756
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5757 5758 5759 5760 5761
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5762
	}
5763 5764 5765 5766 5767

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
5792
			struct g4x_pipe_wm *raw =
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
/*
 * FIXME should probably kill this and improve
 * the real watermark readout/sanitation instead
 */
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5833 5834
void ilk_wm_get_hw_state(struct drm_device *dev)
{
5835
	struct drm_i915_private *dev_priv = to_i915(dev);
5836
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5837 5838
	struct drm_crtc *crtc;

5839 5840
	ilk_init_lp_watermarks(dev_priv);

5841
	for_each_crtc(dev, crtc)
5842 5843 5844 5845 5846 5847 5848
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5849
	if (INTEL_GEN(dev_priv) >= 7) {
5850 5851 5852
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
5853

5854
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5855 5856
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5857
	else if (IS_IVYBRIDGE(dev_priv))
5858 5859
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5860 5861 5862 5863 5864

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

5865 5866
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
5867
 * @crtc: the #intel_crtc on which to compute the WM
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
5898
void intel_update_watermarks(struct intel_crtc *crtc)
5899
{
5900
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5901 5902

	if (dev_priv->display.update_wm)
5903
		dev_priv->display.update_wm(crtc);
5904 5905
}

5906 5907 5908 5909
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
	u32 val;

5910 5911 5912 5913 5914 5915
	/* Display WA #0477 WaDisableIPC: skl */
	if (IS_SKYLAKE(dev_priv)) {
		dev_priv->ipc_enabled = false;
		return;
	}

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
	val = I915_READ(DISP_ARB_CTL2);

	if (dev_priv->ipc_enabled)
		val |= DISP_IPC_ENABLE;
	else
		val &= ~DISP_IPC_ENABLE;

	I915_WRITE(DISP_ARB_CTL2, val);
}

void intel_init_ipc(struct drm_i915_private *dev_priv)
{
	dev_priv->ipc_enabled = false;
	if (!HAS_IPC(dev_priv))
		return;

	dev_priv->ipc_enabled = true;
	intel_enable_ipc(dev_priv);
}

5936
/*
5937 5938 5939 5940 5941 5942 5943 5944
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

5945
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5946 5947 5948
{
	u16 rgvswctl;

5949
	lockdep_assert_held(&mchdev_lock);
5950

5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

5968
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5969
{
5970
	u32 rgvmodectl;
5971 5972
	u8 fmax, fmin, fstart, vstart;

5973 5974
	spin_lock_irq(&mchdev_lock);

5975 5976
	rgvmodectl = I915_READ(MEMMODECTL);

5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

5997
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5998 5999
		PXVFREQ_PX_SHIFT;

6000 6001
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
6002

6003 6004 6005
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

6022
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6023
		DRM_ERROR("stuck trying to change perf mode\n");
6024
	mdelay(1);
6025

6026
	ironlake_set_drps(dev_priv, fstart);
6027

6028 6029
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
6030
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6031
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6032
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6033 6034

	spin_unlock_irq(&mchdev_lock);
6035 6036
}

6037
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6038
{
6039 6040 6041 6042 6043
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
6044 6045 6046 6047 6048 6049 6050 6051 6052

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
6053
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6054
	mdelay(1);
6055 6056
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
6057
	mdelay(1);
6058

6059
	spin_unlock_irq(&mchdev_lock);
6060 6061
}

6062 6063 6064 6065 6066
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
6067
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6068
{
6069
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6070
	u32 limits;
6071

6072 6073 6074 6075 6076 6077
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
6078
	if (INTEL_GEN(dev_priv) >= 9) {
6079 6080 6081
		limits = (rps->max_freq_softlimit) << 23;
		if (val <= rps->min_freq_softlimit)
			limits |= (rps->min_freq_softlimit) << 14;
6082
	} else {
6083 6084 6085
		limits = rps->max_freq_softlimit << 24;
		if (val <= rps->min_freq_softlimit)
			limits |= rps->min_freq_softlimit << 16;
6086
	}
6087 6088 6089 6090

	return limits;
}

6091 6092
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
6093
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6094
	int new_power;
6095 6096
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
6097

6098 6099
	new_power = rps->power;
	switch (rps->power) {
6100
	case LOW_POWER:
6101 6102
		if (val > rps->efficient_freq + 1 &&
		    val > rps->cur_freq)
6103 6104 6105 6106
			new_power = BETWEEN;
		break;

	case BETWEEN:
6107 6108
		if (val <= rps->efficient_freq &&
		    val < rps->cur_freq)
6109
			new_power = LOW_POWER;
6110 6111
		else if (val >= rps->rp0_freq &&
			 val > rps->cur_freq)
6112 6113 6114 6115
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
6116 6117
		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
		    val < rps->cur_freq)
6118 6119 6120 6121
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
6122
	if (val <= rps->min_freq_softlimit)
6123
		new_power = LOW_POWER;
6124
	if (val >= rps->max_freq_softlimit)
6125
		new_power = HIGH_POWER;
6126
	if (new_power == rps->power)
6127 6128 6129 6130 6131 6132
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
6133 6134
		ei_up = 16000;
		threshold_up = 95;
6135 6136

		/* Downclock if less than 85% busy over 32ms */
6137 6138
		ei_down = 32000;
		threshold_down = 85;
6139 6140 6141 6142
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
6143 6144
		ei_up = 13000;
		threshold_up = 90;
6145 6146

		/* Downclock if less than 75% busy over 32ms */
6147 6148
		ei_down = 32000;
		threshold_down = 75;
6149 6150 6151 6152
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
6153 6154
		ei_up = 10000;
		threshold_up = 85;
6155 6156

		/* Downclock if less than 60% busy over 32ms */
6157 6158
		ei_down = 32000;
		threshold_down = 60;
6159 6160 6161
		break;
	}

6162 6163 6164 6165 6166 6167
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

6168
	I915_WRITE(GEN6_RP_UP_EI,
6169
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6170
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6171 6172
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
6173 6174

	I915_WRITE(GEN6_RP_DOWN_EI,
6175
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6176
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
6187

6188
skip_hw_write:
6189 6190 6191 6192
	rps->power = new_power;
	rps->up_threshold = threshold_up;
	rps->down_threshold = threshold_down;
	rps->last_adj = 0;
6193 6194
}

6195 6196
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
6197
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6198 6199
	u32 mask = 0;

6200
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6201
	if (val > rps->min_freq_softlimit)
6202
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6203
	if (val < rps->max_freq_softlimit)
6204
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6205

6206 6207
	mask &= dev_priv->pm_rps_events;

6208
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6209 6210
}

6211 6212 6213
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6214
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6215
{
6216 6217
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

C
Chris Wilson 已提交
6218 6219 6220
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
6221
	if (val != rps->cur_freq) {
C
Chris Wilson 已提交
6222
		gen6_set_rps_thresholds(dev_priv, val);
6223

6224
		if (INTEL_GEN(dev_priv) >= 9)
6225 6226
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
6227
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
6228 6229 6230 6231 6232 6233 6234
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
6235
	}
6236 6237 6238 6239

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
6240
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6241
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6242

6243
	rps->cur_freq = val;
6244
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6245 6246

	return 0;
6247 6248
}

6249
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6250
{
6251 6252
	int err;

6253
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6254 6255 6256
		      "Odd GPU freq value\n"))
		val &= ~1;

6257 6258
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

6259
	if (val != dev_priv->gt_pm.rps.cur_freq) {
6260 6261 6262 6263
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

6264
		gen6_set_rps_thresholds(dev_priv, val);
6265
	}
6266

6267
	dev_priv->gt_pm.rps.cur_freq = val;
6268
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6269 6270

	return 0;
6271 6272
}

6273
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6274 6275
 *
 * * If Gfx is Idle, then
6276 6277 6278
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
6279 6280 6281
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
6282 6283
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 val = rps->idle_freq;
6284
	int err;
6285

6286
	if (rps->cur_freq <= val)
6287 6288
		return;

6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
6301
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6302
	err = valleyview_set_rps(dev_priv, val);
6303
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6304 6305 6306

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
6307 6308
}

6309 6310
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
6311 6312
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6313
	mutex_lock(&dev_priv->pcu_lock);
6314
	if (rps->enabled) {
6315 6316
		u8 freq;

6317
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6318 6319
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
6320
			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6321

6322 6323
		gen6_enable_rps_interrupts(dev_priv);

6324 6325 6326
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
6327 6328
		freq = max(rps->cur_freq,
			   rps->efficient_freq);
6329

6330
		if (intel_set_rps(dev_priv,
6331
				  clamp(freq,
6332 6333
					rps->min_freq_softlimit,
					rps->max_freq_softlimit)))
6334
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6335
	}
6336
	mutex_unlock(&dev_priv->pcu_lock);
6337 6338
}

6339 6340
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
6341 6342
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6343 6344 6345 6346 6347 6348 6349
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

6350
	mutex_lock(&dev_priv->pcu_lock);
6351
	if (rps->enabled) {
6352
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6353
			vlv_set_rps_idle(dev_priv);
6354
		else
6355 6356
			gen6_set_rps(dev_priv, rps->idle_freq);
		rps->last_adj = 0;
6357 6358
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6359
	}
6360
	mutex_unlock(&dev_priv->pcu_lock);
6361 6362
}

6363
void gen6_rps_boost(struct i915_request *rq,
6364
		    struct intel_rps_client *rps_client)
6365
{
6366
	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6367
	unsigned long flags;
6368 6369
	bool boost;

6370 6371 6372
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6373
	if (!rps->enabled)
6374
		return;
6375

6376 6377 6378
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
		return;

6379
	/* Serializes with i915_request_retire() */
6380
	boost = false;
6381
	spin_lock_irqsave(&rq->lock, flags);
6382 6383
	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
		boost = !atomic_fetch_inc(&rps->num_waiters);
6384
		rq->waitboost = true;
6385
	}
6386
	spin_unlock_irqrestore(&rq->lock, flags);
6387 6388 6389
	if (!boost)
		return;

6390 6391
	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
		schedule_work(&rps->work);
6392

6393
	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6394 6395
}

6396
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6397
{
6398
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6399 6400
	int err;

6401
	lockdep_assert_held(&dev_priv->pcu_lock);
6402 6403
	GEM_BUG_ON(val > rps->max_freq);
	GEM_BUG_ON(val < rps->min_freq);
6404

6405 6406
	if (!rps->enabled) {
		rps->cur_freq = val;
6407 6408 6409
		return 0;
	}

6410
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6411
		err = valleyview_set_rps(dev_priv, val);
6412
	else
6413 6414 6415
		err = gen6_set_rps(dev_priv, val);

	return err;
6416 6417
}

6418
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6419 6420
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6421
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6422 6423
}

6424
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6425 6426 6427 6428
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6429
static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6430 6431
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6432 6433 6434 6435
}

static void gen6_disable_rps(struct drm_i915_private *dev_priv)
{
6436
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6437
	I915_WRITE(GEN6_RP_CONTROL, 0);
6438 6439
}

6440
static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6441 6442 6443 6444
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6445 6446 6447 6448 6449
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6450
static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6451
{
6452
	/* We're doing forcewake before Disabling RC6,
6453
	 * This what the BIOS expects when going into suspend */
6454
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6455

6456
	I915_WRITE(GEN6_RC_CONTROL, 0);
6457

6458
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6459 6460
}

6461 6462 6463 6464 6465
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6466
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6467 6468 6469
{
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6481 6482

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6483
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6484 6485 6486 6487 6488 6489 6490 6491
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6492 6493
	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6494
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6495 6496 6497 6498 6499 6500 6501
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6502
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6503 6504 6505
		enable_rc6 = false;
	}

6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6520 6521 6522 6523 6524 6525
		enable_rc6 = false;
	}

	return enable_rc6;
}

6526
static bool sanitize_rc6(struct drm_i915_private *i915)
6527
{
6528
	struct intel_device_info *info = mkwrite_device_info(i915);
I
Imre Deak 已提交
6529

6530 6531 6532
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(i915))
		info->has_rc6 = 0;
6533

6534 6535
	if (info->has_rc6 &&
	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6536
		DRM_INFO("RC6 disabled by BIOS\n");
6537
		info->has_rc6 = 0;
6538 6539
	}

6540 6541 6542 6543 6544 6545 6546 6547
	/*
	 * We assume that we do not have any deep rc6 levels if we don't have
	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
	 * as the initial coarse check for rc6 in general, moving on to
	 * progressively finer/deeper levels.
	 */
	if (!info->has_rc6 && info->has_rc6p)
		info->has_rc6p = 0;
6548

6549
	return info->has_rc6;
6550 6551
}

6552
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6553
{
6554 6555
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6556
	/* All of these values are in units of 50MHz */
6557

6558
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6559
	if (IS_GEN9_LP(dev_priv)) {
6560
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6561 6562 6563
		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6564
	} else {
6565
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6566 6567 6568
		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6569
	}
6570
	/* hw_max = RP0 until we check for overclocking */
6571
	rps->max_freq = rps->rp0_freq;
6572

6573
	rps->efficient_freq = rps->rp1_freq;
6574
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6575
	    IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6576 6577 6578 6579 6580
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6581
			rps->efficient_freq =
6582 6583
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
6584 6585
					rps->min_freq,
					rps->max_freq);
6586 6587
	}

6588
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6589
		/* Store the frequency values in 16.66 MHZ units, which is
6590 6591
		 * the natural hardware unit for SKL
		 */
6592 6593 6594 6595 6596
		rps->rp0_freq *= GEN9_FREQ_SCALER;
		rps->rp1_freq *= GEN9_FREQ_SCALER;
		rps->min_freq *= GEN9_FREQ_SCALER;
		rps->max_freq *= GEN9_FREQ_SCALER;
		rps->efficient_freq *= GEN9_FREQ_SCALER;
6597
	}
6598 6599
}

6600
static void reset_rps(struct drm_i915_private *dev_priv,
6601
		      int (*set)(struct drm_i915_private *, u8))
6602
{
6603 6604
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u8 freq = rps->cur_freq;
6605 6606

	/* force a reset */
6607 6608
	rps->power = -1;
	rps->cur_freq = -1;
6609

6610 6611
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6612 6613
}

J
Jesse Barnes 已提交
6614
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6615
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6616 6617 6618
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6619 6620 6621 6622
	/* Program defaults and thresholds for RPS */
	if (IS_GEN9(dev_priv))
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6623 6624 6625 6626 6627

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6628 6629
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6630 6631 6632
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6633
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6634 6635 6636 6637

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6638
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6639
{
6640
	struct intel_engine_cs *engine;
6641
	enum intel_engine_id id;
6642
	u32 rc6_mode;
Z
Zhe Wang 已提交
6643 6644 6645 6646 6647 6648

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6649
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6650 6651 6652 6653 6654

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
R
Rodrigo Vivi 已提交
6655 6656 6657 6658 6659 6660 6661 6662
	if (INTEL_GEN(dev_priv) >= 10) {
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
	} else if (IS_SKYLAKE(dev_priv)) {
		/*
		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
		 * when CPG is enabled
		 */
6663
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
R
Rodrigo Vivi 已提交
6664
	} else {
6665
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
R
Rodrigo Vivi 已提交
6666 6667
	}

Z
Zhe Wang 已提交
6668 6669
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6670
	for_each_engine(engine, dev_priv, id)
6671
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6672

6673
	if (HAS_GUC(dev_priv))
6674 6675
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6676 6677
	I915_WRITE(GEN6_RC_SLEEP, 0);

6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700
	/*
	 * 2c: Program Coarse Power Gating Policies.
	 *
	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
	 * use instead is a more conservative estimate for the maximum time
	 * it takes us to service a CS interrupt and submit a new ELSP - that
	 * is the time which the GPU is idle waiting for the CPU to select the
	 * next request to execute. If the idle hysteresis is less than that
	 * interrupt service latency, the hardware will automatically gate
	 * the power well and we will then incur the wake up cost on top of
	 * the service latency. A similar guide from intel_pstate is that we
	 * do not want the enable hysteresis to less than the wakeup latency.
	 *
	 * igt/gem_exec_nop/sequential provides a rough estimate for the
	 * service latency, and puts it around 10us for Broadwell (and other
	 * big core) and around 40us for Broxton (and other low power cores).
	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
	 * However, the wakeup latency on Broxton is closer to 100us. To be
	 * conservative, we have to factor in a context switch on top (due
	 * to ksoftirqd).
	 */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6701

Z
Zhe Wang 已提交
6702
	/* 3a: Enable RC6 */
6703
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
R
Rodrigo Vivi 已提交
6704 6705 6706 6707 6708 6709 6710

	/* WaRsUseTimeoutMode:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
		rc6_mode = GEN7_RC_CTL_TO_MODE;
	else
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

6711
	I915_WRITE(GEN6_RC_CONTROL,
6712 6713 6714
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN6_RC_CTL_RC6_ENABLE |
		   rc6_mode);
Z
Zhe Wang 已提交
6715

6716 6717
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6718
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6719
	 */
6720
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6721 6722
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
6723 6724
		I915_WRITE(GEN9_PG_ENABLE,
			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6725

6726
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6727 6728
}

6729
static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6730
{
6731
	struct intel_engine_cs *engine;
6732
	enum intel_engine_id id;
6733 6734 6735 6736

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

6737
	/* 1b: Get forcewake during program sequence. Although the driver
6738
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6739
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6740 6741 6742 6743 6744 6745 6746 6747

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6748
	for_each_engine(engine, dev_priv, id)
6749
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6750
	I915_WRITE(GEN6_RC_SLEEP, 0);
6751
	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6752 6753

	/* 3: Enable RC6 */
6754

6755 6756 6757 6758
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE |
		   GEN7_RC_CTL_TO_MODE |
		   GEN6_RC_CTL_RC6_ENABLE);
6759

6760 6761 6762 6763 6764
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen8_enable_rps(struct drm_i915_private *dev_priv)
{
6765 6766
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

6767 6768 6769
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1 Program defaults and thresholds for RPS*/
6770
	I915_WRITE(GEN6_RPNSWREQ,
6771
		   HSW_FREQUENCY(rps->rp1_freq));
6772
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
6773
		   HSW_FREQUENCY(rps->rp1_freq));
6774 6775 6776 6777 6778
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6779 6780
		   rps->max_freq_softlimit << 24 |
		   rps->min_freq_softlimit << 16);
6781 6782 6783 6784 6785 6786 6787

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6788

6789
	/* 2: Enable RPS */
6790 6791 6792 6793 6794 6795 6796 6797
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

6798
	reset_rps(dev_priv, gen6_set_rps);
6799

6800
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6801 6802
}

6803
static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
6804
{
6805
	struct intel_engine_cs *engine;
6806
	enum intel_engine_id id;
6807
	u32 rc6vids, rc6_mask;
6808
	u32 gtfifodbg;
6809
	int ret;
6810 6811 6812 6813

	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
6814 6815
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6816 6817 6818 6819
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6820
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6831
	for_each_engine(engine, dev_priv, id)
6832
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6833 6834 6835

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6836
	if (IS_IVYBRIDGE(dev_priv))
6837 6838 6839
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6840
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6841 6842
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

6843
	/* We don't use those on Haswell */
6844 6845 6846 6847 6848
	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	if (HAS_RC6p(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
	if (HAS_RC6pp(dev_priv))
		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6849 6850 6851 6852 6853
	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

6854 6855
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6856
	if (IS_GEN6(dev_priv) && ret) {
6857
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6858
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6859 6860 6861 6862 6863 6864 6865 6866 6867
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

6868
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6869 6870
}

6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
{
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	reset_rps(dev_priv, gen6_set_rps);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6890
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6891
{
6892
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6893
	int min_freq = 15;
6894 6895
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
6896
	unsigned int max_gpu_freq, min_gpu_freq;
6897
	int scaling_factor = 180;
6898
	struct cpufreq_policy *policy;
6899

6900
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
6901

6902 6903 6904 6905 6906 6907 6908 6909 6910
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
6911
		max_ia_freq = tsc_khz;
6912
	}
6913 6914 6915 6916

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

6917
	min_ring_freq = I915_READ(DCLK) & 0xf;
6918 6919
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6920

6921
	if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6922
		/* Convert GT frequency to 50 HZ units */
6923 6924
		min_gpu_freq = rps->min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = rps->max_freq / GEN9_FREQ_SCALER;
6925
	} else {
6926 6927
		min_gpu_freq = rps->min_freq;
		max_gpu_freq = rps->max_freq;
6928 6929
	}

6930 6931 6932 6933 6934
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
6935 6936
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
6937 6938
		unsigned int ia_freq = 0, ring_freq = 0;

6939
		if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6940 6941 6942 6943 6944
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
6945
		} else if (INTEL_GEN(dev_priv) >= 8) {
6946 6947
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
6948
		} else if (IS_HASWELL(dev_priv)) {
6949
			ring_freq = mult_frac(gpu_freq, 5, 4);
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
6966

B
Ben Widawsky 已提交
6967 6968
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6969 6970 6971
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
6972 6973 6974
	}
}

6975
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6976 6977 6978
{
	u32 val, rp0;

6979
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6980

6981
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
6996
	}
6997 6998 6999

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

7013 7014 7015 7016
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

7017 7018 7019
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

7020 7021 7022
	return rp1;
}

7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

7045
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7046 7047 7048
{
	u32 val, rp0;

7049
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

7062
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7063
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7064
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7065 7066 7067 7068 7069
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

7070
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7071
{
7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
7083 7084
}

7085 7086 7087 7088 7089
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

7090
	WARN_ON(pctx_addr != dev_priv->dsm.start +
7091 7092 7093
			     dev_priv->vlv_pctx->stolen->start);
}

7094 7095 7096 7097 7098 7099 7100 7101 7102

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

7103
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7104
{
7105 7106
	resource_size_t pctx_paddr, paddr;
	resource_size_t pctx_size = 32*1024;
7107 7108 7109 7110
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7111
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7112 7113
		paddr = dev_priv->dsm.end + 1 - pctx_size;
		GEM_BUG_ON(paddr > U32_MAX);
7114 7115 7116 7117

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
7118 7119

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7120 7121
}

7122
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7123 7124
{
	struct drm_i915_gem_object *pctx;
7125 7126
	resource_size_t pctx_paddr;
	resource_size_t pctx_size = 24*1024;
7127 7128 7129 7130 7131
	u32 pcbr;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
7132
		resource_size_t pcbr_offset;
7133

7134
		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7135
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7136
								      pcbr_offset,
7137
								      I915_GTT_OFFSET_NONE,
7138 7139 7140 7141
								      pctx_size);
		goto out;
	}

7142 7143
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

7144 7145 7146 7147 7148 7149 7150 7151
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
7152
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7153 7154
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7155
		goto out;
7156 7157
	}

7158 7159 7160 7161 7162
	GEM_BUG_ON(range_overflows_t(u64,
				     dev_priv->dsm.start,
				     pctx->stolen->start,
				     U32_MAX));
	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7163 7164 7165
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
7166
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7167 7168 7169
	dev_priv->vlv_pctx = pctx;
}

7170
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7171 7172 7173 7174
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
7175
	i915_gem_object_put(dev_priv->vlv_pctx);
7176 7177 7178
	dev_priv->vlv_pctx = NULL;
}

7179 7180
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
7181
	dev_priv->gt_pm.rps.gpll_ref_freq =
7182 7183 7184 7185 7186
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7187
			 dev_priv->gt_pm.rps.gpll_ref_freq);
7188 7189
}

7190
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7191
{
7192
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7193
	u32 val;
7194

7195
	valleyview_setup_pctx(dev_priv);
7196

7197 7198
	vlv_init_gpll_ref_freq(dev_priv);

7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
7212
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7213

7214 7215
	rps->max_freq = valleyview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7216
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7217 7218
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7219

7220
	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7221
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7222 7223
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7224

7225
	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7226
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7227 7228
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7229

7230
	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7231
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7232 7233
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7234 7235
}

7236
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7237
{
7238
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7239
	u32 val;
7240

7241
	cherryview_setup_pctx(dev_priv);
7242

7243 7244
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
7245
	mutex_lock(&dev_priv->sb_lock);
7246
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
7247
	mutex_unlock(&dev_priv->sb_lock);
7248

7249 7250 7251 7252
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
7253
	default:
7254 7255 7256
		dev_priv->mem_freq = 1600;
		break;
	}
7257
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7258

7259 7260
	rps->max_freq = cherryview_rps_max_freq(dev_priv);
	rps->rp0_freq = rps->max_freq;
7261
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7262 7263
			 intel_gpu_freq(dev_priv, rps->max_freq),
			 rps->max_freq);
7264

7265
	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7266
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7267 7268
			 intel_gpu_freq(dev_priv, rps->efficient_freq),
			 rps->efficient_freq);
7269

7270
	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7271
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7272 7273
			 intel_gpu_freq(dev_priv, rps->rp1_freq),
			 rps->rp1_freq);
7274

7275
	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7276
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7277 7278
			 intel_gpu_freq(dev_priv, rps->min_freq),
			 rps->min_freq);
7279

7280 7281
	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
		   rps->min_freq) & 1,
7282
		  "Odd GPU freq values\n");
7283 7284
}

7285
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7286
{
7287
	valleyview_cleanup_pctx(dev_priv);
7288 7289
}

7290
static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7291
{
7292
	struct intel_engine_cs *engine;
7293
	enum intel_engine_id id;
7294
	u32 gtfifodbg, rc6_mode, pcbr;
7295

7296 7297
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7308
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7309

7310 7311 7312
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7313 7314 7315 7316 7317
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

7318
	for_each_engine(engine, dev_priv, id)
7319
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7320 7321
	I915_WRITE(GEN6_RC_SLEEP, 0);

7322 7323
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7324

7325
	/* Allows RC6 residency counter to work */
7326 7327 7328 7329 7330 7331 7332 7333 7334
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
7335 7336
	rc6_mode = 0;
	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7337
		rc6_mode = GEN7_RC_CTL_TO_MODE;
7338 7339
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

7340 7341 7342 7343 7344 7345 7346 7347 7348 7349
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	/* 1: Program defaults and thresholds for RPS*/
7350
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7351 7352 7353 7354 7355 7356 7357
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

7358
	/* 2: Enable RPS */
7359 7360
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7361
		   GEN6_RP_MEDIA_IS_GFX |
7362 7363 7364 7365
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
7366 7367 7368 7369 7370 7371
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7372 7373
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7374 7375 7376
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7377
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7378 7379
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7380
	reset_rps(dev_priv, valleyview_set_rps);
7381

7382
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7383 7384
}

7385
static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7386
{
7387
	struct intel_engine_cs *engine;
7388
	enum intel_engine_id id;
7389
	u32 gtfifodbg;
7390

7391 7392
	valleyview_check_pctx(dev_priv);

7393 7394
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7395 7396
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7397 7398 7399
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7400
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7401

7402 7403 7404
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7405 7406 7407 7408
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7409
	for_each_engine(engine, dev_priv, id)
7410
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7411

7412
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7413

7414
	/* Allows RC6 residency counter to work */
7415
	I915_WRITE(VLV_COUNTER_CONTROL,
7416 7417
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7418
				      VLV_RENDER_RC0_COUNT_EN |
7419 7420
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7421

7422 7423
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7424

7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
{
	u32 val;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

D
Deepak S 已提交
7450 7451 7452 7453 7454 7455
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7456
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7457

7458 7459 7460
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7461
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7462 7463
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7464
	reset_rps(dev_priv, valleyview_set_rps);
7465

7466
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7467 7468
}

7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7498
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7499 7500 7501 7502 7503 7504
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7505
	lockdep_assert_held(&mchdev_lock);
7506

7507
	diff1 = now - dev_priv->ips.last_time1;
7508 7509 7510 7511 7512 7513 7514

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7515
		return dev_priv->ips.chipset_power;
7516 7517 7518 7519 7520 7521 7522 7523

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7524 7525
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7526 7527
		diff += total_count;
	} else {
7528
		diff = total_count - dev_priv->ips.last_count1;
7529 7530 7531
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7532 7533
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7544 7545
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7546

7547
	dev_priv->ips.chipset_power = ret;
7548 7549 7550 7551

	return ret;
}

7552 7553 7554 7555
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7556
	if (!IS_GEN5(dev_priv))
7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7595
{
7596 7597 7598
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7599
	if (INTEL_INFO(dev_priv)->is_mobile)
7600 7601 7602
		return vm > 0 ? vm : 0;

	return vd;
7603 7604
}

7605
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7606
{
7607
	u64 now, diff, diffms;
7608 7609
	u32 count;

7610
	lockdep_assert_held(&mchdev_lock);
7611

7612 7613 7614
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7615 7616 7617 7618 7619 7620 7621

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7622 7623
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7624 7625
		diff += count;
	} else {
7626
		diff = count - dev_priv->ips.last_count2;
7627 7628
	}

7629 7630
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7631 7632 7633 7634

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7635
	dev_priv->ips.gfx_power = diff;
7636 7637
}

7638 7639
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7640
	if (!IS_GEN5(dev_priv))
7641 7642
		return;

7643
	spin_lock_irq(&mchdev_lock);
7644 7645 7646

	__i915_update_gfx_val(dev_priv);

7647
	spin_unlock_irq(&mchdev_lock);
7648 7649
}

7650
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7651 7652 7653 7654
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7655
	lockdep_assert_held(&mchdev_lock);
7656

7657
	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7677
	corr2 = (corr * dev_priv->ips.corr);
7678 7679 7680 7681

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7682
	__i915_update_gfx_val(dev_priv);
7683

7684
	return dev_priv->ips.gfx_power + state2;
7685 7686
}

7687 7688 7689 7690
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7691
	if (!IS_GEN5(dev_priv))
7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7714
	spin_lock_irq(&mchdev_lock);
7715 7716 7717 7718
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7719 7720
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7721 7722 7723 7724

	ret = chipset_val + graphics_val;

out_unlock:
7725
	spin_unlock_irq(&mchdev_lock);
7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7741
	spin_lock_irq(&mchdev_lock);
7742 7743 7744 7745 7746 7747
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7748 7749
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7750 7751

out_unlock:
7752
	spin_unlock_irq(&mchdev_lock);
7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7769
	spin_lock_irq(&mchdev_lock);
7770 7771 7772 7773 7774 7775
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7776 7777
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
7778 7779

out_unlock:
7780
	spin_unlock_irq(&mchdev_lock);
7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

7795
	spin_lock_irq(&mchdev_lock);
7796 7797
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
7798
	spin_unlock_irq(&mchdev_lock);
7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7815
	spin_lock_irq(&mchdev_lock);
7816 7817 7818 7819 7820 7821
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7822
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
7823

7824
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7825 7826 7827
		ret = false;

out_unlock:
7828
	spin_unlock_irq(&mchdev_lock);
7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7856 7857
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7858
	spin_lock_irq(&mchdev_lock);
7859
	i915_mch_dev = dev_priv;
7860
	spin_unlock_irq(&mchdev_lock);
7861 7862 7863 7864 7865 7866

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7867
	spin_lock_irq(&mchdev_lock);
7868
	i915_mch_dev = NULL;
7869
	spin_unlock_irq(&mchdev_lock);
7870
}
7871

7872
static void intel_init_emon(struct drm_i915_private *dev_priv)
7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7889
		I915_WRITE(PEW(i), 0);
7890
	for (i = 0; i < 3; i++)
7891
		I915_WRITE(DEW(i), 0);
7892 7893 7894

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7895
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7916
		I915_WRITE(PXW(i), val);
7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7932
		I915_WRITE(PXWL(i), 0);
7933 7934 7935 7936 7937 7938

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7939
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7940 7941
}

7942
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7943
{
7944 7945
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

7946 7947 7948 7949
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
7950
	if (!sanitize_rc6(dev_priv)) {
7951 7952 7953
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
7954

7955
	mutex_lock(&dev_priv->pcu_lock);
7956 7957

	/* Initialize RPS limits (for userspace) */
7958 7959 7960 7961
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7962
	else if (INTEL_GEN(dev_priv) >= 6)
7963 7964 7965
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
7966 7967
	rps->idle_freq = rps->min_freq;
	rps->cur_freq = rps->idle_freq;
7968

7969 7970
	rps->max_freq_softlimit = rps->max_freq;
	rps->min_freq_softlimit = rps->min_freq;
7971 7972

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7973
		rps->min_freq_softlimit =
7974
			max_t(int,
7975
			      rps->efficient_freq,
7976 7977
			      intel_freq_opcode(dev_priv, 450));

7978 7979 7980 7981 7982 7983 7984 7985
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7986
					 (rps->max_freq & 0xff) * 50,
7987
					 (params & 0xff) * 50);
7988
			rps->max_freq = params & 0xff;
7989 7990 7991
		}
	}

7992
	/* Finally allow us to boost to max by default */
7993
	rps->boost_freq = rps->max_freq;
7994

7995
	mutex_unlock(&dev_priv->pcu_lock);
7996 7997
}

7998
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7999
{
8000
	if (IS_VALLEYVIEW(dev_priv))
8001
		valleyview_cleanup_gt_powersave(dev_priv);
8002

8003
	if (!HAS_RC6(dev_priv))
8004
		intel_runtime_pm_put(dev_priv);
8005 8006
}

8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	/* gen6_rps_idle() will be called later to disable interrupts */
}

8023 8024
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
8025 8026
	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8027
	intel_disable_gt_powersave(dev_priv);
8028 8029

	gen6_reset_rps_interrupts(dev_priv);
8030 8031
}

8032 8033 8034 8035
static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8036 8037 8038
	if (!i915->gt_pm.llc_pstate.enabled)
		return;

8039
	/* Currently there is no HW configuration to be done to disable. */
8040 8041

	i915->gt_pm.llc_pstate.enabled = false;
8042 8043
}

8044
static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8045
{
8046
	lockdep_assert_held(&dev_priv->pcu_lock);
8047

8048 8049 8050
	if (!dev_priv->gt_pm.rc6.enabled)
		return;

8051 8052 8053 8054 8055 8056 8057 8058
	if (INTEL_GEN(dev_priv) >= 9)
		gen9_disable_rc6(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		cherryview_disable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_disable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_disable_rc6(dev_priv);
8059 8060

	dev_priv->gt_pm.rc6.enabled = false;
8061
}
8062

8063 8064 8065
static void intel_disable_rps(struct drm_i915_private *dev_priv)
{
	lockdep_assert_held(&dev_priv->pcu_lock);
8066

8067 8068 8069
	if (!dev_priv->gt_pm.rps.enabled)
		return;

8070
	if (INTEL_GEN(dev_priv) >= 9)
8071
		gen9_disable_rps(dev_priv);
8072
	else if (IS_CHERRYVIEW(dev_priv))
8073
		cherryview_disable_rps(dev_priv);
8074
	else if (IS_VALLEYVIEW(dev_priv))
8075
		valleyview_disable_rps(dev_priv);
8076
	else if (INTEL_GEN(dev_priv) >= 6)
8077
		gen6_disable_rps(dev_priv);
8078
	else if (IS_IRONLAKE_M(dev_priv))
8079
		ironlake_disable_drps(dev_priv);
8080 8081

	dev_priv->gt_pm.rps.enabled = false;
8082 8083 8084 8085 8086
}

void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->pcu_lock);
8087

8088 8089
	intel_disable_rc6(dev_priv);
	intel_disable_rps(dev_priv);
8090 8091 8092
	if (HAS_LLC(dev_priv))
		intel_disable_llc_pstate(dev_priv);

8093
	mutex_unlock(&dev_priv->pcu_lock);
8094 8095
}

8096 8097 8098 8099
static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
{
	lockdep_assert_held(&i915->pcu_lock);

8100 8101 8102
	if (i915->gt_pm.llc_pstate.enabled)
		return;

8103
	gen6_update_ring_freq(i915);
8104 8105

	i915->gt_pm.llc_pstate.enabled = true;
8106 8107
}

8108
static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8109
{
8110
	lockdep_assert_held(&dev_priv->pcu_lock);
8111

8112 8113 8114
	if (dev_priv->gt_pm.rc6.enabled)
		return;

8115 8116 8117 8118 8119 8120 8121 8122 8123 8124
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_enable_rc6(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 9)
		gen9_enable_rc6(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		gen8_enable_rc6(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_enable_rc6(dev_priv);
8125 8126

	dev_priv->gt_pm.rc6.enabled = true;
8127
}
8128

8129 8130 8131
static void intel_enable_rps(struct drm_i915_private *dev_priv)
{
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8132

8133
	lockdep_assert_held(&dev_priv->pcu_lock);
8134

8135 8136 8137
	if (rps->enabled)
		return;

8138 8139 8140 8141
	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
8142
	} else if (INTEL_GEN(dev_priv) >= 9) {
8143 8144 8145
		gen9_enable_rps(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
8146
	} else if (INTEL_GEN(dev_priv) >= 6) {
8147
		gen6_enable_rps(dev_priv);
8148 8149 8150
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
8151
	}
8152

8153 8154
	WARN_ON(rps->max_freq < rps->min_freq);
	WARN_ON(rps->idle_freq > rps->max_freq);
8155

8156 8157
	WARN_ON(rps->efficient_freq < rps->min_freq);
	WARN_ON(rps->efficient_freq > rps->max_freq);
8158 8159

	rps->enabled = true;
8160 8161 8162 8163 8164 8165 8166 8167 8168 8169
}

void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
{
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;

	mutex_lock(&dev_priv->pcu_lock);

8170 8171
	if (HAS_RC6(dev_priv))
		intel_enable_rc6(dev_priv);
8172 8173 8174
	intel_enable_rps(dev_priv);
	if (HAS_LLC(dev_priv))
		intel_enable_llc_pstate(dev_priv);
8175

8176
	mutex_unlock(&dev_priv->pcu_lock);
8177
}
I
Imre Deak 已提交
8178

8179
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8180 8181 8182 8183 8184 8185 8186 8187 8188
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

8189
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8190
{
8191
	enum pipe pipe;
8192

8193
	for_each_pipe(dev_priv, pipe) {
8194 8195 8196
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
8197 8198 8199

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
8200 8201 8202
	}
}

8203
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8204
{
8205
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8206

8207 8208 8209 8210
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
8211 8212 8213
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8231
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8232 8233 8234
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
8235

8236 8237 8238 8239 8240 8241 8242
	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
8243
	if (IS_IRONLAKE_M(dev_priv)) {
8244
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8245 8246 8247 8248 8249 8250 8251 8252
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

8253 8254
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

8255 8256 8257 8258 8259 8260
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
8261

8262
	/* WaDisableRenderCachePipelinedFlush:ilk */
8263 8264
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8265

8266 8267 8268
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8269
	g4x_disable_trickle_feed(dev_priv);
8270

8271
	ibx_init_clock_gating(dev_priv);
8272 8273
}

8274
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8275 8276
{
	int pipe;
8277
	uint32_t val;
8278 8279 8280 8281 8282 8283

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
8284 8285 8286
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8287 8288
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
8289 8290 8291
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
8292
	for_each_pipe(dev_priv, pipe) {
8293 8294 8295
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8296
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8297
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8298 8299 8300
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8301 8302
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
8303
	/* WADP0ClockGatingDisable */
8304
	for_each_pipe(dev_priv, pipe) {
8305 8306 8307
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
8308 8309
}

8310
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8311 8312 8313 8314
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
8315 8316 8317
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
8318 8319
}

8320
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8321
{
8322
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8323

8324
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8325 8326 8327 8328 8329

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

8330
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8331 8332 8333
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

8334 8335 8336
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8337 8338 8339
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8340 8341 8342 8343
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8344 8345
	 */
	I915_WRITE(GEN6_GT_MODE,
8346
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8347

8348
	I915_WRITE(CACHE_MODE_0,
8349
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
8365
	 *
8366 8367
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
8368 8369 8370 8371 8372
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8373
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8374 8375
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8376

8377 8378 8379 8380 8381 8382 8383 8384
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8385 8386 8387 8388 8389 8390 8391 8392
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8393 8394
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8395 8396 8397 8398 8399 8400 8401
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8402 8403 8404 8405
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8406

8407
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8408

8409
	cpt_init_clock_gating(dev_priv);
8410

8411
	gen6_check_mch_setup(dev_priv);
8412 8413 8414 8415 8416 8417
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8418
	/*
8419
	 * WaVSThreadDispatchOverride:ivb,vlv
8420 8421 8422 8423
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8424 8425 8426 8427 8428 8429 8430 8431
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8432
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8433 8434 8435 8436 8437
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8438
	if (HAS_PCH_LPT_LP(dev_priv))
8439 8440 8441
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8442 8443

	/* WADPOClockGatingDisable:hsw */
8444 8445
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8446
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8447 8448
}

8449
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8450
{
8451
	if (HAS_PCH_LPT_LP(dev_priv)) {
8452 8453 8454 8455 8456 8457 8458
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8459 8460 8461 8462 8463
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;
8464
	u32 val;
8465 8466 8467 8468 8469

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

8470 8471 8472 8473 8474
	val = I915_READ(GEN8_L3SQCREG1);
	val &= ~L3_PRIO_CREDITS_MASK;
	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
	I915_WRITE(GEN8_L3SQCREG1, val);
8475 8476 8477 8478 8479 8480 8481 8482 8483 8484

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

8485 8486 8487 8488 8489
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
	if (!HAS_PCH_CNP(dev_priv))
		return;

L
Lucas De Marchi 已提交
8490
	/* Display WA #1181: cnp */
8491 8492
	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
		   CNP_PWM_CGE_GATING_DISABLE);
8493 8494
}

8495
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8496
{
8497
	u32 val;
8498 8499
	cnp_init_clock_gating(dev_priv);

8500 8501 8502 8503
	/* This is not an Wa. Enable for better image quality */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));

8504 8505 8506 8507 8508 8509 8510 8511
	/* WaEnableChickenDCPR:cnl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);

	/* WaFbcWakeMemOn:cnl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_MEMORY_WAKE);

8512 8513 8514
	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
	/* ReadHitWriteOnlyDisable:cnl */
	val |= RCCUNIT_CLKGATE_DIS;
8515 8516
	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8517 8518
		val |= SARBUNIT_CLKGATE_DIS;
	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8519 8520 8521 8522 8523

	/* WaDisableVFclkgate:cnl */
	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
	val |= VFUNIT_CLKGATE_DIS;
	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8524 8525
}

8526 8527 8528 8529 8530 8531 8532 8533 8534 8535
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
	cnp_init_clock_gating(dev_priv);
	gen9_init_clock_gating(dev_priv);

	/* WaFbcNukeOnHostModify:cfl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}

8536
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8537
{
8538
	gen9_init_clock_gating(dev_priv);
8539 8540 8541 8542 8543

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8544 8545 8546 8547 8548

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8549

8550
	/* WaFbcNukeOnHostModify:kbl */
8551 8552
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8553 8554
}

8555
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8556
{
8557
	gen9_init_clock_gating(dev_priv);
8558 8559 8560 8561

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8562 8563 8564 8565

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8566 8567
}

8568
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8569
{
8570 8571 8572
	/* The GTT cache must be disabled if the system is using 2M pages. */
	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
						 I915_GTT_PAGE_SIZE_2M);
8573
	enum pipe pipe;
B
Ben Widawsky 已提交
8574

8575
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8576
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8577

8578
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8579 8580 8581
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8582
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8583
	for_each_pipe(dev_priv, pipe) {
8584
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8585
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8586
			   BDW_DPRS_MASK_VBLANK_SRD);
8587
	}
8588

8589 8590 8591 8592 8593
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8594

8595 8596
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8597 8598 8599 8600

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8601

8602 8603
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8604

8605 8606
	/* WaGttCachingOffByDefault:bdw */
	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8607

8608 8609 8610 8611
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8612
	lpt_init_clock_gating(dev_priv);
8613 8614 8615 8616 8617 8618 8619 8620

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8621 8622
}

8623
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8624
{
8625 8626 8627 8628 8629
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8630
	/* This is required by WaCatErrorRejectionIssue:hsw */
8631 8632 8633 8634
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8635 8636 8637
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8638

8639 8640 8641
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8642 8643 8644 8645
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8646
	/* WaDisable4x2SubspanOptimization:hsw */
8647 8648
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8649

8650 8651 8652
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8653 8654 8655 8656
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8657 8658
	 */
	I915_WRITE(GEN7_GT_MODE,
8659
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8660

8661 8662 8663 8664
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8665
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8666 8667
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8668
	lpt_init_clock_gating(dev_priv);
8669 8670
}

8671
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8672
{
8673
	uint32_t snpcr;
8674

8675
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8676

8677
	/* WaDisableEarlyCull:ivb */
8678 8679 8680
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8681
	/* WaDisableBackToBackFlipFix:ivb */
8682 8683 8684 8685
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8686
	/* WaDisablePSDDualDispatchEnable:ivb */
8687
	if (IS_IVB_GT1(dev_priv))
8688 8689 8690
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8691 8692 8693
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8694
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8695 8696 8697
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8698
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8699 8700 8701
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8702
		   GEN7_WA_L3_CHICKEN_MODE);
8703
	if (IS_IVB_GT1(dev_priv))
8704 8705
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8706 8707 8708 8709
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8710 8711
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8712
	}
8713

8714
	/* WaForceL3Serialization:ivb */
8715 8716 8717
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8718
	/*
8719
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8720
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8721 8722
	 */
	I915_WRITE(GEN6_UCGCTL2,
8723
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8724

8725
	/* This is required by WaCatErrorRejectionIssue:ivb */
8726 8727 8728 8729
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8730
	g4x_disable_trickle_feed(dev_priv);
8731 8732

	gen7_setup_fixed_func_scheduler(dev_priv);
8733

8734 8735 8736 8737 8738
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8739

8740
	/* WaDisable4x2SubspanOptimization:ivb */
8741 8742
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8743

8744 8745 8746
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8747 8748 8749 8750
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8751 8752
	 */
	I915_WRITE(GEN7_GT_MODE,
8753
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8754

8755 8756 8757 8758
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8759

8760
	if (!HAS_PCH_NOP(dev_priv))
8761
		cpt_init_clock_gating(dev_priv);
8762

8763
	gen6_check_mch_setup(dev_priv);
8764 8765
}

8766
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8767
{
8768
	/* WaDisableEarlyCull:vlv */
8769 8770 8771
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8772
	/* WaDisableBackToBackFlipFix:vlv */
8773 8774 8775 8776
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8777
	/* WaPsdDispatchEnable:vlv */
8778
	/* WaDisablePSDDualDispatchEnable:vlv */
8779
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8780 8781
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8782

8783 8784 8785
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8786
	/* WaForceL3Serialization:vlv */
8787 8788 8789
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8790
	/* WaDisableDopClockGating:vlv */
8791 8792 8793
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8794
	/* This is required by WaCatErrorRejectionIssue:vlv */
8795 8796 8797 8798
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8799 8800
	gen7_setup_fixed_func_scheduler(dev_priv);

8801
	/*
8802
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8803
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8804 8805
	 */
	I915_WRITE(GEN6_UCGCTL2,
8806
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8807

8808 8809 8810 8811 8812
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8813

8814 8815 8816 8817
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8818 8819
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8820

8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8832 8833 8834 8835 8836 8837
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8838
	/*
8839
	 * WaDisableVLVClockGating_VBIIssue:vlv
8840 8841 8842
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8843
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8844 8845
}

8846
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8847
{
8848 8849 8850 8851 8852
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8853 8854 8855 8856

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8857 8858 8859 8860

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8861 8862 8863 8864

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8865

8866 8867 8868 8869 8870 8871 8872
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

8873 8874 8875 8876 8877
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8878 8879
}

8880
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8892
	if (IS_GM45(dev_priv))
8893 8894
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8895 8896 8897 8898

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8899

8900 8901 8902
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8903
	g4x_disable_trickle_feed(dev_priv);
8904 8905
}

8906
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8907 8908 8909 8910 8911 8912
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
8913 8914
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8915 8916 8917

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8918 8919
}

8920
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8921 8922 8923 8924 8925 8926 8927
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8928 8929
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8930 8931 8932

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8933 8934
}

8935
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8936 8937 8938 8939 8940 8941
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8942

8943
	if (IS_PINEVIEW(dev_priv))
8944
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8945 8946 8947

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8948 8949

	/* interrupts should cause a wake up from C3 */
8950
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8951 8952 8953

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8954 8955 8956

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8957 8958
}

8959
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8960 8961
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8962 8963 8964 8965

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8966 8967 8968

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8969 8970
}

8971
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8972
{
8973 8974 8975
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8976 8977
}

8978
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8979
{
8980
	dev_priv->display.init_clock_gating(dev_priv);
8981 8982
}

8983
void intel_suspend_hw(struct drm_i915_private *dev_priv)
8984
{
8985 8986
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
8987 8988
}

8989
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
9005
	if (IS_CANNONLAKE(dev_priv))
9006
		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9007 9008
	else if (IS_COFFEELAKE(dev_priv))
		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9009
	else if (IS_SKYLAKE(dev_priv))
9010
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9011
	else if (IS_KABYLAKE(dev_priv))
9012
		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9013
	else if (IS_BROXTON(dev_priv))
9014
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9015 9016
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9017
	else if (IS_BROADWELL(dev_priv))
9018
		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9019
	else if (IS_CHERRYVIEW(dev_priv))
9020
		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9021
	else if (IS_HASWELL(dev_priv))
9022
		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9023
	else if (IS_IVYBRIDGE(dev_priv))
9024
		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9025
	else if (IS_VALLEYVIEW(dev_priv))
9026
		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9027 9028 9029
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
9030
		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9031 9032
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9033
	else if (IS_I965GM(dev_priv))
9034
		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9035
	else if (IS_I965G(dev_priv))
9036
		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

9049
/* Set up chip specific power management-related functions */
9050
void intel_init_pm(struct drm_i915_private *dev_priv)
9051
{
9052
	intel_fbc_init(dev_priv);
9053

9054
	/* For cxsr */
9055
	if (IS_PINEVIEW(dev_priv))
9056
		i915_pineview_get_mem_freq(dev_priv);
9057
	else if (IS_GEN5(dev_priv))
9058
		i915_ironlake_get_mem_freq(dev_priv);
9059

9060
	/* For FIFO watermark updates */
9061
	if (INTEL_GEN(dev_priv) >= 9) {
9062
		skl_setup_wm_latency(dev_priv);
9063
		dev_priv->display.initial_watermarks = skl_initial_wm;
9064
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9065
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9066
	} else if (HAS_PCH_SPLIT(dev_priv)) {
9067
		ilk_setup_wm_latency(dev_priv);
9068

9069
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9070
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9071
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9072
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9073
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9074 9075 9076 9077 9078 9079
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
9080 9081 9082 9083
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
9084
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9085
		vlv_setup_wm_latency(dev_priv);
9086
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9087
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9088
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9089
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9090
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9091 9092 9093 9094 9095 9096
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9097
	} else if (IS_PINEVIEW(dev_priv)) {
9098
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9099 9100 9101 9102 9103 9104 9105 9106 9107
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
9108
			intel_set_memory_cxsr(dev_priv, false);
9109 9110 9111
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
9112
	} else if (IS_GEN4(dev_priv)) {
9113
		dev_priv->display.update_wm = i965_update_wm;
9114
	} else if (IS_GEN3(dev_priv)) {
9115 9116
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9117
	} else if (IS_GEN2(dev_priv)) {
9118
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9119
			dev_priv->display.update_wm = i845_update_wm;
9120
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9121 9122
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
9123
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9124 9125 9126
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9127 9128 9129
	}
}

9130 9131 9132 9133 9134 9135 9136 9137 9138
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9139
		return -ENODEV;
9140 9141 9142
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9143
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9144 9145 9146 9147
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
9148
		MISSING_CASE(flags);
9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

9175
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
9176
{
9177 9178
	int status;

9179
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9180

9181 9182 9183 9184 9185 9186
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9187 9188
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
				 mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9189 9190 9191
		return -EAGAIN;
	}

9192 9193 9194
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9195

9196 9197 9198
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
9199 9200
		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
			  mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9201 9202 9203
		return -ETIMEDOUT;
	}

9204 9205
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9206

9207 9208 9209 9210 9211 9212
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9213 9214
		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
				 mbox, __builtin_return_address(0), status);
9215 9216 9217
		return status;
	}

B
Ben Widawsky 已提交
9218 9219 9220
	return 0;
}

9221
int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9222 9223
				    u32 mbox, u32 val,
				    int fast_timeout_us, int slow_timeout_ms)
B
Ben Widawsky 已提交
9224
{
9225 9226
	int status;

9227
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
B
Ben Widawsky 已提交
9228

9229 9230 9231 9232 9233 9234
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9235 9236
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
				 val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9237 9238 9239
		return -EAGAIN;
	}

9240
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9241
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9242
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
9243

9244 9245
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9246 9247
					 fast_timeout_us, slow_timeout_ms,
					 NULL)) {
9248 9249
		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
			  val, mbox, __builtin_return_address(0));
B
Ben Widawsky 已提交
9250 9251 9252
		return -ETIMEDOUT;
	}

9253
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
9254

9255 9256 9257 9258 9259 9260
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
9261 9262
		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
				 val, mbox, __builtin_return_address(0), status);
9263 9264 9265
		return status;
	}

B
Ben Widawsky 已提交
9266 9267
	return 0;
}
9268

9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9290
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9291 9292
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
9293
 * for @timeout_base_ms and if this times out for another 50 ms with
9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

9305
	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
9320
	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9321 9322 9323 9324 9325 9326 9327 9328
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
9329
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9330
	 * account for interrupts that could reduce the number of these
9331 9332
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
9333 9334 9335 9336
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
9337
	ret = wait_for_atomic(COND, 50);
9338 9339 9340 9341 9342 9343 9344
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

9345 9346
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
9347 9348
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9349 9350 9351 9352
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
9353
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9354 9355
}

9356
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9357
{
9358 9359 9360
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9361 9362
}

9363
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9364
{
9365 9366
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9367 9368 9369 9370
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
9371
	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9372 9373
}

9374
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9375
{
9376 9377
	struct intel_rps *rps = &dev_priv->gt_pm.rps;

9378
	/* CHV needs even values */
9379
	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9380 9381
}

9382
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9383
{
9384
	if (INTEL_GEN(dev_priv) >= 9)
9385 9386
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
9387
	else if (IS_CHERRYVIEW(dev_priv))
9388
		return chv_gpu_freq(dev_priv, val);
9389
	else if (IS_VALLEYVIEW(dev_priv))
9390 9391 9392
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
9393 9394
}

9395 9396
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
9397
	if (INTEL_GEN(dev_priv) >= 9)
9398 9399
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
9400
	else if (IS_CHERRYVIEW(dev_priv))
9401
		return chv_freq_opcode(dev_priv, val);
9402
	else if (IS_VALLEYVIEW(dev_priv))
9403 9404
		return byt_freq_opcode(dev_priv, val);
	else
9405
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9406
}
9407

9408
void intel_pm_setup(struct drm_i915_private *dev_priv)
9409
{
9410
	mutex_init(&dev_priv->pcu_lock);
D
Daniel Vetter 已提交
9411

9412
	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9413

9414 9415
	dev_priv->runtime_pm.suspended = false;
	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9416
}
9417

9418 9419 9420
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9421
	u32 lower, upper, tmp;
9422
	int loop = 2;
9423

9424 9425
	/*
	 * The register accessed do not need forcewake. We borrow
9426 9427
	 * uncore lock to prevent concurrent access to range reg.
	 */
9428
	lockdep_assert_held(&dev_priv->uncore.lock);
9429

9430 9431
	/*
	 * vlv and chv residency counters are 40 bits in width.
9432 9433
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9434 9435 9436 9437 9438
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9439
	 */
9440 9441
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9453
	} while (upper != tmp && --loop);
9454

9455 9456
	/*
	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9457 9458 9459 9460
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9461 9462 9463
	return lower | (u64)upper << 8;
}

9464
u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9465
			   const i915_reg_t reg)
9466
{
9467 9468 9469 9470
	u64 time_hw, prev_hw, overflow_hw;
	unsigned int fw_domains;
	unsigned long flags;
	unsigned int i;
9471
	u32 mul, div;
9472

9473
	if (!HAS_RC6(dev_priv))
9474 9475
		return 0;

9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492
	/*
	 * Store previous hw counter values for counter wrap-around handling.
	 *
	 * There are only four interesting registers and they live next to each
	 * other so we can use the relative address, compared to the smallest
	 * one as the index into driver storage.
	 */
	i = (i915_mmio_reg_offset(reg) -
	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
		return 0;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);

	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);

9493 9494
	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9495
		mul = 1000000;
9496
		div = dev_priv->czclk_freq;
9497
		overflow_hw = BIT_ULL(40);
9498 9499
		time_hw = vlv_residency_raw(dev_priv, reg);
	} else {
9500 9501 9502 9503 9504 9505 9506 9507
		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
		if (IS_GEN9_LP(dev_priv)) {
			mul = 10000;
			div = 12;
		} else {
			mul = 1280;
			div = 1;
		}
9508

9509 9510
		overflow_hw = BIT_ULL(32);
		time_hw = I915_READ_FW(reg);
9511
	}
9512

9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535
	/*
	 * Counter wrap handling.
	 *
	 * But relying on a sufficient frequency of queries otherwise counters
	 * can still wrap.
	 */
	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;

	/* RC6 delta from last sample. */
	if (time_hw >= prev_hw)
		time_hw -= prev_hw;
	else
		time_hw += overflow_hw - prev_hw;

	/* Add delta to RC6 extended raw driver copy. */
	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;

	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);

	return mul_u64_u32_div(time_hw, mul, div);
9536
}
T
Tvrtko Ursulin 已提交
9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550

u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
{
	u32 cagf;

	if (INTEL_GEN(dev_priv) >= 9)
		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
	else
		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;

	return  cagf;
}