huge_memory.c 84.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/mm.h>
11
#include <linux/sched/coredump.h>
12
#include <linux/sched/numa_balancing.h>
13 14 15 16 17
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
18
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
19
#include <linux/mm_inline.h>
20
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
21
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
22
#include <linux/khugepaged.h>
23
#include <linux/freezer.h>
24
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
25
#include <linux/mman.h>
26
#include <linux/memremap.h>
R
Ralf Baechle 已提交
27
#include <linux/pagemap.h>
28
#include <linux/debugfs.h>
29
#include <linux/migrate.h>
30
#include <linux/hashtable.h>
31
#include <linux/userfaultfd_k.h>
32
#include <linux/page_idle.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/oom.h>
35
#include <linux/numa.h>
36
#include <linux/page_owner.h>
37
#include <linux/sched/sysctl.h>
38

39 40 41
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
N
NeilBrown 已提交
42
#include "swap.h"
43

44 45 46
#define CREATE_TRACE_POINTS
#include <trace/events/thp.h>

A
Andrea Arcangeli 已提交
47
/*
48 49 50 51
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
52 53
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
54
 */
55
unsigned long transparent_hugepage_flags __read_mostly =
56
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
57
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
58 59 60 61
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
62
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
63 64
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
65

66
static struct shrinker deferred_split_shrinker;
67

68
static atomic_t huge_zero_refcount;
69
struct page *huge_zero_page __read_mostly;
70
unsigned long huge_zero_pfn __read_mostly = ~0UL;
71

72
bool transparent_hugepage_active(struct vm_area_struct *vma)
73
{
74 75 76 77 78
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
79 80
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
81 82
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
83 84
	if (transhuge_vma_enabled(vma, vma->vm_flags) && file_thp_enabled(vma))
		return true;
85 86 87 88

	return false;
}

89
static bool get_huge_zero_page(void)
90 91 92 93
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
94
		return true;
95 96

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
97
			HPAGE_PMD_ORDER);
98 99
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
100
		return false;
101 102
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
103
	preempt_disable();
104
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
105
		preempt_enable();
106
		__free_pages(zero_page, compound_order(zero_page));
107 108
		goto retry;
	}
109
	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
110 111 112 113

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
114
	return true;
115 116
}

117
static void put_huge_zero_page(void)
118
{
119 120 121 122 123
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

146 147
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
148
{
149 150 151
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
152

153 154 155
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
156
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
157 158
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
159
		WRITE_ONCE(huge_zero_pfn, ~0UL);
160
		__free_pages(zero_page, compound_order(zero_page));
161
		return HPAGE_PMD_NR;
162 163 164
	}

	return 0;
165 166
}

167
static struct shrinker huge_zero_page_shrinker = {
168 169
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
170 171 172
	.seeks = DEFAULT_SEEKS,
};

173 174 175 176
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
177 178
	const char *output;

179
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
180 181 182 183
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
184
	else
185 186 187
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
188
}
189

190 191 192 193
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
194
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
195

196
	if (sysfs_streq(buf, "always")) {
197 198
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
199
	} else if (sysfs_streq(buf, "madvise")) {
200 201
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
202
	} else if (sysfs_streq(buf, "never")) {
203 204 205 206
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
207 208

	if (ret > 0) {
209
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
210 211 212 213
		if (err)
			ret = err;
	}
	return ret;
214 215 216 217
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

218
ssize_t single_hugepage_flag_show(struct kobject *kobj,
219 220
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
221
{
222 223
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
224
}
225

226
ssize_t single_hugepage_flag_store(struct kobject *kobj,
227 228 229 230
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
231 232 233 234 235 236 237 238 239 240
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
241
		set_bit(flag, &transparent_hugepage_flags);
242
	else
243 244 245 246 247 248 249 250
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
269
}
270

271 272 273 274
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
275
	if (sysfs_streq(buf, "always")) {
276 277 278 279
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280
	} else if (sysfs_streq(buf, "defer+madvise")) {
281 282 283 284
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
285
	} else if (sysfs_streq(buf, "defer")) {
286 287 288 289
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
290
	} else if (sysfs_streq(buf, "madvise")) {
291 292 293 294
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
295
	} else if (sysfs_streq(buf, "never")) {
296 297 298 299 300 301 302 303
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
304 305 306 307
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

308
static ssize_t use_zero_page_show(struct kobject *kobj,
309
				  struct kobj_attribute *attr, char *buf)
310
{
311
	return single_hugepage_flag_show(kobj, attr, buf,
312
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
313 314 315 316
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
317
	return single_hugepage_flag_store(kobj, attr, buf, count,
318 319 320 321
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
322 323

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
324
				   struct kobj_attribute *attr, char *buf)
325
{
326
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
327 328 329 330
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

331 332 333
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
334
	&use_zero_page_attr.attr,
335
	&hpage_pmd_size_attr.attr,
336
#ifdef CONFIG_SHMEM
337
	&shmem_enabled_attr.attr,
338 339 340 341
#endif
	NULL,
};

342
static const struct attribute_group hugepage_attr_group = {
343
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
344 345
};

S
Shaohua Li 已提交
346
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
347 348 349
{
	int err;

S
Shaohua Li 已提交
350 351
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
352
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
353
		return -ENOMEM;
A
Andrea Arcangeli 已提交
354 355
	}

S
Shaohua Li 已提交
356
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
357
	if (err) {
358
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
359
		goto delete_obj;
A
Andrea Arcangeli 已提交
360 361
	}

S
Shaohua Li 已提交
362
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
363
	if (err) {
364
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
365
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
366
	}
S
Shaohua Li 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
400 401 402 403 404
		/*
		 * Hardware doesn't support hugepages, hence disable
		 * DAX PMD support.
		 */
		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
S
Shaohua Li 已提交
405 406 407
		return -EINVAL;
	}

408 409 410 411 412 413 414 415 416 417
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
418 419
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
420
		goto err_sysfs;
A
Andrea Arcangeli 已提交
421

422
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
423
	if (err)
424
		goto err_slab;
A
Andrea Arcangeli 已提交
425

426 427 428
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
429 430 431
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
432

433 434 435 436 437
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
438
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439
		transparent_hugepage_flags = 0;
440 441
		return 0;
	}
442

443
	err = start_stop_khugepaged();
444 445
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
446

S
Shaohua Li 已提交
447
	return 0;
448
err_khugepaged:
449 450
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
451 452
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
453
	khugepaged_destroy();
454
err_slab:
S
Shaohua Li 已提交
455
	hugepage_exit_sysfs(hugepage_kobj);
456
err_sysfs:
A
Andrea Arcangeli 已提交
457
	return err;
458
}
459
subsys_initcall(hugepage_init);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
487
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
488 489 490 491
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

492
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
493
{
494
	if (likely(vma->vm_flags & VM_WRITE))
495 496 497 498
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

499 500
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
501
{
502
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
503 504 505 506 507 508
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
509
}
510 511 512 513 514 515 516 517
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
518 519 520 521 522 523 524 525 526 527 528 529

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

530
static inline bool is_transparent_hugepage(struct page *page)
531 532
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
533
		return false;
534 535 536 537 538 539

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}

540 541
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
542 543 544 545
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
546
	unsigned long len_pad, ret;
547 548 549 550 551 552 553 554

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

555
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
556
					      off >> PAGE_SHIFT, flags);
557 558 559 560 561 562

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
563 564
		return 0;

565 566 567 568 569 570 571 572 573
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
574 575 576 577 578
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
579
	unsigned long ret;
580 581
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

582 583 584
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
585

586 587 588 589
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

590 591
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
592
{
J
Jan Kara 已提交
593
	struct vm_area_struct *vma = vmf->vma;
594
	pgtable_t pgtable;
J
Jan Kara 已提交
595
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
596
	vm_fault_t ret = 0;
597

598
	VM_BUG_ON_PAGE(!PageCompound(page), page);
599

600
	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
601 602
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
603
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
604 605
		return VM_FAULT_FALLBACK;
	}
606
	cgroup_throttle_swaprate(page, gfp);
607

608
	pgtable = pte_alloc_one(vma->vm_mm);
609
	if (unlikely(!pgtable)) {
610 611
		ret = VM_FAULT_OOM;
		goto release;
612
	}
613

614
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
615 616 617 618 619
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
620 621
	__SetPageUptodate(page);

J
Jan Kara 已提交
622 623
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
624
		goto unlock_release;
625 626
	} else {
		pmd_t entry;
627

628 629 630 631
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

632 633
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
634
			spin_unlock(vmf->ptl);
635
			put_page(page);
K
Kirill A. Shutemov 已提交
636
			pte_free(vma->vm_mm, pgtable);
637 638 639
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
640 641
		}

642
		entry = mk_huge_pmd(page, vma->vm_page_prot);
643
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
644
		page_add_new_anon_rmap(page, vma, haddr);
645
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
646 647
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
648
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
K
Kirill A. Shutemov 已提交
649
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
650
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
651
		spin_unlock(vmf->ptl);
652
		count_vm_event(THP_FAULT_ALLOC);
653
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
654 655
	}

656
	return 0;
657 658 659 660 661 662 663 664
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

665 666
}

667
/*
668 669 670 671 672 673 674
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
675
 */
676
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
677
{
678
	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
679

680
	/* Always do synchronous compaction */
681 682
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
683 684

	/* Kick kcompactd and fail quickly */
685
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
686
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
687 688

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
689
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
690 691 692
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
693 694

	/* Only do synchronous compaction if madvised */
695
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
696 697
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
698

699
	return GFP_TRANSHUGE_LIGHT;
700 701
}

702
/* Caller must hold page table lock. */
703
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
704
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
705
		struct page *zero_page)
706 707
{
	pmd_t entry;
A
Andrew Morton 已提交
708
	if (!pmd_none(*pmd))
709
		return;
710
	entry = mk_pmd(zero_page, vma->vm_page_prot);
711
	entry = pmd_mkhuge(entry);
712 713
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
714
	set_pmd_at(mm, haddr, pmd, entry);
715
	mm_inc_nr_ptes(mm);
716 717
}

718
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
719
{
J
Jan Kara 已提交
720
	struct vm_area_struct *vma = vmf->vma;
721
	gfp_t gfp;
722
	struct folio *folio;
J
Jan Kara 已提交
723
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
724

725
	if (!transhuge_vma_suitable(vma, haddr))
726
		return VM_FAULT_FALLBACK;
727 728
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
729 730
	khugepaged_enter(vma, vma->vm_flags);

J
Jan Kara 已提交
731
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
732
			!mm_forbids_zeropage(vma->vm_mm) &&
733 734 735
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
736
		vm_fault_t ret;
737
		pgtable = pte_alloc_one(vma->vm_mm);
738
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
739
			return VM_FAULT_OOM;
740
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
741
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
742
			pte_free(vma->vm_mm, pgtable);
743
			count_vm_event(THP_FAULT_FALLBACK);
744
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
745
		}
J
Jan Kara 已提交
746
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
747
		ret = 0;
J
Jan Kara 已提交
748
		if (pmd_none(*vmf->pmd)) {
749 750 751
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
752
				pte_free(vma->vm_mm, pgtable);
753
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
754
				spin_unlock(vmf->ptl);
755
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
756
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
757 758
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
759
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
760
						   haddr, vmf->pmd, zero_page);
761
				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
J
Jan Kara 已提交
762
				spin_unlock(vmf->ptl);
763
			}
764
		} else {
J
Jan Kara 已提交
765
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
766
			pte_free(vma->vm_mm, pgtable);
767
		}
768
		return ret;
769
	}
770
	gfp = vma_thp_gfp_mask(vma);
771 772
	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
	if (unlikely(!folio)) {
773
		count_vm_event(THP_FAULT_FALLBACK);
774
		return VM_FAULT_FALLBACK;
775
	}
776
	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
777 778
}

779
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
780 781
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
782 783 784 785 786 787
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

803 804 805
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
806
	if (write) {
807 808
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
809
	}
810 811 812

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
813
		mm_inc_nr_ptes(mm);
814
		pgtable = NULL;
815 816
	}

817 818
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
819 820

out_unlock:
M
Matthew Wilcox 已提交
821
	spin_unlock(ptl);
822 823
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
824 825
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
841
{
842 843
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
844
	pgtable_t pgtable = NULL;
845

M
Matthew Wilcox 已提交
846 847 848 849 850
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
851 852
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
853 854 855 856 857 858
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
859

860
	if (arch_needs_pgtable_deposit()) {
861
		pgtable = pte_alloc_one(vma->vm_mm);
862 863 864 865
		if (!pgtable)
			return VM_FAULT_OOM;
	}

866 867
	track_pfn_insert(vma, &pgprot, pfn);

868
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
869
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
870
}
871
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
872

873
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
874
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
875
{
876
	if (likely(vma->vm_flags & VM_WRITE))
877 878 879 880 881 882 883 884 885 886 887 888
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
889 890 891 892 893 894 895 896 897 898 899 900 901 902
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

903 904 905 906
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
907 908
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
909 910 911
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
912 913

out_unlock:
914 915 916
	spin_unlock(ptl);
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
932
{
933 934 935
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

936 937 938 939 940
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
941 942
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
943 944 945 946 947 948 949 950 951
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

952
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
953 954
	return VM_FAULT_NOPAGE;
}
955
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
956 957
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

958
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
959
		pmd_t *pmd, int flags)
960 961 962
{
	pmd_t _pmd;

963 964 965
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
966
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
967
				pmd, _pmd, flags & FOLL_WRITE))
968 969 970 971
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
972
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
973 974 975 976 977 978 979
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

980 981 982 983 984 985
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
986 987 988 989 990
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

991
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
992 993 994 995 996 997 998 999
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1000
		touch_pmd(vma, addr, pmd, flags);
1001 1002 1003 1004 1005

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1006
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1007 1008 1009
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1010 1011
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1012 1013
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1014 1015
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1016 1017 1018 1019

	return page;
}

1020 1021
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1022
		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1023
{
1024
	spinlock_t *dst_ptl, *src_ptl;
1025 1026
	struct page *src_page;
	pmd_t pmd;
1027
	pgtable_t pgtable = NULL;
1028
	int ret = -ENOMEM;
1029

1030
	/* Skip if can be re-fill on fault */
1031
	if (!vma_is_anonymous(dst_vma))
1032 1033
		return 0;

1034
	pgtable = pte_alloc_one(dst_mm);
1035 1036
	if (unlikely(!pgtable))
		goto out;
1037

1038 1039 1040
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1041 1042 1043

	ret = -EAGAIN;
	pmd = *src_pmd;
1044 1045 1046 1047 1048 1049

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1050
		if (!is_readable_migration_entry(entry)) {
1051 1052
			entry = make_readable_migration_entry(
							swp_offset(entry));
1053
			pmd = swp_entry_to_pmd(entry);
1054 1055
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1056 1057
			if (pmd_swp_uffd_wp(*src_pmd))
				pmd = pmd_swp_mkuffd_wp(pmd);
1058 1059
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1060
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1061
		mm_inc_nr_ptes(dst_mm);
1062
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1063 1064
		if (!userfaultfd_wp(dst_vma))
			pmd = pmd_swp_clear_uffd_wp(pmd);
1065 1066 1067 1068 1069 1070
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1071
	if (unlikely(!pmd_trans_huge(pmd))) {
1072 1073 1074
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1075
	/*
1076
	 * When page table lock is held, the huge zero pmd should not be
1077 1078 1079 1080
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1081 1082 1083 1084 1085
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1086 1087
		mm_get_huge_zero_page(dst_mm);
		goto out_zero_page;
1088
	}
1089

1090 1091
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1092

1093 1094 1095 1096
	get_page(src_page);
	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
		/* Page maybe pinned: split and retry the fault on PTEs. */
		put_page(src_page);
1097 1098 1099
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
1100
		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1101 1102
		return -EAGAIN;
	}
1103
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1104
out_zero_page:
1105
	mm_inc_nr_ptes(dst_mm);
1106
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1107
	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1108 1109
	if (!userfaultfd_wp(dst_vma))
		pmd = pmd_clear_uffd_wp(pmd);
1110 1111 1112 1113 1114
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1115 1116
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1117 1118 1119 1120
out:
	return ret;
}

1121 1122
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1123
		pud_t *pud, int flags)
1124 1125 1126
{
	pud_t _pud;

1127 1128 1129
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1130
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1131
				pud, _pud, flags & FOLL_WRITE))
1132 1133 1134 1135
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1136
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1137 1138 1139 1140 1141 1142 1143
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1144
	if (flags & FOLL_WRITE && !pud_write(*pud))
1145 1146
		return NULL;

J
John Hubbard 已提交
1147 1148 1149 1150 1151
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1152 1153 1154 1155 1156 1157
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1158
		touch_pud(vma, addr, pud, flags);
1159 1160 1161 1162

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1163 1164
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1165
	 */
J
John Hubbard 已提交
1166
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1167 1168 1169
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1170 1171
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1172 1173
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1174 1175
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1206 1207 1208 1209
	/*
	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
	 * and split if duplicating fails.
	 */
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1243
void huge_pmd_set_accessed(struct vm_fault *vmf)
1244 1245 1246
{
	pmd_t entry;
	unsigned long haddr;
1247
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1248
	pmd_t orig_pmd = vmf->orig_pmd;
1249

J
Jan Kara 已提交
1250 1251
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1252 1253 1254
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1255 1256
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1257
	haddr = vmf->address & HPAGE_PMD_MASK;
1258
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1259
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1260 1261

unlock:
J
Jan Kara 已提交
1262
	spin_unlock(vmf->ptl);
1263 1264
}

1265
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1266
{
1267
	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
J
Jan Kara 已提交
1268
	struct vm_area_struct *vma = vmf->vma;
1269
	struct page *page;
J
Jan Kara 已提交
1270
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1271
	pmd_t orig_pmd = vmf->orig_pmd;
1272

J
Jan Kara 已提交
1273
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1274
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1275

1276 1277 1278
	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));

1279
	if (is_huge_zero_pmd(orig_pmd))
1280 1281
		goto fallback;

J
Jan Kara 已提交
1282
	spin_lock(vmf->ptl);
1283 1284 1285 1286 1287

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1288 1289

	page = pmd_page(orig_pmd);
1290
	VM_BUG_ON_PAGE(!PageHead(page), page);
1291

1292 1293 1294 1295
	/* Early check when only holding the PT lock. */
	if (PageAnonExclusive(page))
		goto reuse;

1296 1297 1298 1299 1300 1301
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1302
			spin_unlock(vmf->ptl);
1303 1304
			unlock_page(page);
			put_page(page);
1305
			return 0;
1306 1307 1308
		}
		put_page(page);
	}
1309

1310 1311 1312 1313 1314 1315
	/* Recheck after temporarily dropping the PT lock. */
	if (PageAnonExclusive(page)) {
		unlock_page(page);
		goto reuse;
	}

1316
	/*
1317
	 * See do_wp_page(): we can only reuse the page exclusively if there are
1318 1319
	 * no additional references. Note that we always drain the LRU
	 * pagevecs immediately after adding a THP.
1320
	 */
1321 1322 1323 1324 1325
	if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
		goto unlock_fallback;
	if (PageSwapCache(page))
		try_to_free_swap(page);
	if (page_count(page) == 1) {
1326
		pmd_t entry;
1327 1328

		page_move_anon_rmap(page, vma);
1329 1330
		unlock_page(page);
reuse:
1331 1332 1333 1334
		if (unlikely(unshare)) {
			spin_unlock(vmf->ptl);
			return 0;
		}
1335
		entry = pmd_mkyoung(orig_pmd);
1336
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1337
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1338 1339
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
		spin_unlock(vmf->ptl);
1340
		return VM_FAULT_WRITE;
1341
	}
1342

1343
unlock_fallback:
1344
	unlock_page(page);
J
Jan Kara 已提交
1345
	spin_unlock(vmf->ptl);
1346 1347 1348
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1349 1350
}

1351
/*
1352 1353
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1354 1355 1356
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1357 1358
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1359 1360
}

1361
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1362 1363 1364 1365
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1366
	struct mm_struct *mm = vma->vm_mm;
1367 1368
	struct page *page = NULL;

1369
	assert_spin_locked(pmd_lockptr(mm, pmd));
1370

1371
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1372 1373
		goto out;

1374 1375 1376 1377
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1378
	/* Full NUMA hinting faults to serialise migration in fault paths */
1379
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1380 1381
		goto out;

1382
	page = pmd_page(*pmd);
1383
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1384

1385 1386 1387
	if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
		return ERR_PTR(-EMLINK);

1388 1389 1390
	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
			!PageAnonExclusive(page), page);

J
John Hubbard 已提交
1391 1392 1393
	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1394
	if (flags & FOLL_TOUCH)
1395
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1396

1397
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1398
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1399 1400 1401 1402 1403

out:
	return page;
}

1404
/* NUMA hinting page fault entry point for trans huge pmds */
1405
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1406
{
J
Jan Kara 已提交
1407
	struct vm_area_struct *vma = vmf->vma;
Y
Yang Shi 已提交
1408 1409
	pmd_t oldpmd = vmf->orig_pmd;
	pmd_t pmd;
1410
	struct page *page;
J
Jan Kara 已提交
1411
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
Y
Yang Shi 已提交
1412
	int page_nid = NUMA_NO_NODE;
1413
	int target_nid, last_cpupid = -1;
1414
	bool migrated = false;
Y
Yang Shi 已提交
1415
	bool was_writable = pmd_savedwrite(oldpmd);
1416
	int flags = 0;
1417

J
Jan Kara 已提交
1418
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
Y
Yang Shi 已提交
1419
	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
J
Jan Kara 已提交
1420
		spin_unlock(vmf->ptl);
1421 1422 1423
		goto out;
	}

Y
Yang Shi 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	page = vm_normal_page_pmd(vma, haddr, pmd);
	if (!page)
		goto out_map;

	/* See similar comment in do_numa_page for explanation */
	if (!was_writable)
		flags |= TNF_NO_GROUP;

	page_nid = page_to_nid(page);
	last_cpupid = page_cpupid_last(page);
	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
				       &flags);

	if (target_nid == NUMA_NO_NODE) {
		put_page(page);
		goto out_map;
	}

J
Jan Kara 已提交
1443
	spin_unlock(vmf->ptl);
1444

Y
Yang Shi 已提交
1445
	migrated = migrate_misplaced_page(page, vma, target_nid);
1446 1447
	if (migrated) {
		flags |= TNF_MIGRATED;
1448
		page_nid = target_nid;
Y
Yang Shi 已提交
1449
	} else {
1450
		flags |= TNF_MIGRATE_FAIL;
Y
Yang Shi 已提交
1451 1452 1453 1454 1455 1456 1457
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
			spin_unlock(vmf->ptl);
			goto out;
		}
		goto out_map;
	}
1458 1459

out:
1460
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1461
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1462
				flags);
1463

1464
	return 0;
Y
Yang Shi 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

out_map:
	/* Restore the PMD */
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	pmd = pmd_mkyoung(pmd);
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
	spin_unlock(vmf->ptl);
	goto out;
1476 1477
}

1478 1479 1480 1481 1482
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1483 1484 1485 1486 1487 1488
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1489
	bool ret = false;
1490

1491
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1492

1493 1494
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1495
		goto out_unlocked;
1496 1497

	orig_pmd = *pmd;
1498
	if (is_huge_zero_pmd(orig_pmd))
1499 1500
		goto out;

1501 1502 1503 1504 1505 1506
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1507 1508 1509 1510 1511
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
1512
	if (total_mapcount(page) != 1)
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1525
		split_huge_page(page);
1526
		unlock_page(page);
1527
		put_page(page);
1528 1529 1530 1531 1532 1533 1534 1535
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1536
		pmdp_invalidate(vma, addr, pmd);
1537 1538 1539 1540 1541 1542
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1543 1544

	mark_page_lazyfree(page);
1545
	ret = true;
1546 1547 1548 1549 1550 1551
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1552 1553 1554 1555 1556 1557
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1558
	mm_dec_nr_ptes(mm);
1559 1560
}

1561
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1562
		 pmd_t *pmd, unsigned long addr)
1563
{
1564
	pmd_t orig_pmd;
1565
	spinlock_t *ptl;
1566

1567
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1568

1569 1570
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1571 1572 1573 1574 1575 1576 1577
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1578 1579
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1580
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1581
	if (vma_is_special_huge(vma)) {
1582 1583
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1584 1585
		spin_unlock(ptl);
	} else if (is_huge_zero_pmd(orig_pmd)) {
1586
		zap_deposited_table(tlb->mm, pmd);
1587 1588
		spin_unlock(ptl);
	} else {
1589 1590 1591 1592 1593
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
1594
			page_remove_rmap(page, vma, true);
1595 1596 1597 1598 1599 1600 1601
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
1602
			page = pfn_swap_entry_to_page(entry);
1603 1604 1605 1606
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1607
		if (PageAnon(page)) {
1608
			zap_deposited_table(tlb->mm, pmd);
1609 1610
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1611 1612
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1613
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1614
		}
1615

1616
		spin_unlock(ptl);
1617 1618
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1619
	}
1620
	return 1;
1621 1622
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1649
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1650
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1651
{
1652
	spinlock_t *old_ptl, *new_ptl;
1653 1654
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1655
	bool force_flush = false;
1656 1657 1658 1659 1660 1661 1662

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1663
		return false;
1664 1665
	}

1666 1667
	/*
	 * We don't have to worry about the ordering of src and dst
1668
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1669
	 */
1670 1671
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1672 1673 1674
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1675
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1676
		if (pmd_present(pmd))
1677
			force_flush = true;
1678
		VM_BUG_ON(!pmd_none(*new_pmd));
1679

1680
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1681
			pgtable_t pgtable;
1682 1683 1684
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1685 1686
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1687 1688
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1689 1690
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1691
		spin_unlock(old_ptl);
1692
		return true;
1693
	}
1694
	return false;
1695 1696
}

1697 1698 1699
/*
 * Returns
 *  - 0 if PMD could not be locked
I
Ingo Molnar 已提交
1700
 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1701
 *      or if prot_numa but THP migration is not supported
I
Ingo Molnar 已提交
1702
 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1703
 */
N
Nadav Amit 已提交
1704 1705 1706
int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
		    unsigned long cp_flags)
1707 1708
{
	struct mm_struct *mm = vma->vm_mm;
1709
	spinlock_t *ptl;
1710
	pmd_t oldpmd, entry;
1711 1712
	bool preserve_write;
	int ret;
1713
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1714 1715
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1716

N
Nadav Amit 已提交
1717 1718
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);

1719 1720 1721
	if (prot_numa && !thp_migration_supported())
		return 1;

1722
	ptl = __pmd_trans_huge_lock(pmd, vma);
1723 1724
	if (!ptl)
		return 0;
1725

1726 1727
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1728

1729 1730 1731
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1732
		struct page *page = pfn_swap_entry_to_page(entry);
1733 1734

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1735
		if (is_writable_migration_entry(entry)) {
1736 1737 1738 1739 1740
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
1741 1742 1743 1744
			if (PageAnon(page))
				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
			else
				entry = make_readable_migration_entry(swp_offset(entry));
1745
			newpmd = swp_entry_to_pmd(entry);
1746 1747
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1748 1749
			if (pmd_swp_uffd_wp(*pmd))
				newpmd = pmd_swp_mkuffd_wp(newpmd);
1750 1751 1752 1753 1754 1755
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1756 1757 1758 1759 1760 1761 1762 1763 1764
	if (prot_numa) {
		struct page *page;
		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (is_huge_zero_pmd(*pmd))
			goto unlock;
1765

1766 1767
		if (pmd_protnone(*pmd))
			goto unlock;
1768

1769 1770 1771 1772 1773 1774 1775 1776 1777
		page = pmd_page(*pmd);
		/*
		 * Skip scanning top tier node if normal numa
		 * balancing is disabled
		 */
		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
		    node_is_toptier(page_to_nid(page)))
			goto unlock;
	}
1778
	/*
1779
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1780
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1781
	 * which is also under mmap_read_lock(mm):
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
1796
	 * pmdp_invalidate_ad() is required to make sure we don't miss
1797 1798
	 * dirty/young flags set by hardware.
	 */
1799
	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1800

1801
	entry = pmd_modify(oldpmd, newprot);
1802 1803
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1815 1816
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
N
Nadav Amit 已提交
1817

1818 1819
	if (huge_pmd_needs_flush(oldpmd, entry))
		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
N
Nadav Amit 已提交
1820

1821 1822 1823
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1824 1825 1826 1827
	return ret;
}

/*
1828
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1829
 *
1830 1831
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1832
 */
1833
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1834
{
1835 1836
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1837 1838
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1839 1840 1841
		return ptl;
	spin_unlock(ptl);
	return NULL;
1842 1843
}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1876
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1877
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1878
	if (vma_is_special_huge(vma)) {
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1896
	count_vm_event(THP_SPLIT_PUD);
1897 1898 1899 1900 1901 1902 1903 1904

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1905
	struct mmu_notifier_range range;
1906

1907
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1908
				address & HPAGE_PUD_MASK,
1909 1910 1911
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1912 1913
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1914
	__split_huge_pud_locked(vma, pud, range.start);
1915 1916 1917

out:
	spin_unlock(ptl);
1918 1919 1920 1921
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1922
	mmu_notifier_invalidate_range_only_end(&range);
1923 1924 1925
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1926 1927 1928 1929 1930 1931 1932 1933
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1934 1935 1936 1937 1938 1939
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1940
	 * See Documentation/vm/mmu_notifier.rst
1941 1942
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1961
		unsigned long haddr, bool freeze)
1962 1963 1964 1965
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
1966
	pmd_t old_pmd, _pmd;
1967
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1968
	bool anon_exclusive = false;
1969
	unsigned long addr;
1970 1971 1972 1973 1974
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1975 1976
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
1977 1978 1979

	count_vm_event(THP_SPLIT_PMD);

1980
	if (!vma_is_anonymous(vma)) {
1981
		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1982 1983 1984 1985 1986 1987
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
1988
		if (vma_is_special_huge(vma))
1989
			return;
1990 1991 1992 1993
		if (unlikely(is_pmd_migration_entry(old_pmd))) {
			swp_entry_t entry;

			entry = pmd_to_swp_entry(old_pmd);
1994
			page = pfn_swap_entry_to_page(entry);
1995 1996 1997 1998 1999 2000
		} else {
			page = pmd_page(old_pmd);
			if (!PageDirty(page) && pmd_dirty(old_pmd))
				set_page_dirty(page);
			if (!PageReferenced(page) && pmd_young(old_pmd))
				SetPageReferenced(page);
2001
			page_remove_rmap(page, vma, true);
2002 2003
			put_page(page);
		}
2004
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2005
		return;
2006 2007
	}

2008
	if (is_huge_zero_pmd(*pmd)) {
2009 2010 2011 2012 2013 2014 2015 2016 2017
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2018 2019 2020
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2021 2022 2023 2024 2025 2026 2027 2028
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2029 2030
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2044
	if (unlikely(pmd_migration)) {
2045 2046
		swp_entry_t entry;

2047
		entry = pmd_to_swp_entry(old_pmd);
2048
		page = pfn_swap_entry_to_page(entry);
2049
		write = is_writable_migration_entry(entry);
2050 2051
		if (PageAnon(page))
			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2052 2053
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2054
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2055
	} else {
2056
		page = pmd_page(old_pmd);
2057 2058 2059 2060 2061
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2062
		uffd_wp = pmd_uffd_wp(old_pmd);
2063

2064 2065
		VM_BUG_ON_PAGE(!page_count(page), page);
		page_ref_add(page, HPAGE_PMD_NR - 1);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

		/*
		 * Without "freeze", we'll simply split the PMD, propagating the
		 * PageAnonExclusive() flag for each PTE by setting it for
		 * each subpage -- no need to (temporarily) clear.
		 *
		 * With "freeze" we want to replace mapped pages by
		 * migration entries right away. This is only possible if we
		 * managed to clear PageAnonExclusive() -- see
		 * set_pmd_migration_entry().
		 *
		 * In case we cannot clear PageAnonExclusive(), split the PMD
		 * only and let try_to_migrate_one() fail later.
		 */
		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
			freeze = false;
2083
	}
2084

2085 2086 2087 2088
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2089 2090 2091
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2092
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2093 2094 2095 2096 2097 2098
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2099
		if (freeze || pmd_migration) {
2100
			swp_entry_t swp_entry;
2101 2102 2103
			if (write)
				swp_entry = make_writable_migration_entry(
							page_to_pfn(page + i));
2104 2105 2106
			else if (anon_exclusive)
				swp_entry = make_readable_exclusive_migration_entry(
							page_to_pfn(page + i));
2107 2108 2109
			else
				swp_entry = make_readable_migration_entry(
							page_to_pfn(page + i));
2110
			entry = swp_entry_to_pte(swp_entry);
2111 2112
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2113 2114
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2115
		} else {
2116
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2117
			entry = maybe_mkwrite(entry, vma);
2118 2119
			if (anon_exclusive)
				SetPageAnonExclusive(page + i);
2120 2121 2122 2123
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2124 2125
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2126 2127
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2128
		}
2129
		pte = pte_offset_map(&_pmd, addr);
2130
		BUG_ON(!pte_none(*pte));
2131
		set_pte_at(mm, addr, pte, entry);
2132
		if (!pmd_migration)
2133
			atomic_inc(&page[i]._mapcount);
2134
		pte_unmap(pte);
2135 2136
	}

2137 2138 2139 2140 2141 2142 2143
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2144
			for (i = 0; i < HPAGE_PMD_NR; i++)
2145 2146 2147 2148 2149 2150
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
2151 2152
			__mod_lruvec_page_state(page, NR_ANON_THPS,
						-HPAGE_PMD_NR);
2153 2154 2155 2156 2157
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2158
		}
2159
		unlock_page_memcg(page);
2160 2161 2162

		/* Above is effectively page_remove_rmap(page, vma, true) */
		munlock_vma_page(page, vma, true);
2163 2164 2165 2166
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2167 2168

	if (freeze) {
2169
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2170
			page_remove_rmap(page + i, vma, false);
2171 2172 2173
			put_page(page + i);
		}
	}
2174 2175 2176
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2177
		unsigned long address, bool freeze, struct folio *folio)
2178 2179
{
	spinlock_t *ptl;
2180
	struct mmu_notifier_range range;
2181

2182
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2183
				address & HPAGE_PMD_MASK,
2184 2185 2186
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2187 2188

	/*
2189 2190
	 * If caller asks to setup a migration entry, we need a folio to check
	 * pmd against. Otherwise we can end up replacing wrong folio.
2191
	 */
2192
	VM_BUG_ON(freeze && !folio);
2193
	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2194

2195
	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2196 2197 2198
	    is_pmd_migration_entry(*pmd)) {
		if (folio && folio != page_folio(pmd_page(*pmd)))
			goto out;
2199
		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2200
	}
2201

2202
out:
2203
	spin_unlock(ptl);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2217
	mmu_notifier_invalidate_range_only_end(&range);
2218 2219
}

2220
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2221
		bool freeze, struct folio *folio)
2222
{
2223
	pgd_t *pgd;
2224
	p4d_t *p4d;
2225
	pud_t *pud;
2226 2227
	pmd_t *pmd;

2228
	pgd = pgd_offset(vma->vm_mm, address);
2229 2230 2231
	if (!pgd_present(*pgd))
		return;

2232 2233 2234 2235 2236
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2237 2238 2239 2240
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2241

2242
	__split_huge_pmd(vma, pmd, address, freeze, folio);
2243 2244
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
{
	/*
	 * If the new address isn't hpage aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
			 ALIGN(address, HPAGE_PMD_SIZE)))
		split_huge_pmd_address(vma, address, false, NULL);
}

2257
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2258 2259 2260 2261
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
2262 2263
	/* Check if we need to split start first. */
	split_huge_pmd_if_needed(vma, start);
2264

2265 2266
	/* Check if we need to split end next. */
	split_huge_pmd_if_needed(vma, end);
2267 2268

	/*
2269 2270
	 * If we're also updating the vma->vm_next->vm_start,
	 * check if we need to split it.
2271 2272 2273 2274
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2275
		nstart += adjust_next;
2276
		split_huge_pmd_if_needed(next, nstart);
2277 2278
	}
}
2279

2280
static void unmap_page(struct page *page)
2281
{
2282
	struct folio *folio = page_folio(page);
2283 2284
	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
		TTU_SYNC;
2285 2286 2287

	VM_BUG_ON_PAGE(!PageHead(page), page);

2288 2289 2290 2291 2292
	/*
	 * Anon pages need migration entries to preserve them, but file
	 * pages can simply be left unmapped, then faulted back on demand.
	 * If that is ever changed (perhaps for mlock), update remap_page().
	 */
2293 2294
	if (folio_test_anon(folio))
		try_to_migrate(folio, ttu_flags);
2295
	else
2296
		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2297 2298
}

2299
static void remap_page(struct folio *folio, unsigned long nr)
2300
{
2301
	int i = 0;
2302

2303
	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2304
	if (!folio_test_anon(folio))
2305
		return;
2306 2307 2308 2309 2310 2311
	for (;;) {
		remove_migration_ptes(folio, folio, true);
		i += folio_nr_pages(folio);
		if (i >= nr)
			break;
		folio = folio_next(folio);
2312
	}
2313 2314
}

2315
static void lru_add_page_tail(struct page *head, struct page *tail,
2316 2317
		struct lruvec *lruvec, struct list_head *list)
{
2318 2319 2320
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2321
	lockdep_assert_held(&lruvec->lru_lock);
2322

A
Alex Shi 已提交
2323
	if (list) {
2324
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2325
		VM_WARN_ON(PageLRU(head));
2326 2327
		get_page(tail);
		list_add_tail(&tail->lru, list);
2328
	} else {
A
Alex Shi 已提交
2329 2330
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
2331 2332 2333 2334
		if (PageUnevictable(tail))
			tail->mlock_count = 0;
		else
			list_add_tail(&tail->lru, &head->lru);
A
Alex Shi 已提交
2335
		SetPageLRU(tail);
2336 2337 2338
	}
}

2339
static void __split_huge_page_tail(struct page *head, int tail,
2340 2341 2342 2343
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2344
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2345 2346

	/*
2347 2348 2349
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2350
	 * for example lock_page() which set PG_waiters.
2351 2352 2353 2354 2355 2356 2357
	 *
	 * Note that for mapped sub-pages of an anonymous THP,
	 * PG_anon_exclusive has been cleared in unmap_page() and is stored in
	 * the migration entry instead from where remap_page() will restore it.
	 * We can still have PG_anon_exclusive set on effectively unmapped and
	 * unreferenced sub-pages of an anonymous THP: we can simply drop
	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2358 2359 2360 2361 2362
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2363
			 (1L << PG_swapcache) |
2364 2365 2366
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2367
			 (1L << PG_workingset) |
2368
			 (1L << PG_locked) |
2369
			 (1L << PG_unevictable) |
2370 2371 2372
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2373
			 (1L << PG_dirty)));
2374

2375 2376 2377 2378 2379 2380
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2381
	/* Page flags must be visible before we make the page non-compound. */
2382 2383
	smp_wmb();

2384 2385 2386 2387 2388 2389
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2390 2391
	clear_compound_head(page_tail);

2392 2393 2394 2395
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2396 2397 2398 2399 2400 2401
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2402 2403 2404 2405 2406 2407

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2408 2409 2410
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2411
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2412
		pgoff_t end)
2413
{
2414 2415
	struct folio *folio = page_folio(page);
	struct page *head = &folio->page;
2416
	struct lruvec *lruvec;
2417 2418
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2419
	unsigned int nr = thp_nr_pages(head);
2420
	int i;
2421 2422

	/* complete memcg works before add pages to LRU */
2423
	split_page_memcg(head, nr);
2424

2425 2426 2427 2428 2429 2430 2431 2432
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

I
Ingo Molnar 已提交
2433
	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2434
	lruvec = folio_lruvec_lock(folio);
A
Alex Shi 已提交
2435

2436 2437
	ClearPageHasHWPoisoned(head);

2438
	for (i = nr - 1; i >= 1; i--) {
2439
		__split_huge_page_tail(head, i, lruvec, list);
2440
		/* Some pages can be beyond EOF: drop them from page cache */
2441
		if (head[i].index >= end) {
2442
			ClearPageDirty(head + i);
2443
			__delete_from_page_cache(head + i, NULL);
2444
			if (shmem_mapping(head->mapping))
2445
				shmem_uncharge(head->mapping->host, 1);
2446
			put_page(head + i);
2447 2448 2449 2450 2451 2452
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2453 2454
		}
	}
2455 2456

	ClearPageCompound(head);
2457
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2458
	/* Caller disabled irqs, so they are still disabled here */
2459

2460
	split_page_owner(head, nr);
2461

2462 2463
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2464
		/* Additional pin to swap cache */
2465
		if (PageSwapCache(head)) {
2466
			page_ref_add(head, 2);
2467 2468
			xa_unlock(&swap_cache->i_pages);
		} else {
2469
			page_ref_inc(head);
2470
		}
2471
	} else {
M
Matthew Wilcox 已提交
2472
		/* Additional pin to page cache */
2473
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2474
		xa_unlock(&head->mapping->i_pages);
2475
	}
A
Alex Shi 已提交
2476
	local_irq_enable();
2477

2478
	remap_page(folio, nr);
2479

H
Huang Ying 已提交
2480 2481 2482 2483 2484 2485
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2486
	for (i = 0; i < nr; i++) {
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2503
/* Racy check whether the huge page can be split */
2504
bool can_split_folio(struct folio *folio, int *pextra_pins)
2505 2506 2507
{
	int extra_pins;

M
Matthew Wilcox 已提交
2508
	/* Additional pins from page cache */
2509 2510 2511
	if (folio_test_anon(folio))
		extra_pins = folio_test_swapcache(folio) ?
				folio_nr_pages(folio) : 0;
2512
	else
2513
		extra_pins = folio_nr_pages(folio);
2514 2515
	if (pextra_pins)
		*pextra_pins = extra_pins;
2516
	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2517 2518
}

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
2540 2541
	struct folio *folio = page_folio(page);
	struct page *head = &folio->page;
2542
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2543
	XA_STATE(xas, &head->mapping->i_pages, head->index);
2544 2545
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
2546
	int extra_pins, ret;
2547
	pgoff_t end;
2548

2549
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2550 2551
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2552

2553
	if (PageWriteback(head))
2554 2555
		return -EBUSY;

2556 2557
	if (PageAnon(head)) {
		/*
2558
		 * The caller does not necessarily hold an mmap_lock that would
2559 2560
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
2561
		 * is similar to folio_lock_anon_vma_read except the write lock
2562 2563 2564 2565 2566 2567 2568 2569
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2570
		end = -1;
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

2582 2583 2584 2585 2586 2587 2588
		xas_split_alloc(&xas, head, compound_order(head),
				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
		if (xas_error(&xas)) {
			ret = xas_error(&xas);
			goto out;
		}

2589 2590
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2591 2592 2593 2594 2595 2596 2597 2598 2599

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2600 2601
		if (shmem_mapping(mapping))
			end = shmem_fallocend(mapping->host, end);
2602 2603 2604
	}

	/*
2605
	 * Racy check if we can split the page, before unmap_page() will
2606 2607
	 * split PMDs
	 */
2608
	if (!can_split_folio(folio, &extra_pins)) {
2609 2610 2611 2612
		ret = -EBUSY;
		goto out_unlock;
	}

2613
	unmap_page(head);
2614

A
Alex Shi 已提交
2615 2616
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2617 2618
	if (mapping) {
		/*
M
Matthew Wilcox 已提交
2619
		 * Check if the head page is present in page cache.
2620 2621
		 * We assume all tail are present too, if head is there.
		 */
2622 2623
		xas_lock(&xas);
		xas_reset(&xas);
M
Matthew Wilcox 已提交
2624
		if (xas_load(&xas) != head)
2625 2626 2627
			goto fail;
	}

2628
	/* Prevent deferred_split_scan() touching ->_refcount */
2629
	spin_lock(&ds_queue->split_queue_lock);
2630
	if (page_ref_freeze(head, 1 + extra_pins)) {
2631
		if (!list_empty(page_deferred_list(head))) {
2632
			ds_queue->split_queue_len--;
2633 2634
			list_del(page_deferred_list(head));
		}
2635
		spin_unlock(&ds_queue->split_queue_lock);
2636
		if (mapping) {
2637 2638
			int nr = thp_nr_pages(head);

2639
			xas_split(&xas, head, thp_order(head));
2640
			if (PageSwapBacked(head)) {
2641 2642
				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
							-nr);
2643
			} else {
2644 2645
				__mod_lruvec_page_state(head, NR_FILE_THPS,
							-nr);
2646 2647
				filemap_nr_thps_dec(mapping);
			}
2648 2649
		}

A
Alex Shi 已提交
2650
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2651
		ret = 0;
2652
	} else {
2653
		spin_unlock(&ds_queue->split_queue_lock);
2654 2655
fail:
		if (mapping)
2656
			xas_unlock(&xas);
A
Alex Shi 已提交
2657
		local_irq_enable();
2658
		remap_page(folio, folio_nr_pages(folio));
2659 2660 2661 2662
		ret = -EBUSY;
	}

out_unlock:
2663 2664 2665 2666 2667 2668
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2669
out:
2670 2671
	/* Free any memory we didn't use */
	xas_nomem(&xas, 0);
2672 2673 2674
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2675 2676 2677

void free_transhuge_page(struct page *page)
{
2678
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2679 2680
	unsigned long flags;

2681
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2682
	if (!list_empty(page_deferred_list(page))) {
2683
		ds_queue->split_queue_len--;
2684 2685
		list_del(page_deferred_list(page));
	}
2686
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2687 2688 2689 2690 2691
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2692 2693
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2694
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2695
#endif
2696 2697 2698 2699
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2713
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2714
	if (list_empty(page_deferred_list(page))) {
2715
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2716 2717
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2718 2719
#ifdef CONFIG_MEMCG
		if (memcg)
2720 2721
			set_shrinker_bit(memcg, page_to_nid(page),
					 deferred_split_shrinker.id);
2722
#endif
2723
	}
2724
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2725 2726 2727 2728 2729
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2730
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2731
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2732 2733 2734 2735 2736

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2737
	return READ_ONCE(ds_queue->split_queue_len);
2738 2739 2740 2741 2742
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2743
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2744
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2745 2746 2747 2748 2749
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2750 2751 2752 2753 2754
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2755
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2756
	/* Take pin on all head pages to avoid freeing them under us */
2757
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2758
		page = list_entry((void *)pos, struct page, deferred_list);
2759
		page = compound_head(page);
2760 2761 2762 2763
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2764
			list_del_init(page_deferred_list(page));
2765
			ds_queue->split_queue_len--;
2766
		}
2767 2768
		if (!--sc->nr_to_scan)
			break;
2769
	}
2770
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2771 2772

	list_for_each_safe(pos, next, &list) {
2773
		page = list_entry((void *)pos, struct page, deferred_list);
2774 2775
		if (!trylock_page(page))
			goto next;
2776 2777 2778 2779
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2780
next:
2781 2782 2783
		put_page(page);
	}

2784 2785 2786
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2787

2788 2789 2790 2791
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2792
	if (!split && list_empty(&ds_queue->split_queue))
2793 2794
		return SHRINK_STOP;
	return split;
2795 2796 2797 2798 2799 2800
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2801 2802
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2803
};
2804 2805

#ifdef CONFIG_DEBUG_FS
2806
static void split_huge_pages_all(void)
2807 2808 2809 2810 2811 2812
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

2813
	pr_debug("Split all THPs\n");
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2827
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2828 2829 2830 2831 2832 2833 2834 2835 2836
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
2837
			cond_resched();
2838 2839 2840
		}
	}

2841 2842
	pr_debug("%lu of %lu THP split\n", split, total);
}
2843

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
{
	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
		    is_vm_hugetlb_page(vma);
}

static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
				unsigned long vaddr_end)
{
	int ret = 0;
	struct task_struct *task;
	struct mm_struct *mm;
	unsigned long total = 0, split = 0;
	unsigned long addr;

	vaddr_start &= PAGE_MASK;
	vaddr_end &= PAGE_MASK;

	/* Find the task_struct from pid */
	rcu_read_lock();
	task = find_task_by_vpid(pid);
	if (!task) {
		rcu_read_unlock();
		ret = -ESRCH;
		goto out;
	}
	get_task_struct(task);
	rcu_read_unlock();

	/* Find the mm_struct */
	mm = get_task_mm(task);
	put_task_struct(task);

	if (!mm) {
		ret = -EINVAL;
		goto out;
	}

	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
		 pid, vaddr_start, vaddr_end);

	mmap_read_lock(mm);
	/*
	 * always increase addr by PAGE_SIZE, since we could have a PTE page
	 * table filled with PTE-mapped THPs, each of which is distinct.
	 */
	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
		struct vm_area_struct *vma = find_vma(mm, addr);
		struct page *page;

		if (!vma || addr < vma->vm_start)
			break;

		/* skip special VMA and hugetlb VMA */
		if (vma_not_suitable_for_thp_split(vma)) {
			addr = vma->vm_end;
			continue;
		}

		/* FOLL_DUMP to ignore special (like zero) pages */
2904
		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914

		if (IS_ERR(page))
			continue;
		if (!page)
			continue;

		if (!is_transparent_hugepage(page))
			goto next;

		total++;
2915
		if (!can_split_folio(page_folio(page), NULL))
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
			goto next;

		if (!trylock_page(page))
			goto next;

		if (!split_huge_page(page))
			split++;

		unlock_page(page);
next:
		put_page(page);
		cond_resched();
	}
	mmap_read_unlock(mm);
	mmput(mm);

	pr_debug("%lu of %lu THP split\n", split, total);

out:
	return ret;
2936
}
2937

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
				pgoff_t off_end)
{
	struct filename *file;
	struct file *candidate;
	struct address_space *mapping;
	int ret = -EINVAL;
	pgoff_t index;
	int nr_pages = 1;
	unsigned long total = 0, split = 0;

	file = getname_kernel(file_path);
	if (IS_ERR(file))
		return ret;

	candidate = file_open_name(file, O_RDONLY, 0);
	if (IS_ERR(candidate))
		goto out;

	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
		 file_path, off_start, off_end);

	mapping = candidate->f_mapping;

	for (index = off_start; index < off_end; index += nr_pages) {
		struct page *fpage = pagecache_get_page(mapping, index,
						FGP_ENTRY | FGP_HEAD, 0);

		nr_pages = 1;
		if (xa_is_value(fpage) || !fpage)
			continue;

		if (!is_transparent_hugepage(fpage))
			goto next;

		total++;
		nr_pages = thp_nr_pages(fpage);

		if (!trylock_page(fpage))
			goto next;

		if (!split_huge_page(fpage))
			split++;

		unlock_page(fpage);
next:
		put_page(fpage);
		cond_resched();
	}

	filp_close(candidate, NULL);
	ret = 0;

	pr_debug("%lu of %lu file-backed THP split\n", split, total);
out:
	putname(file);
	return ret;
}

2997 2998 2999 3000 3001 3002 3003
#define MAX_INPUT_BUF_SZ 255

static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
				size_t count, loff_t *ppops)
{
	static DEFINE_MUTEX(split_debug_mutex);
	ssize_t ret;
3004 3005
	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
	char input_buf[MAX_INPUT_BUF_SZ];
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	int pid;
	unsigned long vaddr_start, vaddr_end;

	ret = mutex_lock_interruptible(&split_debug_mutex);
	if (ret)
		return ret;

	ret = -EFAULT;

	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
		goto out;

	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029

	if (input_buf[0] == '/') {
		char *tok;
		char *buf = input_buf;
		char file_path[MAX_INPUT_BUF_SZ];
		pgoff_t off_start = 0, off_end = 0;
		size_t input_len = strlen(input_buf);

		tok = strsep(&buf, ",");
		if (tok) {
3030
			strcpy(file_path, tok);
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
		} else {
			ret = -EINVAL;
			goto out;
		}

		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
		if (ret != 2) {
			ret = -EINVAL;
			goto out;
		}
		ret = split_huge_pages_in_file(file_path, off_start, off_end);
		if (!ret)
			ret = input_len;

		goto out;
	}

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
	if (ret == 1 && pid == 1) {
		split_huge_pages_all();
		ret = strlen(input_buf);
		goto out;
	} else if (ret != 3) {
		ret = -EINVAL;
		goto out;
	}

	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
	if (!ret)
		ret = strlen(input_buf);
out:
	mutex_unlock(&split_debug_mutex);
	return ret;

}

static const struct file_operations split_huge_pages_fops = {
	.owner	 = THIS_MODULE,
	.write	 = split_huge_pages_write,
	.llseek  = no_llseek,
};
3072 3073 3074

static int __init split_huge_pages_debugfs(void)
{
3075 3076
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3077 3078 3079 3080
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3081 3082

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3083
int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3084 3085 3086 3087 3088
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
3089
	bool anon_exclusive;
3090 3091
	pmd_t pmdval;
	swp_entry_t entry;
3092
	pmd_t pmdswp;
3093 3094

	if (!(pvmw->pmd && !pvmw->pte))
3095
		return 0;
3096 3097

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3098
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3099 3100 3101 3102

	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
	if (anon_exclusive && page_try_share_anon_rmap(page)) {
		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3103
		return -EBUSY;
3104 3105
	}

3106 3107
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
3108 3109
	if (pmd_write(pmdval))
		entry = make_writable_migration_entry(page_to_pfn(page));
3110 3111
	else if (anon_exclusive)
		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3112 3113
	else
		entry = make_readable_migration_entry(page_to_pfn(page));
3114 3115 3116 3117
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3118
	page_remove_rmap(page, vma, true);
3119
	put_page(page);
3120
	trace_set_migration_pmd(address, pmd_val(pmdswp));
3121 3122

	return 0;
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3140 3141
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3142
	if (is_writable_migration_entry(entry))
3143
		pmde = maybe_pmd_mkwrite(pmde, vma);
3144 3145
	if (pmd_swp_uffd_wp(*pvmw->pmd))
		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3146

3147 3148 3149 3150 3151 3152 3153 3154
	if (PageAnon(new)) {
		rmap_t rmap_flags = RMAP_COMPOUND;

		if (!is_readable_migration_entry(entry))
			rmap_flags |= RMAP_EXCLUSIVE;

		page_add_anon_rmap(new, vma, mmun_start, rmap_flags);
	} else {
3155
		page_add_file_rmap(new, vma, true);
3156 3157
	}
	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3158
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3159 3160

	/* No need to invalidate - it was non-present before */
3161
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3162
	trace_remove_migration_pmd(address, pmd_val(pmde));
3163 3164
}
#endif