huge_memory.c 84.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/mm.h>
11
#include <linux/sched/coredump.h>
12
#include <linux/sched/numa_balancing.h>
13 14 15 16 17
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
18
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
19
#include <linux/mm_inline.h>
20
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
21
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
22
#include <linux/khugepaged.h>
23
#include <linux/freezer.h>
24
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
25
#include <linux/mman.h>
26
#include <linux/memremap.h>
R
Ralf Baechle 已提交
27
#include <linux/pagemap.h>
28
#include <linux/debugfs.h>
29
#include <linux/migrate.h>
30
#include <linux/hashtable.h>
31
#include <linux/userfaultfd_k.h>
32
#include <linux/page_idle.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/oom.h>
35
#include <linux/numa.h>
36
#include <linux/page_owner.h>
37
#include <linux/sched/sysctl.h>
38

39 40 41
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
N
NeilBrown 已提交
42
#include "swap.h"
43

44 45 46
#define CREATE_TRACE_POINTS
#include <trace/events/thp.h>

A
Andrea Arcangeli 已提交
47
/*
48 49 50 51
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
52 53
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
54
 */
55
unsigned long transparent_hugepage_flags __read_mostly =
56
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
57
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
58 59 60 61
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
62
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
63 64
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
65

66
static struct shrinker deferred_split_shrinker;
67

68
static atomic_t huge_zero_refcount;
69
struct page *huge_zero_page __read_mostly;
70
unsigned long huge_zero_pfn __read_mostly = ~0UL;
71

72 73 74 75 76 77 78 79
static inline bool file_thp_enabled(struct vm_area_struct *vma)
{
	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
	       (vma->vm_flags & VM_EXEC);
}

bool transparent_hugepage_active(struct vm_area_struct *vma)
80
{
81 82 83 84 85
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
86 87
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
88 89
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
90 91
	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
		return file_thp_enabled(vma);
92 93 94 95

	return false;
}

96
static bool get_huge_zero_page(void)
97 98 99 100
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
101
		return true;
102 103

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
104
			HPAGE_PMD_ORDER);
105 106
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
107
		return false;
108 109
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
110
	preempt_disable();
111
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
112
		preempt_enable();
113
		__free_pages(zero_page, compound_order(zero_page));
114 115
		goto retry;
	}
116
	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
117 118 119 120

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
121
	return true;
122 123
}

124
static void put_huge_zero_page(void)
125
{
126 127 128 129 130
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
131 132
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

153 154
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
155
{
156 157 158
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
159

160 161 162
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
163
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
164 165
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
166
		WRITE_ONCE(huge_zero_pfn, ~0UL);
167
		__free_pages(zero_page, compound_order(zero_page));
168
		return HPAGE_PMD_NR;
169 170 171
	}

	return 0;
172 173
}

174
static struct shrinker huge_zero_page_shrinker = {
175 176
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
177 178 179
	.seeks = DEFAULT_SEEKS,
};

180 181 182 183
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
184 185
	const char *output;

186
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
187 188 189 190
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
191
	else
192 193 194
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
195
}
196

197 198 199 200
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
201
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
202

203
	if (sysfs_streq(buf, "always")) {
204 205
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
206
	} else if (sysfs_streq(buf, "madvise")) {
207 208
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
209
	} else if (sysfs_streq(buf, "never")) {
210 211 212 213
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
214 215

	if (ret > 0) {
216
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
217 218 219 220
		if (err)
			ret = err;
	}
	return ret;
221 222 223 224
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

225
ssize_t single_hugepage_flag_show(struct kobject *kobj,
226 227
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
228
{
229 230
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
231
}
232

233
ssize_t single_hugepage_flag_store(struct kobject *kobj,
234 235 236 237
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
238 239 240 241 242 243 244 245 246 247
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
248
		set_bit(flag, &transparent_hugepage_flags);
249
	else
250 251 252 253 254 255 256 257
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
276
}
277

278 279 280 281
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
282
	if (sysfs_streq(buf, "always")) {
283 284 285 286
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
287
	} else if (sysfs_streq(buf, "defer+madvise")) {
288 289 290 291
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
292
	} else if (sysfs_streq(buf, "defer")) {
293 294 295 296
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
297
	} else if (sysfs_streq(buf, "madvise")) {
298 299 300 301
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
302
	} else if (sysfs_streq(buf, "never")) {
303 304 305 306 307 308 309 310
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
311 312 313 314
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

315
static ssize_t use_zero_page_show(struct kobject *kobj,
316
				  struct kobj_attribute *attr, char *buf)
317
{
318
	return single_hugepage_flag_show(kobj, attr, buf,
319
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
320 321 322 323
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
324
	return single_hugepage_flag_store(kobj, attr, buf, count,
325 326 327 328
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
329 330

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
331
				   struct kobj_attribute *attr, char *buf)
332
{
333
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
334 335 336 337
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

338 339 340
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
341
	&use_zero_page_attr.attr,
342
	&hpage_pmd_size_attr.attr,
343
#ifdef CONFIG_SHMEM
344
	&shmem_enabled_attr.attr,
345 346 347 348
#endif
	NULL,
};

349
static const struct attribute_group hugepage_attr_group = {
350
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
351 352
};

S
Shaohua Li 已提交
353
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
354 355 356
{
	int err;

S
Shaohua Li 已提交
357 358
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
359
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
360
		return -ENOMEM;
A
Andrea Arcangeli 已提交
361 362
	}

S
Shaohua Li 已提交
363
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
364
	if (err) {
365
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
366
		goto delete_obj;
A
Andrea Arcangeli 已提交
367 368
	}

S
Shaohua Li 已提交
369
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
370
	if (err) {
371
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
372
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
373
	}
S
Shaohua Li 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
407 408 409 410 411
		/*
		 * Hardware doesn't support hugepages, hence disable
		 * DAX PMD support.
		 */
		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
S
Shaohua Li 已提交
412 413 414
		return -EINVAL;
	}

415 416 417 418 419 420 421 422 423 424
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
425 426
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
427
		goto err_sysfs;
A
Andrea Arcangeli 已提交
428

429
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
430
	if (err)
431
		goto err_slab;
A
Andrea Arcangeli 已提交
432

433 434 435
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
436 437 438
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
439

440 441 442 443 444
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
445
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
446
		transparent_hugepage_flags = 0;
447 448
		return 0;
	}
449

450
	err = start_stop_khugepaged();
451 452
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
453

S
Shaohua Li 已提交
454
	return 0;
455
err_khugepaged:
456 457
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
458 459
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
460
	khugepaged_destroy();
461
err_slab:
S
Shaohua Li 已提交
462
	hugepage_exit_sysfs(hugepage_kobj);
463
err_sysfs:
A
Andrea Arcangeli 已提交
464
	return err;
465
}
466
subsys_initcall(hugepage_init);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
494
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
495 496 497 498
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

499
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
500
{
501
	if (likely(vma->vm_flags & VM_WRITE))
502 503 504 505
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

506 507
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
508
{
509
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
510 511 512 513 514 515
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
516
}
517 518 519 520 521 522 523 524
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
525 526 527 528 529 530 531 532 533 534 535 536

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

537
static inline bool is_transparent_hugepage(struct page *page)
538 539
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
540
		return false;
541 542 543 544 545 546

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}

547 548
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
549 550 551 552
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
553
	unsigned long len_pad, ret;
554 555 556 557 558 559 560 561

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

562
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
563
					      off >> PAGE_SHIFT, flags);
564 565 566 567 568 569

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
570 571
		return 0;

572 573 574 575 576 577 578 579 580
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
581 582 583 584 585
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
586
	unsigned long ret;
587 588
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

589 590 591
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
592

593 594 595 596
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

597 598
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
599
{
J
Jan Kara 已提交
600
	struct vm_area_struct *vma = vmf->vma;
601
	pgtable_t pgtable;
J
Jan Kara 已提交
602
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
603
	vm_fault_t ret = 0;
604

605
	VM_BUG_ON_PAGE(!PageCompound(page), page);
606

607
	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
608 609
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
610
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
611 612
		return VM_FAULT_FALLBACK;
	}
613
	cgroup_throttle_swaprate(page, gfp);
614

615
	pgtable = pte_alloc_one(vma->vm_mm);
616
	if (unlikely(!pgtable)) {
617 618
		ret = VM_FAULT_OOM;
		goto release;
619
	}
620

621
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
622 623 624 625 626
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
627 628
	__SetPageUptodate(page);

J
Jan Kara 已提交
629 630
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
631
		goto unlock_release;
632 633
	} else {
		pmd_t entry;
634

635 636 637 638
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

639 640
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
641
			spin_unlock(vmf->ptl);
642
			put_page(page);
K
Kirill A. Shutemov 已提交
643
			pte_free(vma->vm_mm, pgtable);
644 645 646
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
647 648
		}

649
		entry = mk_huge_pmd(page, vma->vm_page_prot);
650
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
651
		page_add_new_anon_rmap(page, vma, haddr);
652
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
653 654
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
655
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
K
Kirill A. Shutemov 已提交
656
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
657
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
658
		spin_unlock(vmf->ptl);
659
		count_vm_event(THP_FAULT_ALLOC);
660
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
661 662
	}

663
	return 0;
664 665 666 667 668 669 670 671
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

672 673
}

674
/*
675 676 677 678 679 680 681
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
682
 */
683
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
684
{
685
	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
686

687
	/* Always do synchronous compaction */
688 689
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
690 691

	/* Kick kcompactd and fail quickly */
692
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
693
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
694 695

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
696
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
697 698 699
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
700 701

	/* Only do synchronous compaction if madvised */
702
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
703 704
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
705

706
	return GFP_TRANSHUGE_LIGHT;
707 708
}

709
/* Caller must hold page table lock. */
710
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
711
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
712
		struct page *zero_page)
713 714
{
	pmd_t entry;
A
Andrew Morton 已提交
715
	if (!pmd_none(*pmd))
716
		return;
717
	entry = mk_pmd(zero_page, vma->vm_page_prot);
718
	entry = pmd_mkhuge(entry);
719 720
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
721
	set_pmd_at(mm, haddr, pmd, entry);
722
	mm_inc_nr_ptes(mm);
723 724
}

725
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
726
{
J
Jan Kara 已提交
727
	struct vm_area_struct *vma = vmf->vma;
728
	gfp_t gfp;
729
	struct page *page;
J
Jan Kara 已提交
730
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
731

732
	if (!transhuge_vma_suitable(vma, haddr))
733
		return VM_FAULT_FALLBACK;
734 735
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
736
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
737
		return VM_FAULT_OOM;
J
Jan Kara 已提交
738
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
739
			!mm_forbids_zeropage(vma->vm_mm) &&
740 741 742
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
743
		vm_fault_t ret;
744
		pgtable = pte_alloc_one(vma->vm_mm);
745
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
746
			return VM_FAULT_OOM;
747
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
748
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
749
			pte_free(vma->vm_mm, pgtable);
750
			count_vm_event(THP_FAULT_FALLBACK);
751
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
752
		}
J
Jan Kara 已提交
753
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
754
		ret = 0;
J
Jan Kara 已提交
755
		if (pmd_none(*vmf->pmd)) {
756 757 758
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
759
				pte_free(vma->vm_mm, pgtable);
760
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
761
				spin_unlock(vmf->ptl);
762
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
763
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
764 765
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
766
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
767
						   haddr, vmf->pmd, zero_page);
768
				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
J
Jan Kara 已提交
769
				spin_unlock(vmf->ptl);
770
			}
771
		} else {
J
Jan Kara 已提交
772
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
773
			pte_free(vma->vm_mm, pgtable);
774
		}
775
		return ret;
776
	}
777
	gfp = vma_thp_gfp_mask(vma);
778
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
779 780
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
781
		return VM_FAULT_FALLBACK;
782
	}
783
	prep_transhuge_page(page);
J
Jan Kara 已提交
784
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
785 786
}

787
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
788 789
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
790 791 792 793 794 795
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

811 812 813
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
814
	if (write) {
815 816
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
817
	}
818 819 820

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
821
		mm_inc_nr_ptes(mm);
822
		pgtable = NULL;
823 824
	}

825 826
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
827 828

out_unlock:
M
Matthew Wilcox 已提交
829
	spin_unlock(ptl);
830 831
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
832 833
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
849
{
850 851
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
852
	pgtable_t pgtable = NULL;
853

M
Matthew Wilcox 已提交
854 855 856 857 858
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
859 860
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
861 862 863 864 865 866
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
867

868
	if (arch_needs_pgtable_deposit()) {
869
		pgtable = pte_alloc_one(vma->vm_mm);
870 871 872 873
		if (!pgtable)
			return VM_FAULT_OOM;
	}

874 875
	track_pfn_insert(vma, &pgprot, pfn);

876
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
877
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
878
}
879
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
880

881
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
882
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
883
{
884
	if (likely(vma->vm_flags & VM_WRITE))
885 886 887 888 889 890 891 892 893 894 895 896
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
897 898 899 900 901 902 903 904 905 906 907 908 909 910
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

911 912 913 914
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
915 916
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
917 918 919
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
920 921

out_unlock:
922 923 924
	spin_unlock(ptl);
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
940
{
941 942 943
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

944 945 946 947 948
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
949 950
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
951 952 953 954 955 956 957 958 959
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

960
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
961 962
	return VM_FAULT_NOPAGE;
}
963
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
964 965
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

966
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
967
		pmd_t *pmd, int flags)
968 969 970
{
	pmd_t _pmd;

971 972 973
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
974
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
975
				pmd, _pmd, flags & FOLL_WRITE))
976 977 978 979
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
980
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
981 982 983 984 985 986 987
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

988 989 990 991 992 993
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
994 995 996 997 998
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

999
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1000 1001 1002 1003 1004 1005 1006 1007
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1008
		touch_pmd(vma, addr, pmd, flags);
1009 1010 1011 1012 1013

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1014
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1015 1016 1017
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1018 1019
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1020 1021
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1022 1023
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1024 1025 1026 1027

	return page;
}

1028 1029
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1030
		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1031
{
1032
	spinlock_t *dst_ptl, *src_ptl;
1033 1034
	struct page *src_page;
	pmd_t pmd;
1035
	pgtable_t pgtable = NULL;
1036
	int ret = -ENOMEM;
1037

1038
	/* Skip if can be re-fill on fault */
1039
	if (!vma_is_anonymous(dst_vma))
1040 1041
		return 0;

1042
	pgtable = pte_alloc_one(dst_mm);
1043 1044
	if (unlikely(!pgtable))
		goto out;
1045

1046 1047 1048
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1049 1050 1051

	ret = -EAGAIN;
	pmd = *src_pmd;
1052 1053 1054 1055 1056 1057

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1058
		if (!is_readable_migration_entry(entry)) {
1059 1060
			entry = make_readable_migration_entry(
							swp_offset(entry));
1061
			pmd = swp_entry_to_pmd(entry);
1062 1063
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1064 1065
			if (pmd_swp_uffd_wp(*src_pmd))
				pmd = pmd_swp_mkuffd_wp(pmd);
1066 1067
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1068
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1069
		mm_inc_nr_ptes(dst_mm);
1070
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1071 1072
		if (!userfaultfd_wp(dst_vma))
			pmd = pmd_swp_clear_uffd_wp(pmd);
1073 1074 1075 1076 1077 1078
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1079
	if (unlikely(!pmd_trans_huge(pmd))) {
1080 1081 1082
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1083
	/*
1084
	 * When page table lock is held, the huge zero pmd should not be
1085 1086 1087 1088
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1089 1090 1091 1092 1093
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1094 1095
		mm_get_huge_zero_page(dst_mm);
		goto out_zero_page;
1096
	}
1097

1098 1099
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1100

1101 1102 1103 1104
	get_page(src_page);
	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
		/* Page maybe pinned: split and retry the fault on PTEs. */
		put_page(src_page);
1105 1106 1107
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
1108
		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1109 1110
		return -EAGAIN;
	}
1111
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1112
out_zero_page:
1113
	mm_inc_nr_ptes(dst_mm);
1114
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1115
	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1116 1117
	if (!userfaultfd_wp(dst_vma))
		pmd = pmd_clear_uffd_wp(pmd);
1118 1119 1120 1121 1122
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1123 1124
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1125 1126 1127 1128
out:
	return ret;
}

1129 1130
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1131
		pud_t *pud, int flags)
1132 1133 1134
{
	pud_t _pud;

1135 1136 1137
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1138
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1139
				pud, _pud, flags & FOLL_WRITE))
1140 1141 1142 1143
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1144
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1145 1146 1147 1148 1149 1150 1151
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1152
	if (flags & FOLL_WRITE && !pud_write(*pud))
1153 1154
		return NULL;

J
John Hubbard 已提交
1155 1156 1157 1158 1159
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1160 1161 1162 1163 1164 1165
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1166
		touch_pud(vma, addr, pud, flags);
1167 1168 1169 1170

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1171 1172
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1173
	 */
J
John Hubbard 已提交
1174
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1175 1176 1177
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1178 1179
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1180 1181
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1182 1183
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1214 1215 1216 1217
	/*
	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
	 * and split if duplicating fails.
	 */
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1251
void huge_pmd_set_accessed(struct vm_fault *vmf)
1252 1253 1254
{
	pmd_t entry;
	unsigned long haddr;
1255
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1256
	pmd_t orig_pmd = vmf->orig_pmd;
1257

J
Jan Kara 已提交
1258 1259
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1260 1261 1262
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1263 1264
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1265
	haddr = vmf->address & HPAGE_PMD_MASK;
1266
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1267
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1268 1269

unlock:
J
Jan Kara 已提交
1270
	spin_unlock(vmf->ptl);
1271 1272
}

1273
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1274
{
1275
	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
J
Jan Kara 已提交
1276
	struct vm_area_struct *vma = vmf->vma;
1277
	struct page *page;
J
Jan Kara 已提交
1278
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1279
	pmd_t orig_pmd = vmf->orig_pmd;
1280

J
Jan Kara 已提交
1281
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1282
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1283

1284 1285 1286
	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));

1287
	if (is_huge_zero_pmd(orig_pmd))
1288 1289
		goto fallback;

J
Jan Kara 已提交
1290
	spin_lock(vmf->ptl);
1291 1292 1293 1294 1295

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1296 1297

	page = pmd_page(orig_pmd);
1298
	VM_BUG_ON_PAGE(!PageHead(page), page);
1299

1300 1301 1302 1303
	/* Early check when only holding the PT lock. */
	if (PageAnonExclusive(page))
		goto reuse;

1304 1305 1306 1307 1308 1309
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1310
			spin_unlock(vmf->ptl);
1311 1312
			unlock_page(page);
			put_page(page);
1313
			return 0;
1314 1315 1316
		}
		put_page(page);
	}
1317

1318 1319 1320 1321 1322 1323
	/* Recheck after temporarily dropping the PT lock. */
	if (PageAnonExclusive(page)) {
		unlock_page(page);
		goto reuse;
	}

1324
	/*
1325
	 * See do_wp_page(): we can only reuse the page exclusively if there are
1326 1327
	 * no additional references. Note that we always drain the LRU
	 * pagevecs immediately after adding a THP.
1328
	 */
1329 1330 1331 1332 1333
	if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
		goto unlock_fallback;
	if (PageSwapCache(page))
		try_to_free_swap(page);
	if (page_count(page) == 1) {
1334
		pmd_t entry;
1335 1336

		page_move_anon_rmap(page, vma);
1337 1338
		unlock_page(page);
reuse:
1339 1340 1341 1342
		if (unlikely(unshare)) {
			spin_unlock(vmf->ptl);
			return 0;
		}
1343
		entry = pmd_mkyoung(orig_pmd);
1344
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1345
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1346 1347
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
		spin_unlock(vmf->ptl);
1348
		return VM_FAULT_WRITE;
1349
	}
1350

1351
unlock_fallback:
1352
	unlock_page(page);
J
Jan Kara 已提交
1353
	spin_unlock(vmf->ptl);
1354 1355 1356
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1357 1358
}

1359
/*
1360 1361
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1362 1363 1364
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1365 1366
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1367 1368
}

1369
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1370 1371 1372 1373
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1374
	struct mm_struct *mm = vma->vm_mm;
1375 1376
	struct page *page = NULL;

1377
	assert_spin_locked(pmd_lockptr(mm, pmd));
1378

1379
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1380 1381
		goto out;

1382 1383 1384 1385
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1386
	/* Full NUMA hinting faults to serialise migration in fault paths */
1387
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1388 1389
		goto out;

1390
	page = pmd_page(*pmd);
1391
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1392

1393 1394 1395
	if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
		return ERR_PTR(-EMLINK);

1396 1397 1398
	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
			!PageAnonExclusive(page), page);

J
John Hubbard 已提交
1399 1400 1401
	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1402
	if (flags & FOLL_TOUCH)
1403
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1404

1405
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1406
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1407 1408 1409 1410 1411

out:
	return page;
}

1412
/* NUMA hinting page fault entry point for trans huge pmds */
1413
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1414
{
J
Jan Kara 已提交
1415
	struct vm_area_struct *vma = vmf->vma;
Y
Yang Shi 已提交
1416 1417
	pmd_t oldpmd = vmf->orig_pmd;
	pmd_t pmd;
1418
	struct page *page;
J
Jan Kara 已提交
1419
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
Y
Yang Shi 已提交
1420
	int page_nid = NUMA_NO_NODE;
1421
	int target_nid, last_cpupid = -1;
1422
	bool migrated = false;
Y
Yang Shi 已提交
1423
	bool was_writable = pmd_savedwrite(oldpmd);
1424
	int flags = 0;
1425

J
Jan Kara 已提交
1426
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
Y
Yang Shi 已提交
1427
	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
J
Jan Kara 已提交
1428
		spin_unlock(vmf->ptl);
1429 1430 1431
		goto out;
	}

Y
Yang Shi 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	page = vm_normal_page_pmd(vma, haddr, pmd);
	if (!page)
		goto out_map;

	/* See similar comment in do_numa_page for explanation */
	if (!was_writable)
		flags |= TNF_NO_GROUP;

	page_nid = page_to_nid(page);
	last_cpupid = page_cpupid_last(page);
	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
				       &flags);

	if (target_nid == NUMA_NO_NODE) {
		put_page(page);
		goto out_map;
	}

J
Jan Kara 已提交
1451
	spin_unlock(vmf->ptl);
1452

Y
Yang Shi 已提交
1453
	migrated = migrate_misplaced_page(page, vma, target_nid);
1454 1455
	if (migrated) {
		flags |= TNF_MIGRATED;
1456
		page_nid = target_nid;
Y
Yang Shi 已提交
1457
	} else {
1458
		flags |= TNF_MIGRATE_FAIL;
Y
Yang Shi 已提交
1459 1460 1461 1462 1463 1464 1465
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
			spin_unlock(vmf->ptl);
			goto out;
		}
		goto out_map;
	}
1466 1467

out:
1468
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1469
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1470
				flags);
1471

1472
	return 0;
Y
Yang Shi 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

out_map:
	/* Restore the PMD */
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	pmd = pmd_mkyoung(pmd);
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
	spin_unlock(vmf->ptl);
	goto out;
1484 1485
}

1486 1487 1488 1489 1490
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1491 1492 1493 1494 1495 1496
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1497
	bool ret = false;
1498

1499
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1500

1501 1502
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1503
		goto out_unlocked;
1504 1505

	orig_pmd = *pmd;
1506
	if (is_huge_zero_pmd(orig_pmd))
1507 1508
		goto out;

1509 1510 1511 1512 1513 1514
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1515 1516 1517 1518 1519
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
1520
	if (total_mapcount(page) != 1)
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1533
		split_huge_page(page);
1534
		unlock_page(page);
1535
		put_page(page);
1536 1537 1538 1539 1540 1541 1542 1543
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1544
		pmdp_invalidate(vma, addr, pmd);
1545 1546 1547 1548 1549 1550
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1551 1552

	mark_page_lazyfree(page);
1553
	ret = true;
1554 1555 1556 1557 1558 1559
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1560 1561 1562 1563 1564 1565
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1566
	mm_dec_nr_ptes(mm);
1567 1568
}

1569
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1570
		 pmd_t *pmd, unsigned long addr)
1571
{
1572
	pmd_t orig_pmd;
1573
	spinlock_t *ptl;
1574

1575
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1576

1577 1578
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1579 1580 1581 1582 1583 1584 1585
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1586 1587
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1588
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1589
	if (vma_is_special_huge(vma)) {
1590 1591
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1592 1593
		spin_unlock(ptl);
	} else if (is_huge_zero_pmd(orig_pmd)) {
1594
		zap_deposited_table(tlb->mm, pmd);
1595 1596
		spin_unlock(ptl);
	} else {
1597 1598 1599 1600 1601
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
1602
			page_remove_rmap(page, vma, true);
1603 1604 1605 1606 1607 1608 1609
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
1610
			page = pfn_swap_entry_to_page(entry);
1611 1612 1613 1614
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1615
		if (PageAnon(page)) {
1616
			zap_deposited_table(tlb->mm, pmd);
1617 1618
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1619 1620
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1621
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1622
		}
1623

1624
		spin_unlock(ptl);
1625 1626
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1627
	}
1628
	return 1;
1629 1630
}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1657
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1658
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1659
{
1660
	spinlock_t *old_ptl, *new_ptl;
1661 1662
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1663
	bool force_flush = false;
1664 1665 1666 1667 1668 1669 1670

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1671
		return false;
1672 1673
	}

1674 1675
	/*
	 * We don't have to worry about the ordering of src and dst
1676
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1677
	 */
1678 1679
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1680 1681 1682
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1683
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1684
		if (pmd_present(pmd))
1685
			force_flush = true;
1686
		VM_BUG_ON(!pmd_none(*new_pmd));
1687

1688
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1689
			pgtable_t pgtable;
1690 1691 1692
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1693 1694
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1695 1696
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1697 1698
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1699
		spin_unlock(old_ptl);
1700
		return true;
1701
	}
1702
	return false;
1703 1704
}

1705 1706 1707
/*
 * Returns
 *  - 0 if PMD could not be locked
I
Ingo Molnar 已提交
1708
 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1709
 *      or if prot_numa but THP migration is not supported
I
Ingo Molnar 已提交
1710
 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1711
 */
1712
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1713
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1714 1715
{
	struct mm_struct *mm = vma->vm_mm;
1716
	spinlock_t *ptl;
1717 1718 1719
	pmd_t entry;
	bool preserve_write;
	int ret;
1720
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1721 1722
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1723

1724 1725 1726
	if (prot_numa && !thp_migration_supported())
		return 1;

1727
	ptl = __pmd_trans_huge_lock(pmd, vma);
1728 1729
	if (!ptl)
		return 0;
1730

1731 1732
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1733

1734 1735 1736
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1737
		struct page *page = pfn_swap_entry_to_page(entry);
1738 1739

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1740
		if (is_writable_migration_entry(entry)) {
1741 1742 1743 1744 1745
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
1746 1747 1748 1749
			if (PageAnon(page))
				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
			else
				entry = make_readable_migration_entry(swp_offset(entry));
1750
			newpmd = swp_entry_to_pmd(entry);
1751 1752
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1753 1754
			if (pmd_swp_uffd_wp(*pmd))
				newpmd = pmd_swp_mkuffd_wp(newpmd);
1755 1756 1757 1758 1759 1760
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1761 1762 1763 1764 1765 1766 1767 1768 1769
	if (prot_numa) {
		struct page *page;
		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (is_huge_zero_pmd(*pmd))
			goto unlock;
1770

1771 1772
		if (pmd_protnone(*pmd))
			goto unlock;
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782
		page = pmd_page(*pmd);
		/*
		 * Skip scanning top tier node if normal numa
		 * balancing is disabled
		 */
		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
		    node_is_toptier(page_to_nid(page)))
			goto unlock;
	}
1783
	/*
1784
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1785
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1786
	 * which is also under mmap_read_lock(mm):
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1804
	entry = pmdp_invalidate(vma, addr, pmd);
1805

1806 1807 1808
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1820 1821 1822 1823 1824
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1825 1826 1827 1828
	return ret;
}

/*
1829
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1830
 *
1831 1832
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1833
 */
1834
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1835
{
1836 1837
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1838 1839
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1840 1841 1842
		return ptl;
	spin_unlock(ptl);
	return NULL;
1843 1844
}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1877
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1878
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1879
	if (vma_is_special_huge(vma)) {
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1897
	count_vm_event(THP_SPLIT_PUD);
1898 1899 1900 1901 1902 1903 1904 1905

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1906
	struct mmu_notifier_range range;
1907

1908
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1909
				address & HPAGE_PUD_MASK,
1910 1911 1912
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1913 1914
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1915
	__split_huge_pud_locked(vma, pud, range.start);
1916 1917 1918

out:
	spin_unlock(ptl);
1919 1920 1921 1922
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1923
	mmu_notifier_invalidate_range_only_end(&range);
1924 1925 1926
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1927 1928 1929 1930 1931 1932 1933 1934
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1935 1936 1937 1938 1939 1940
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1941
	 * See Documentation/vm/mmu_notifier.rst
1942 1943
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1962
		unsigned long haddr, bool freeze)
1963 1964 1965 1966
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
1967
	pmd_t old_pmd, _pmd;
1968
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1969
	bool anon_exclusive = false;
1970
	unsigned long addr;
1971 1972 1973 1974 1975
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1976 1977
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
1978 1979 1980

	count_vm_event(THP_SPLIT_PMD);

1981
	if (!vma_is_anonymous(vma)) {
1982
		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1983 1984 1985 1986 1987 1988
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
1989
		if (vma_is_special_huge(vma))
1990
			return;
1991 1992 1993 1994
		if (unlikely(is_pmd_migration_entry(old_pmd))) {
			swp_entry_t entry;

			entry = pmd_to_swp_entry(old_pmd);
1995
			page = pfn_swap_entry_to_page(entry);
1996 1997 1998 1999 2000 2001
		} else {
			page = pmd_page(old_pmd);
			if (!PageDirty(page) && pmd_dirty(old_pmd))
				set_page_dirty(page);
			if (!PageReferenced(page) && pmd_young(old_pmd))
				SetPageReferenced(page);
2002
			page_remove_rmap(page, vma, true);
2003 2004
			put_page(page);
		}
2005
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2006
		return;
2007 2008
	}

2009
	if (is_huge_zero_pmd(*pmd)) {
2010 2011 2012 2013 2014 2015 2016 2017 2018
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2019 2020 2021
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2022 2023 2024 2025 2026 2027 2028 2029
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2030 2031
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2045
	if (unlikely(pmd_migration)) {
2046 2047
		swp_entry_t entry;

2048
		entry = pmd_to_swp_entry(old_pmd);
2049
		page = pfn_swap_entry_to_page(entry);
2050
		write = is_writable_migration_entry(entry);
2051 2052
		if (PageAnon(page))
			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2053 2054
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2055
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2056
	} else {
2057
		page = pmd_page(old_pmd);
2058 2059 2060 2061 2062
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2063
		uffd_wp = pmd_uffd_wp(old_pmd);
2064

2065 2066
		VM_BUG_ON_PAGE(!page_count(page), page);
		page_ref_add(page, HPAGE_PMD_NR - 1);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

		/*
		 * Without "freeze", we'll simply split the PMD, propagating the
		 * PageAnonExclusive() flag for each PTE by setting it for
		 * each subpage -- no need to (temporarily) clear.
		 *
		 * With "freeze" we want to replace mapped pages by
		 * migration entries right away. This is only possible if we
		 * managed to clear PageAnonExclusive() -- see
		 * set_pmd_migration_entry().
		 *
		 * In case we cannot clear PageAnonExclusive(), split the PMD
		 * only and let try_to_migrate_one() fail later.
		 */
		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
			freeze = false;
2084
	}
2085

2086 2087 2088 2089
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2090 2091 2092
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2093
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2094 2095 2096 2097 2098 2099
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2100
		if (freeze || pmd_migration) {
2101
			swp_entry_t swp_entry;
2102 2103 2104
			if (write)
				swp_entry = make_writable_migration_entry(
							page_to_pfn(page + i));
2105 2106 2107
			else if (anon_exclusive)
				swp_entry = make_readable_exclusive_migration_entry(
							page_to_pfn(page + i));
2108 2109 2110
			else
				swp_entry = make_readable_migration_entry(
							page_to_pfn(page + i));
2111
			entry = swp_entry_to_pte(swp_entry);
2112 2113
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2114 2115
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2116
		} else {
2117
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2118
			entry = maybe_mkwrite(entry, vma);
2119 2120
			if (anon_exclusive)
				SetPageAnonExclusive(page + i);
2121 2122 2123 2124
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2125 2126
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2127 2128
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2129
		}
2130
		pte = pte_offset_map(&_pmd, addr);
2131
		BUG_ON(!pte_none(*pte));
2132
		set_pte_at(mm, addr, pte, entry);
2133
		if (!pmd_migration)
2134
			atomic_inc(&page[i]._mapcount);
2135
		pte_unmap(pte);
2136 2137
	}

2138 2139 2140 2141 2142 2143 2144
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2145
			for (i = 0; i < HPAGE_PMD_NR; i++)
2146 2147 2148 2149 2150 2151
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
2152 2153
			__mod_lruvec_page_state(page, NR_ANON_THPS,
						-HPAGE_PMD_NR);
2154 2155 2156 2157 2158
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2159
		}
2160
		unlock_page_memcg(page);
2161 2162 2163

		/* Above is effectively page_remove_rmap(page, vma, true) */
		munlock_vma_page(page, vma, true);
2164 2165 2166 2167
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2168 2169

	if (freeze) {
2170
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2171
			page_remove_rmap(page + i, vma, false);
2172 2173 2174
			put_page(page + i);
		}
	}
2175 2176 2177
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2178
		unsigned long address, bool freeze, struct folio *folio)
2179 2180
{
	spinlock_t *ptl;
2181
	struct mmu_notifier_range range;
2182

2183
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2184
				address & HPAGE_PMD_MASK,
2185 2186 2187
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2188 2189

	/*
2190 2191
	 * If caller asks to setup a migration entry, we need a folio to check
	 * pmd against. Otherwise we can end up replacing wrong folio.
2192
	 */
2193
	VM_BUG_ON(freeze && !folio);
2194
	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2195

2196
	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2197 2198 2199
	    is_pmd_migration_entry(*pmd)) {
		if (folio && folio != page_folio(pmd_page(*pmd)))
			goto out;
2200
		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2201
	}
2202

2203
out:
2204
	spin_unlock(ptl);
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2218
	mmu_notifier_invalidate_range_only_end(&range);
2219 2220
}

2221
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2222
		bool freeze, struct folio *folio)
2223
{
2224
	pgd_t *pgd;
2225
	p4d_t *p4d;
2226
	pud_t *pud;
2227 2228
	pmd_t *pmd;

2229
	pgd = pgd_offset(vma->vm_mm, address);
2230 2231 2232
	if (!pgd_present(*pgd))
		return;

2233 2234 2235 2236 2237
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2238 2239 2240 2241
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2242

2243
	__split_huge_pmd(vma, pmd, address, freeze, folio);
2244 2245
}

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
{
	/*
	 * If the new address isn't hpage aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
			 ALIGN(address, HPAGE_PMD_SIZE)))
		split_huge_pmd_address(vma, address, false, NULL);
}

2258
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2259 2260 2261 2262
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
2263 2264
	/* Check if we need to split start first. */
	split_huge_pmd_if_needed(vma, start);
2265

2266 2267
	/* Check if we need to split end next. */
	split_huge_pmd_if_needed(vma, end);
2268 2269

	/*
2270 2271
	 * If we're also updating the vma->vm_next->vm_start,
	 * check if we need to split it.
2272 2273 2274 2275
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2276
		nstart += adjust_next;
2277
		split_huge_pmd_if_needed(next, nstart);
2278 2279
	}
}
2280

2281
static void unmap_page(struct page *page)
2282
{
2283
	struct folio *folio = page_folio(page);
2284 2285
	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
		TTU_SYNC;
2286 2287 2288

	VM_BUG_ON_PAGE(!PageHead(page), page);

2289 2290 2291 2292 2293
	/*
	 * Anon pages need migration entries to preserve them, but file
	 * pages can simply be left unmapped, then faulted back on demand.
	 * If that is ever changed (perhaps for mlock), update remap_page().
	 */
2294 2295
	if (folio_test_anon(folio))
		try_to_migrate(folio, ttu_flags);
2296
	else
2297
		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2298 2299
}

2300
static void remap_page(struct folio *folio, unsigned long nr)
2301
{
2302
	int i = 0;
2303

2304
	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2305
	if (!folio_test_anon(folio))
2306
		return;
2307 2308 2309 2310 2311 2312
	for (;;) {
		remove_migration_ptes(folio, folio, true);
		i += folio_nr_pages(folio);
		if (i >= nr)
			break;
		folio = folio_next(folio);
2313
	}
2314 2315
}

2316
static void lru_add_page_tail(struct page *head, struct page *tail,
2317 2318
		struct lruvec *lruvec, struct list_head *list)
{
2319 2320 2321
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2322
	lockdep_assert_held(&lruvec->lru_lock);
2323

A
Alex Shi 已提交
2324
	if (list) {
2325
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2326
		VM_WARN_ON(PageLRU(head));
2327 2328
		get_page(tail);
		list_add_tail(&tail->lru, list);
2329
	} else {
A
Alex Shi 已提交
2330 2331
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
2332 2333 2334 2335
		if (PageUnevictable(tail))
			tail->mlock_count = 0;
		else
			list_add_tail(&tail->lru, &head->lru);
A
Alex Shi 已提交
2336
		SetPageLRU(tail);
2337 2338 2339
	}
}

2340
static void __split_huge_page_tail(struct page *head, int tail,
2341 2342 2343 2344
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2345
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2346 2347

	/*
2348 2349 2350
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2351
	 * for example lock_page() which set PG_waiters.
2352 2353 2354 2355 2356 2357 2358
	 *
	 * Note that for mapped sub-pages of an anonymous THP,
	 * PG_anon_exclusive has been cleared in unmap_page() and is stored in
	 * the migration entry instead from where remap_page() will restore it.
	 * We can still have PG_anon_exclusive set on effectively unmapped and
	 * unreferenced sub-pages of an anonymous THP: we can simply drop
	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2359 2360 2361 2362 2363
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2364
			 (1L << PG_swapcache) |
2365 2366 2367
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2368
			 (1L << PG_workingset) |
2369
			 (1L << PG_locked) |
2370
			 (1L << PG_unevictable) |
2371 2372 2373
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2374
			 (1L << PG_dirty)));
2375

2376 2377 2378 2379 2380 2381
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2382
	/* Page flags must be visible before we make the page non-compound. */
2383 2384
	smp_wmb();

2385 2386 2387 2388 2389 2390
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2391 2392
	clear_compound_head(page_tail);

2393 2394 2395 2396
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2397 2398 2399 2400 2401 2402
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2403 2404 2405 2406 2407 2408

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2409 2410 2411
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2412
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2413
		pgoff_t end)
2414
{
2415 2416
	struct folio *folio = page_folio(page);
	struct page *head = &folio->page;
2417
	struct lruvec *lruvec;
2418 2419
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2420
	unsigned int nr = thp_nr_pages(head);
2421
	int i;
2422 2423

	/* complete memcg works before add pages to LRU */
2424
	split_page_memcg(head, nr);
2425

2426 2427 2428 2429 2430 2431 2432 2433
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

I
Ingo Molnar 已提交
2434
	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2435
	lruvec = folio_lruvec_lock(folio);
A
Alex Shi 已提交
2436

2437 2438
	ClearPageHasHWPoisoned(head);

2439
	for (i = nr - 1; i >= 1; i--) {
2440
		__split_huge_page_tail(head, i, lruvec, list);
2441
		/* Some pages can be beyond EOF: drop them from page cache */
2442
		if (head[i].index >= end) {
2443
			ClearPageDirty(head + i);
2444
			__delete_from_page_cache(head + i, NULL);
2445
			if (shmem_mapping(head->mapping))
2446
				shmem_uncharge(head->mapping->host, 1);
2447
			put_page(head + i);
2448 2449 2450 2451 2452 2453
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2454 2455
		}
	}
2456 2457

	ClearPageCompound(head);
2458
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2459
	/* Caller disabled irqs, so they are still disabled here */
2460

2461
	split_page_owner(head, nr);
2462

2463 2464
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2465
		/* Additional pin to swap cache */
2466
		if (PageSwapCache(head)) {
2467
			page_ref_add(head, 2);
2468 2469
			xa_unlock(&swap_cache->i_pages);
		} else {
2470
			page_ref_inc(head);
2471
		}
2472
	} else {
M
Matthew Wilcox 已提交
2473
		/* Additional pin to page cache */
2474
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2475
		xa_unlock(&head->mapping->i_pages);
2476
	}
A
Alex Shi 已提交
2477
	local_irq_enable();
2478

2479
	remap_page(folio, nr);
2480

H
Huang Ying 已提交
2481 2482 2483 2484 2485 2486
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2487
	for (i = 0; i < nr; i++) {
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2504
/* Racy check whether the huge page can be split */
2505
bool can_split_folio(struct folio *folio, int *pextra_pins)
2506 2507 2508
{
	int extra_pins;

M
Matthew Wilcox 已提交
2509
	/* Additional pins from page cache */
2510 2511 2512
	if (folio_test_anon(folio))
		extra_pins = folio_test_swapcache(folio) ?
				folio_nr_pages(folio) : 0;
2513
	else
2514
		extra_pins = folio_nr_pages(folio);
2515 2516
	if (pextra_pins)
		*pextra_pins = extra_pins;
2517
	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
2541 2542
	struct folio *folio = page_folio(page);
	struct page *head = &folio->page;
2543
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2544
	XA_STATE(xas, &head->mapping->i_pages, head->index);
2545 2546
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
2547
	int extra_pins, ret;
2548
	pgoff_t end;
2549

2550
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2551 2552
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2553

2554
	if (PageWriteback(head))
2555 2556
		return -EBUSY;

2557 2558
	if (PageAnon(head)) {
		/*
2559
		 * The caller does not necessarily hold an mmap_lock that would
2560 2561
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
2562
		 * is similar to folio_lock_anon_vma_read except the write lock
2563 2564 2565 2566 2567 2568 2569 2570
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2571
		end = -1;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

2583 2584 2585 2586 2587 2588 2589
		xas_split_alloc(&xas, head, compound_order(head),
				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
		if (xas_error(&xas)) {
			ret = xas_error(&xas);
			goto out;
		}

2590 2591
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2592 2593 2594 2595 2596 2597 2598 2599 2600

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2601 2602
		if (shmem_mapping(mapping))
			end = shmem_fallocend(mapping->host, end);
2603 2604 2605
	}

	/*
2606
	 * Racy check if we can split the page, before unmap_page() will
2607 2608
	 * split PMDs
	 */
2609
	if (!can_split_folio(folio, &extra_pins)) {
2610 2611 2612 2613
		ret = -EBUSY;
		goto out_unlock;
	}

2614
	unmap_page(head);
2615

A
Alex Shi 已提交
2616 2617
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2618 2619
	if (mapping) {
		/*
M
Matthew Wilcox 已提交
2620
		 * Check if the head page is present in page cache.
2621 2622
		 * We assume all tail are present too, if head is there.
		 */
2623 2624
		xas_lock(&xas);
		xas_reset(&xas);
M
Matthew Wilcox 已提交
2625
		if (xas_load(&xas) != head)
2626 2627 2628
			goto fail;
	}

2629
	/* Prevent deferred_split_scan() touching ->_refcount */
2630
	spin_lock(&ds_queue->split_queue_lock);
2631
	if (page_ref_freeze(head, 1 + extra_pins)) {
2632
		if (!list_empty(page_deferred_list(head))) {
2633
			ds_queue->split_queue_len--;
2634 2635
			list_del(page_deferred_list(head));
		}
2636
		spin_unlock(&ds_queue->split_queue_lock);
2637
		if (mapping) {
2638 2639
			int nr = thp_nr_pages(head);

2640
			xas_split(&xas, head, thp_order(head));
2641
			if (PageSwapBacked(head)) {
2642 2643
				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
							-nr);
2644
			} else {
2645 2646
				__mod_lruvec_page_state(head, NR_FILE_THPS,
							-nr);
2647 2648
				filemap_nr_thps_dec(mapping);
			}
2649 2650
		}

A
Alex Shi 已提交
2651
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2652
		ret = 0;
2653
	} else {
2654
		spin_unlock(&ds_queue->split_queue_lock);
2655 2656
fail:
		if (mapping)
2657
			xas_unlock(&xas);
A
Alex Shi 已提交
2658
		local_irq_enable();
2659
		remap_page(folio, folio_nr_pages(folio));
2660 2661 2662 2663
		ret = -EBUSY;
	}

out_unlock:
2664 2665 2666 2667 2668 2669
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2670
out:
2671 2672
	/* Free any memory we didn't use */
	xas_nomem(&xas, 0);
2673 2674 2675
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2676 2677 2678

void free_transhuge_page(struct page *page)
{
2679
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2680 2681
	unsigned long flags;

2682
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2683
	if (!list_empty(page_deferred_list(page))) {
2684
		ds_queue->split_queue_len--;
2685 2686
		list_del(page_deferred_list(page));
	}
2687
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2688 2689 2690 2691 2692
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2693 2694
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2695
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2696
#endif
2697 2698 2699 2700
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2714
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2715
	if (list_empty(page_deferred_list(page))) {
2716
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2717 2718
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2719 2720
#ifdef CONFIG_MEMCG
		if (memcg)
2721 2722
			set_shrinker_bit(memcg, page_to_nid(page),
					 deferred_split_shrinker.id);
2723
#endif
2724
	}
2725
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2726 2727 2728 2729 2730
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2731
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2732
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2733 2734 2735 2736 2737

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2738
	return READ_ONCE(ds_queue->split_queue_len);
2739 2740 2741 2742 2743
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2744
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2745
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2746 2747 2748 2749 2750
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2751 2752 2753 2754 2755
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2756
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2757
	/* Take pin on all head pages to avoid freeing them under us */
2758
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2759
		page = list_entry((void *)pos, struct page, deferred_list);
2760
		page = compound_head(page);
2761 2762 2763 2764
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2765
			list_del_init(page_deferred_list(page));
2766
			ds_queue->split_queue_len--;
2767
		}
2768 2769
		if (!--sc->nr_to_scan)
			break;
2770
	}
2771
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2772 2773

	list_for_each_safe(pos, next, &list) {
2774
		page = list_entry((void *)pos, struct page, deferred_list);
2775 2776
		if (!trylock_page(page))
			goto next;
2777 2778 2779 2780
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2781
next:
2782 2783 2784
		put_page(page);
	}

2785 2786 2787
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2788

2789 2790 2791 2792
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2793
	if (!split && list_empty(&ds_queue->split_queue))
2794 2795
		return SHRINK_STOP;
	return split;
2796 2797 2798 2799 2800 2801
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2802 2803
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2804
};
2805 2806

#ifdef CONFIG_DEBUG_FS
2807
static void split_huge_pages_all(void)
2808 2809 2810 2811 2812 2813
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

2814
	pr_debug("Split all THPs\n");
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2828
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2829 2830 2831 2832 2833 2834 2835 2836 2837
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
2838
			cond_resched();
2839 2840 2841
		}
	}

2842 2843
	pr_debug("%lu of %lu THP split\n", split, total);
}
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
{
	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
		    is_vm_hugetlb_page(vma);
}

static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
				unsigned long vaddr_end)
{
	int ret = 0;
	struct task_struct *task;
	struct mm_struct *mm;
	unsigned long total = 0, split = 0;
	unsigned long addr;

	vaddr_start &= PAGE_MASK;
	vaddr_end &= PAGE_MASK;

	/* Find the task_struct from pid */
	rcu_read_lock();
	task = find_task_by_vpid(pid);
	if (!task) {
		rcu_read_unlock();
		ret = -ESRCH;
		goto out;
	}
	get_task_struct(task);
	rcu_read_unlock();

	/* Find the mm_struct */
	mm = get_task_mm(task);
	put_task_struct(task);

	if (!mm) {
		ret = -EINVAL;
		goto out;
	}

	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
		 pid, vaddr_start, vaddr_end);

	mmap_read_lock(mm);
	/*
	 * always increase addr by PAGE_SIZE, since we could have a PTE page
	 * table filled with PTE-mapped THPs, each of which is distinct.
	 */
	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
		struct vm_area_struct *vma = find_vma(mm, addr);
		struct page *page;

		if (!vma || addr < vma->vm_start)
			break;

		/* skip special VMA and hugetlb VMA */
		if (vma_not_suitable_for_thp_split(vma)) {
			addr = vma->vm_end;
			continue;
		}

		/* FOLL_DUMP to ignore special (like zero) pages */
2905
		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915

		if (IS_ERR(page))
			continue;
		if (!page)
			continue;

		if (!is_transparent_hugepage(page))
			goto next;

		total++;
2916
		if (!can_split_folio(page_folio(page), NULL))
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
			goto next;

		if (!trylock_page(page))
			goto next;

		if (!split_huge_page(page))
			split++;

		unlock_page(page);
next:
		put_page(page);
		cond_resched();
	}
	mmap_read_unlock(mm);
	mmput(mm);

	pr_debug("%lu of %lu THP split\n", split, total);

out:
	return ret;
2937
}
2938

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
				pgoff_t off_end)
{
	struct filename *file;
	struct file *candidate;
	struct address_space *mapping;
	int ret = -EINVAL;
	pgoff_t index;
	int nr_pages = 1;
	unsigned long total = 0, split = 0;

	file = getname_kernel(file_path);
	if (IS_ERR(file))
		return ret;

	candidate = file_open_name(file, O_RDONLY, 0);
	if (IS_ERR(candidate))
		goto out;

	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
		 file_path, off_start, off_end);

	mapping = candidate->f_mapping;

	for (index = off_start; index < off_end; index += nr_pages) {
		struct page *fpage = pagecache_get_page(mapping, index,
						FGP_ENTRY | FGP_HEAD, 0);

		nr_pages = 1;
		if (xa_is_value(fpage) || !fpage)
			continue;

		if (!is_transparent_hugepage(fpage))
			goto next;

		total++;
		nr_pages = thp_nr_pages(fpage);

		if (!trylock_page(fpage))
			goto next;

		if (!split_huge_page(fpage))
			split++;

		unlock_page(fpage);
next:
		put_page(fpage);
		cond_resched();
	}

	filp_close(candidate, NULL);
	ret = 0;

	pr_debug("%lu of %lu file-backed THP split\n", split, total);
out:
	putname(file);
	return ret;
}

2998 2999 3000 3001 3002 3003 3004
#define MAX_INPUT_BUF_SZ 255

static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
				size_t count, loff_t *ppops)
{
	static DEFINE_MUTEX(split_debug_mutex);
	ssize_t ret;
3005 3006
	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
	char input_buf[MAX_INPUT_BUF_SZ];
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	int pid;
	unsigned long vaddr_start, vaddr_end;

	ret = mutex_lock_interruptible(&split_debug_mutex);
	if (ret)
		return ret;

	ret = -EFAULT;

	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
		goto out;

	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030

	if (input_buf[0] == '/') {
		char *tok;
		char *buf = input_buf;
		char file_path[MAX_INPUT_BUF_SZ];
		pgoff_t off_start = 0, off_end = 0;
		size_t input_len = strlen(input_buf);

		tok = strsep(&buf, ",");
		if (tok) {
3031
			strcpy(file_path, tok);
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
		} else {
			ret = -EINVAL;
			goto out;
		}

		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
		if (ret != 2) {
			ret = -EINVAL;
			goto out;
		}
		ret = split_huge_pages_in_file(file_path, off_start, off_end);
		if (!ret)
			ret = input_len;

		goto out;
	}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
	if (ret == 1 && pid == 1) {
		split_huge_pages_all();
		ret = strlen(input_buf);
		goto out;
	} else if (ret != 3) {
		ret = -EINVAL;
		goto out;
	}

	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
	if (!ret)
		ret = strlen(input_buf);
out:
	mutex_unlock(&split_debug_mutex);
	return ret;

}

static const struct file_operations split_huge_pages_fops = {
	.owner	 = THIS_MODULE,
	.write	 = split_huge_pages_write,
	.llseek  = no_llseek,
};
3073 3074 3075

static int __init split_huge_pages_debugfs(void)
{
3076 3077
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3078 3079 3080 3081
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3082 3083

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3084
int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3085 3086 3087 3088 3089
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
3090
	bool anon_exclusive;
3091 3092
	pmd_t pmdval;
	swp_entry_t entry;
3093
	pmd_t pmdswp;
3094 3095

	if (!(pvmw->pmd && !pvmw->pte))
3096
		return 0;
3097 3098

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3099
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3100 3101 3102 3103

	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
	if (anon_exclusive && page_try_share_anon_rmap(page)) {
		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3104
		return -EBUSY;
3105 3106
	}

3107 3108
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
3109 3110
	if (pmd_write(pmdval))
		entry = make_writable_migration_entry(page_to_pfn(page));
3111 3112
	else if (anon_exclusive)
		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3113 3114
	else
		entry = make_readable_migration_entry(page_to_pfn(page));
3115 3116 3117 3118
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3119
	page_remove_rmap(page, vma, true);
3120
	put_page(page);
3121
	trace_set_migration_pmd(address, pmd_val(pmdswp));
3122 3123

	return 0;
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3141 3142
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3143
	if (is_writable_migration_entry(entry))
3144
		pmde = maybe_pmd_mkwrite(pmde, vma);
3145 3146
	if (pmd_swp_uffd_wp(*pvmw->pmd))
		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3147

3148 3149 3150 3151 3152 3153 3154 3155
	if (PageAnon(new)) {
		rmap_t rmap_flags = RMAP_COMPOUND;

		if (!is_readable_migration_entry(entry))
			rmap_flags |= RMAP_EXCLUSIVE;

		page_add_anon_rmap(new, vma, mmun_start, rmap_flags);
	} else {
3156
		page_add_file_rmap(new, vma, true);
3157 3158
	}
	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3159
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3160 3161

	/* No need to invalidate - it was non-present before */
3162
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3163
	trace_remove_migration_pmd(address, pmd_val(pmde));
3164 3165
}
#endif