huge_memory.c 86.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167 168 169 170 171
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
172
}
173

174 175 176 177
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
178
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
179

180
	if (sysfs_streq(buf, "always")) {
181 182
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183
	} else if (sysfs_streq(buf, "madvise")) {
184 185
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186
	} else if (sysfs_streq(buf, "never")) {
187 188 189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
191 192

	if (ret > 0) {
193
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
194 195 196 197
		if (err)
			ret = err;
	}
	return ret;
198 199 200 201
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

202
ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 204 205
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
206 207
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
208
}
209

210
ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 212 213 214
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
215 216 217 218 219 220 221 222 223 224
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
225
		set_bit(flag, &transparent_hugepage_flags);
226
	else
227 228 229 230 231 232 233 234
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
235
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 239 240 241 242 243
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244
}
245

246 247 248 249
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
250
	if (sysfs_streq(buf, "always")) {
251 252 253 254
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255
	} else if (sysfs_streq(buf, "defer+madvise")) {
256 257 258 259
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260
	} else if (sysfs_streq(buf, "defer")) {
261 262 263 264
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265
	} else if (sysfs_streq(buf, "madvise")) {
266 267 268 269
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270
	} else if (sysfs_streq(buf, "never")) {
271 272 273 274 275 276 277 278
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
279 280 281 282
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

283 284 285
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
286
	return single_hugepage_flag_show(kobj, attr, buf,
287 288 289 290 291
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
292
	return single_hugepage_flag_store(kobj, attr, buf, count,
293 294 295 296
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 298 299 300 301 302 303 304 305

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

306 307 308 309
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
310
	return single_hugepage_flag_show(kobj, attr, buf,
311 312 313 314 315 316
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
317
	return single_hugepage_flag_store(kobj, attr, buf, count,
318 319 320 321 322 323 324 325 326
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
327
	&use_zero_page_attr.attr,
328
	&hpage_pmd_size_attr.attr,
329
#ifdef CONFIG_SHMEM
330 331
	&shmem_enabled_attr.attr,
#endif
332 333 334 335 336 337
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

338
static const struct attribute_group hugepage_attr_group = {
339
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
340 341
};

S
Shaohua Li 已提交
342
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 344 345
{
	int err;

S
Shaohua Li 已提交
346 347
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
348
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
349
		return -ENOMEM;
A
Andrea Arcangeli 已提交
350 351
	}

S
Shaohua Li 已提交
352
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
353
	if (err) {
354
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
355
		goto delete_obj;
A
Andrea Arcangeli 已提交
356 357
	}

S
Shaohua Li 已提交
358
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
359
	if (err) {
360
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
361
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
362
	}
S
Shaohua Li 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

400 401 402 403 404 405 406 407 408 409
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
410 411
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
412
		goto err_sysfs;
A
Andrea Arcangeli 已提交
413

414
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
415
	if (err)
416
		goto err_slab;
A
Andrea Arcangeli 已提交
417

418 419 420
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
421 422 423
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
424

425 426 427 428 429
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
430
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431
		transparent_hugepage_flags = 0;
432 433
		return 0;
	}
434

435
	err = start_stop_khugepaged();
436 437
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
438

S
Shaohua Li 已提交
439
	return 0;
440
err_khugepaged:
441 442
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
443 444
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
445
	khugepaged_destroy();
446
err_slab:
S
Shaohua Li 已提交
447
	hugepage_exit_sysfs(hugepage_kobj);
448
err_sysfs:
A
Andrea Arcangeli 已提交
449
	return err;
450
}
451
subsys_initcall(hugepage_init);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
479
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
480 481 482 483
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

484
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
485
{
486
	if (likely(vma->vm_flags & VM_WRITE))
487 488 489 490
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

491 492
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
493
{
494 495 496 497 498 499 500
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
501
}
502 503 504 505 506 507 508 509
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
510 511 512 513 514 515 516 517 518 519 520 521

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

522 523 524 525 526 527 528 529 530 531 532
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

533 534
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
535 536 537 538
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
539
	unsigned long len_pad, ret;
540 541 542 543 544 545 546 547

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

548
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549
					      off >> PAGE_SHIFT, flags);
550 551 552 553 554 555

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
556 557
		return 0;

558 559 560 561 562 563 564 565 566
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
567 568 569 570 571
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
572
	unsigned long ret;
573 574 575 576 577
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

578 579 580 581
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
582 583 584 585
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

586 587
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
588
{
J
Jan Kara 已提交
589
	struct vm_area_struct *vma = vmf->vma;
590
	struct mem_cgroup *memcg;
591
	pgtable_t pgtable;
J
Jan Kara 已提交
592
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
593
	vm_fault_t ret = 0;
594

595
	VM_BUG_ON_PAGE(!PageCompound(page), page);
596

597
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
598 599
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
600
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
601 602
		return VM_FAULT_FALLBACK;
	}
603

604
	pgtable = pte_alloc_one(vma->vm_mm);
605
	if (unlikely(!pgtable)) {
606 607
		ret = VM_FAULT_OOM;
		goto release;
608
	}
609

610
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
611 612 613 614 615
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
616 617
	__SetPageUptodate(page);

J
Jan Kara 已提交
618 619
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
620
		goto unlock_release;
621 622
	} else {
		pmd_t entry;
623

624 625 626 627
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

628 629
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
630
			vm_fault_t ret2;
631

J
Jan Kara 已提交
632
			spin_unlock(vmf->ptl);
633
			mem_cgroup_cancel_charge(page, memcg, true);
634
			put_page(page);
K
Kirill A. Shutemov 已提交
635
			pte_free(vma->vm_mm, pgtable);
636 637 638
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
639 640
		}

641
		entry = mk_huge_pmd(page, vma->vm_page_prot);
642
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
643
		page_add_new_anon_rmap(page, vma, haddr, true);
644
		mem_cgroup_commit_charge(page, memcg, false, true);
645
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
646 647
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
648
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
649
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
650
		spin_unlock(vmf->ptl);
651
		count_vm_event(THP_FAULT_ALLOC);
652
		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
653 654
	}

655
	return 0;
656 657 658 659 660 661 662 663 664
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

665 666
}

667
/*
668 669 670 671 672 673 674
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
675
 */
676
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
677
{
678
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
679

680
	/* Always do synchronous compaction */
681 682
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
683 684

	/* Kick kcompactd and fail quickly */
685
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
686
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
687 688

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
689
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
690 691 692
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
693 694

	/* Only do synchronous compaction if madvised */
695
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
696 697
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
698

699
	return GFP_TRANSHUGE_LIGHT;
700 701
}

702
/* Caller must hold page table lock. */
703
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
704
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
705
		struct page *zero_page)
706 707
{
	pmd_t entry;
A
Andrew Morton 已提交
708 709
	if (!pmd_none(*pmd))
		return false;
710
	entry = mk_pmd(zero_page, vma->vm_page_prot);
711
	entry = pmd_mkhuge(entry);
712 713
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
714
	set_pmd_at(mm, haddr, pmd, entry);
715
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
716
	return true;
717 718
}

719
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
720
{
J
Jan Kara 已提交
721
	struct vm_area_struct *vma = vmf->vma;
722
	gfp_t gfp;
723
	struct page *page;
J
Jan Kara 已提交
724
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
725

726
	if (!transhuge_vma_suitable(vma, haddr))
727
		return VM_FAULT_FALLBACK;
728 729
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
730
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
731
		return VM_FAULT_OOM;
J
Jan Kara 已提交
732
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
733
			!mm_forbids_zeropage(vma->vm_mm) &&
734 735 736 737
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
738
		vm_fault_t ret;
739
		pgtable = pte_alloc_one(vma->vm_mm);
740
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
741
			return VM_FAULT_OOM;
742
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
743
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
744
			pte_free(vma->vm_mm, pgtable);
745
			count_vm_event(THP_FAULT_FALLBACK);
746
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
747
		}
J
Jan Kara 已提交
748
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
749 750
		ret = 0;
		set = false;
J
Jan Kara 已提交
751
		if (pmd_none(*vmf->pmd)) {
752 753 754 755
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
756 757
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
758 759
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
760
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
761 762
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
763 764 765
				set = true;
			}
		} else
J
Jan Kara 已提交
766
			spin_unlock(vmf->ptl);
767
		if (!set)
K
Kirill A. Shutemov 已提交
768
			pte_free(vma->vm_mm, pgtable);
769
		return ret;
770
	}
771 772
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
773 774
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
775
		return VM_FAULT_FALLBACK;
776
	}
777
	prep_transhuge_page(page);
J
Jan Kara 已提交
778
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
779 780
}

781
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
782 783
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
784 785 786 787 788 789
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

805 806 807
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
808
	if (write) {
809 810
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
811
	}
812 813 814

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
815
		mm_inc_nr_ptes(mm);
816
		pgtable = NULL;
817 818
	}

819 820
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
821 822

out_unlock:
M
Matthew Wilcox 已提交
823
	spin_unlock(ptl);
824 825
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
826 827
}

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
843
{
844 845
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
846
	pgtable_t pgtable = NULL;
847

M
Matthew Wilcox 已提交
848 849 850 851 852
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
853 854
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
855 856 857 858 859 860
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
861

862
	if (arch_needs_pgtable_deposit()) {
863
		pgtable = pte_alloc_one(vma->vm_mm);
864 865 866 867
		if (!pgtable)
			return VM_FAULT_OOM;
	}

868 869
	track_pfn_insert(vma, &pgprot, pfn);

870
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
871
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
872
}
873
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
874

875
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
876
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
877
{
878
	if (likely(vma->vm_flags & VM_WRITE))
879 880 881 882 883 884 885 886 887 888 889 890
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
891 892 893 894 895 896 897 898 899 900 901 902 903 904
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

905 906 907 908
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
909 910
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
911 912 913
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
914 915

out_unlock:
916 917 918
	spin_unlock(ptl);
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
934
{
935 936 937
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

938 939 940 941 942
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
943 944
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
945 946 947 948 949 950 951 952 953
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

954
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
955 956
	return VM_FAULT_NOPAGE;
}
957
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
958 959
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

960
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
961
		pmd_t *pmd, int flags)
962 963 964
{
	pmd_t _pmd;

965 966 967
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
968
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
969
				pmd, _pmd, flags & FOLL_WRITE))
970 971 972 973
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
974
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
975 976 977 978 979 980 981
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

982 983 984 985 986 987
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
988 989 990 991 992
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

993
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
994 995 996 997 998 999 1000 1001
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1002
		touch_pmd(vma, addr, pmd, flags);
1003 1004 1005 1006 1007

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1008
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1009 1010 1011
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1012 1013
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1014 1015
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1016 1017
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1018 1019 1020 1021

	return page;
}

1022 1023 1024 1025
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1026
	spinlock_t *dst_ptl, *src_ptl;
1027 1028
	struct page *src_page;
	pmd_t pmd;
1029
	pgtable_t pgtable = NULL;
1030
	int ret = -ENOMEM;
1031

1032 1033 1034 1035
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1036
	pgtable = pte_alloc_one(dst_mm);
1037 1038
	if (unlikely(!pgtable))
		goto out;
1039

1040 1041 1042
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1043 1044 1045

	ret = -EAGAIN;
	pmd = *src_pmd;
1046 1047 1048 1049 1050 1051 1052 1053 1054

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1055 1056
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1057 1058
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1059
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1060
		mm_inc_nr_ptes(dst_mm);
1061
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1062 1063 1064 1065 1066 1067
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1068
	if (unlikely(!pmd_trans_huge(pmd))) {
1069 1070 1071
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1072
	/*
1073
	 * When page table lock is held, the huge zero pmd should not be
1074 1075 1076 1077
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1078
		struct page *zero_page;
1079 1080 1081 1082 1083
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1084
		zero_page = mm_get_huge_zero_page(dst_mm);
1085
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1086
				zero_page);
1087 1088 1089
		ret = 0;
		goto out_unlock;
	}
1090

1091 1092 1093 1094 1095
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1096
	mm_inc_nr_ptes(dst_mm);
1097
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1098 1099 1100 1101 1102 1103 1104

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1105 1106
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1107 1108 1109 1110
out:
	return ret;
}

1111 1112
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1113
		pud_t *pud, int flags)
1114 1115 1116
{
	pud_t _pud;

1117 1118 1119
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1120
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1121
				pud, _pud, flags & FOLL_WRITE))
1122 1123 1124 1125
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1126
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1127 1128 1129 1130 1131 1132 1133
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1134
	if (flags & FOLL_WRITE && !pud_write(*pud))
1135 1136
		return NULL;

J
John Hubbard 已提交
1137 1138 1139 1140 1141
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1142 1143 1144 1145 1146 1147
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1148
		touch_pud(vma, addr, pud, flags);
1149 1150 1151 1152

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1153 1154
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1155
	 */
J
John Hubbard 已提交
1156
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1157 1158 1159
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1160 1161
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1162 1163
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1164 1165
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1229
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1230 1231 1232
{
	pmd_t entry;
	unsigned long haddr;
1233
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1234

J
Jan Kara 已提交
1235 1236
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1237 1238 1239
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1240 1241
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1242
	haddr = vmf->address & HPAGE_PMD_MASK;
1243
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1244
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1245 1246

unlock:
J
Jan Kara 已提交
1247
	spin_unlock(vmf->ptl);
1248 1249
}

1250 1251
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
1252
{
J
Jan Kara 已提交
1253 1254
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1255
	struct mem_cgroup *memcg;
1256 1257
	pgtable_t pgtable;
	pmd_t _pmd;
1258 1259
	int i;
	vm_fault_t ret = 0;
1260
	struct page **pages;
1261
	struct mmu_notifier_range range;
1262

1263 1264
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1265 1266 1267 1268 1269 1270
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1271
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1272
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1273
		if (unlikely(!pages[i] ||
1274
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
K
Kirill A. Shutemov 已提交
1275
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1276
			if (pages[i])
1277
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1278
			while (--i >= 0) {
1279 1280
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1281 1282
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1283 1284
				put_page(pages[i]);
			}
1285 1286 1287 1288
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1289
		set_page_private(pages[i], (unsigned long)memcg);
1290 1291 1292 1293
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1294
				   haddr + PAGE_SIZE * i, vma);
1295 1296 1297 1298
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1299 1300
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1301
	mmu_notifier_invalidate_range_start(&range);
1302

J
Jan Kara 已提交
1303 1304
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1305
		goto out_free_pages;
1306
	VM_BUG_ON_PAGE(!PageHead(page), page);
1307

1308 1309 1310 1311 1312 1313
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1314
	 * See Documentation/vm/mmu_notifier.rst
1315
	 */
J
Jan Kara 已提交
1316
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1317

J
Jan Kara 已提交
1318
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1319
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1320 1321

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1322
		pte_t entry;
1323 1324
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1325 1326
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1327
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1328
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1329
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1330 1331 1332 1333
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1334 1335 1336 1337
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1338
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1339
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1340
	spin_unlock(vmf->ptl);
1341

1342 1343 1344 1345
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1346
	mmu_notifier_invalidate_range_only_end(&range);
1347

1348 1349 1350 1351 1352 1353 1354
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1355
	spin_unlock(vmf->ptl);
1356
	mmu_notifier_invalidate_range_end(&range);
A
Andrea Arcangeli 已提交
1357
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1358 1359
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1360
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1361
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1362
	}
1363 1364 1365 1366
	kfree(pages);
	goto out;
}

1367
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1368
{
J
Jan Kara 已提交
1369
	struct vm_area_struct *vma = vmf->vma;
1370
	struct page *page = NULL, *new_page;
1371
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1372
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1373
	struct mmu_notifier_range range;
1374
	gfp_t huge_gfp;			/* for allocation and charge */
1375
	vm_fault_t ret = 0;
1376

J
Jan Kara 已提交
1377
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1378
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1379 1380
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1381 1382
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1383 1384 1385
		goto out_unlock;

	page = pmd_page(orig_pmd);
1386
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1387 1388
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1389
	 * part.
1390
	 */
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1404 1405
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1406
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1407 1408
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1409
		ret |= VM_FAULT_WRITE;
1410
		unlock_page(page);
1411 1412
		goto out_unlock;
	}
1413
	unlock_page(page);
1414
	get_page(page);
J
Jan Kara 已提交
1415
	spin_unlock(vmf->ptl);
1416
alloc:
1417
	if (__transparent_hugepage_enabled(vma) &&
1418
	    !transparent_hugepage_debug_cow()) {
1419 1420
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1421
	} else
1422 1423
		new_page = NULL;

1424 1425 1426
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1427
		if (!page) {
J
Jan Kara 已提交
1428
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1429
			ret |= VM_FAULT_FALLBACK;
1430
		} else {
J
Jan Kara 已提交
1431
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1432
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1433
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1434 1435
				ret |= VM_FAULT_FALLBACK;
			}
1436
			put_page(page);
1437
		}
1438
		count_vm_event(THP_FAULT_FALLBACK);
1439 1440 1441
		goto out;
	}

1442
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1443
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1444
		put_page(new_page);
J
Jan Kara 已提交
1445
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1446
		if (page)
1447
			put_page(page);
1448
		ret |= VM_FAULT_FALLBACK;
1449
		count_vm_event(THP_FAULT_FALLBACK);
1450
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
A
Andrea Arcangeli 已提交
1451 1452 1453
		goto out;
	}

1454
	count_vm_event(THP_FAULT_ALLOC);
1455
	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1456

1457
	if (!page)
1458
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1459
	else
1460 1461
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
1462 1463
	__SetPageUptodate(new_page);

1464 1465
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1466
	mmu_notifier_invalidate_range_start(&range);
1467

J
Jan Kara 已提交
1468
	spin_lock(vmf->ptl);
1469
	if (page)
1470
		put_page(page);
J
Jan Kara 已提交
1471 1472
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1473
		mem_cgroup_cancel_charge(new_page, memcg, true);
1474
		put_page(new_page);
1475
		goto out_mn;
A
Andrea Arcangeli 已提交
1476
	} else {
1477
		pmd_t entry;
1478
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1479
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1480
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1481
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1482
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1483
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1484 1485
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1486
		if (!page) {
K
Kirill A. Shutemov 已提交
1487
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1488
		} else {
1489
			VM_BUG_ON_PAGE(!PageHead(page), page);
1490
			page_remove_rmap(page, true);
1491 1492
			put_page(page);
		}
1493 1494
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1495
	spin_unlock(vmf->ptl);
1496
out_mn:
1497 1498 1499 1500
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1501
	mmu_notifier_invalidate_range_only_end(&range);
1502 1503
out:
	return ret;
1504
out_unlock:
J
Jan Kara 已提交
1505
	spin_unlock(vmf->ptl);
1506
	return ret;
1507 1508
}

1509 1510 1511 1512 1513 1514
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1515
	return pmd_write(pmd) ||
1516 1517 1518
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1519
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1520 1521 1522 1523
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1524
	struct mm_struct *mm = vma->vm_mm;
1525 1526
	struct page *page = NULL;

1527
	assert_spin_locked(pmd_lockptr(mm, pmd));
1528

1529
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1530 1531
		goto out;

1532 1533 1534 1535
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1536
	/* Full NUMA hinting faults to serialise migration in fault paths */
1537
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1538 1539
		goto out;

1540
	page = pmd_page(*pmd);
1541
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1542 1543 1544 1545

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1546
	if (flags & FOLL_TOUCH)
1547
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1548

E
Eric B Munson 已提交
1549
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1550 1551 1552 1553
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1554 1555
		 * For anon THP:
		 *
1556 1557 1558 1559 1560 1561 1562
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1563 1564 1565 1566 1567 1568
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1569
		 */
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1581
	}
1582
skip_mlock:
1583
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1584
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1585 1586 1587 1588 1589

out:
	return page;
}

1590
/* NUMA hinting page fault entry point for trans huge pmds */
1591
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1592
{
J
Jan Kara 已提交
1593
	struct vm_area_struct *vma = vmf->vma;
1594
	struct anon_vma *anon_vma = NULL;
1595
	struct page *page;
J
Jan Kara 已提交
1596
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1597
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1598
	int target_nid, last_cpupid = -1;
1599 1600
	bool page_locked;
	bool migrated = false;
1601
	bool was_writable;
1602
	int flags = 0;
1603

J
Jan Kara 已提交
1604 1605
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1606 1607
		goto out_unlock;

1608 1609 1610 1611 1612
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1613 1614
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1615 1616
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1617
		spin_unlock(vmf->ptl);
1618
		put_and_wait_on_page_locked(page);
1619 1620 1621
		goto out;
	}

1622
	page = pmd_page(pmd);
1623
	BUG_ON(is_huge_zero_page(page));
1624
	page_nid = page_to_nid(page);
1625
	last_cpupid = page_cpupid_last(page);
1626
	count_vm_numa_event(NUMA_HINT_FAULTS);
1627
	if (page_nid == this_nid) {
1628
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1629 1630
		flags |= TNF_FAULT_LOCAL;
	}
1631

1632
	/* See similar comment in do_numa_page for explanation */
1633
	if (!pmd_savedwrite(pmd))
1634 1635
		flags |= TNF_NO_GROUP;

1636 1637 1638 1639
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1640 1641
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1642
	if (target_nid == NUMA_NO_NODE) {
1643
		/* If the page was locked, there are no parallel migrations */
1644
		if (page_locked)
1645
			goto clear_pmdnuma;
1646
	}
1647

1648
	/* Migration could have started since the pmd_trans_migrating check */
1649
	if (!page_locked) {
1650
		page_nid = NUMA_NO_NODE;
1651 1652
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1653
		spin_unlock(vmf->ptl);
1654
		put_and_wait_on_page_locked(page);
1655 1656 1657
		goto out;
	}

1658 1659 1660 1661
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1662
	get_page(page);
J
Jan Kara 已提交
1663
	spin_unlock(vmf->ptl);
1664
	anon_vma = page_lock_anon_vma_read(page);
1665

P
Peter Zijlstra 已提交
1666
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1667 1668
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1669 1670
		unlock_page(page);
		put_page(page);
1671
		page_nid = NUMA_NO_NODE;
1672
		goto out_unlock;
1673
	}
1674

1675 1676 1677
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1678
		page_nid = NUMA_NO_NODE;
1679 1680 1681
		goto clear_pmdnuma;
	}

1682 1683 1684 1685 1686 1687
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1688 1689 1690 1691
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1692
	 */
1693
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1694
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1707

1708 1709
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1710
	 * and access rights restored.
1711
	 */
J
Jan Kara 已提交
1712
	spin_unlock(vmf->ptl);
1713

K
Kirill A. Shutemov 已提交
1714
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1715
				vmf->pmd, pmd, vmf->address, page, target_nid);
1716 1717
	if (migrated) {
		flags |= TNF_MIGRATED;
1718
		page_nid = target_nid;
1719 1720
	} else
		flags |= TNF_MIGRATE_FAIL;
1721

1722
	goto out;
1723
clear_pmdnuma:
1724
	BUG_ON(!PageLocked(page));
1725
	was_writable = pmd_savedwrite(pmd);
1726
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1727
	pmd = pmd_mkyoung(pmd);
1728 1729
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1730 1731
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1732
	unlock_page(page);
1733
out_unlock:
J
Jan Kara 已提交
1734
	spin_unlock(vmf->ptl);
1735 1736 1737 1738 1739

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1740
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1741
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1742
				flags);
1743

1744 1745 1746
	return 0;
}

1747 1748 1749 1750 1751
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1752 1753 1754 1755 1756 1757
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1758
	bool ret = false;
1759

1760
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1761

1762 1763
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1764
		goto out_unlocked;
1765 1766

	orig_pmd = *pmd;
1767
	if (is_huge_zero_pmd(orig_pmd))
1768 1769
		goto out;

1770 1771 1772 1773 1774 1775
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1794
		split_huge_page(page);
1795
		unlock_page(page);
1796
		put_page(page);
1797 1798 1799 1800 1801 1802 1803 1804
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1805
		pmdp_invalidate(vma, addr, pmd);
1806 1807 1808 1809 1810 1811
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1812 1813

	mark_page_lazyfree(page);
1814
	ret = true;
1815 1816 1817 1818 1819 1820
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1821 1822 1823 1824 1825 1826
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1827
	mm_dec_nr_ptes(mm);
1828 1829
}

1830
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1831
		 pmd_t *pmd, unsigned long addr)
1832
{
1833
	pmd_t orig_pmd;
1834
	spinlock_t *ptl;
1835

1836
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1837

1838 1839
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1850
	if (vma_is_special_huge(vma)) {
1851 1852
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1853 1854
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1855
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1856
	} else if (is_huge_zero_pmd(orig_pmd)) {
1857
		zap_deposited_table(tlb->mm, pmd);
1858
		spin_unlock(ptl);
1859
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1860
	} else {
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1879
		if (PageAnon(page)) {
1880
			zap_deposited_table(tlb->mm, pmd);
1881 1882
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1883 1884
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1885
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1886
		}
1887

1888
		spin_unlock(ptl);
1889 1890
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1891
	}
1892
	return 1;
1893 1894
}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1921
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1922
		  unsigned long new_addr, unsigned long old_end,
1923
		  pmd_t *old_pmd, pmd_t *new_pmd)
1924
{
1925
	spinlock_t *old_ptl, *new_ptl;
1926 1927
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1928
	bool force_flush = false;
1929 1930 1931

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1932
	    old_end - old_addr < HPAGE_PMD_SIZE)
1933
		return false;
1934 1935 1936 1937 1938 1939 1940

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1941
		return false;
1942 1943
	}

1944 1945 1946 1947
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1948 1949
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1950 1951 1952
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1953
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1954
		if (pmd_present(pmd))
1955
			force_flush = true;
1956
		VM_BUG_ON(!pmd_none(*new_pmd));
1957

1958
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1959
			pgtable_t pgtable;
1960 1961 1962
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1963 1964
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1965 1966
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1967 1968
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1969
		spin_unlock(old_ptl);
1970
		return true;
1971
	}
1972
	return false;
1973 1974
}

1975 1976 1977 1978 1979 1980
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1981
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1982
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1983 1984
{
	struct mm_struct *mm = vma->vm_mm;
1985
	spinlock_t *ptl;
1986 1987 1988
	pmd_t entry;
	bool preserve_write;
	int ret;
1989
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1990

1991
	ptl = __pmd_trans_huge_lock(pmd, vma);
1992 1993
	if (!ptl)
		return 0;
1994

1995 1996
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1997

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
2011 2012
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
2013 2014 2015 2016 2017 2018
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

2019 2020 2021 2022 2023 2024 2025
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
2026

2027 2028 2029
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
2051
	entry = pmdp_invalidate(vma, addr, pmd);
2052

2053 2054 2055 2056 2057 2058 2059 2060
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
2061 2062 2063 2064
	return ret;
}

/*
2065
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2066
 *
2067 2068
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
2069
 */
2070
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2071
{
2072 2073
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
2074 2075
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
2076 2077 2078
		return ptl;
	spin_unlock(ptl);
	return NULL;
2079 2080
}

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
2113
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2114
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2115
	if (vma_is_special_huge(vma)) {
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2133
	count_vm_event(THP_SPLIT_PUD);
2134 2135 2136 2137 2138 2139 2140 2141

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
2142
	struct mmu_notifier_range range;
2143

2144
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2145
				address & HPAGE_PUD_MASK,
2146 2147 2148
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
2149 2150
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
2151
	__split_huge_pud_locked(vma, pud, range.start);
2152 2153 2154

out:
	spin_unlock(ptl);
2155 2156 2157 2158
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
2159
	mmu_notifier_invalidate_range_only_end(&range);
2160 2161 2162
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2163 2164 2165 2166 2167 2168 2169 2170
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2171 2172 2173 2174 2175 2176
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2177
	 * See Documentation/vm/mmu_notifier.rst
2178 2179
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2198
		unsigned long haddr, bool freeze)
2199 2200 2201 2202
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2203
	pmd_t old_pmd, _pmd;
2204
	bool young, write, soft_dirty, pmd_migration = false;
2205
	unsigned long addr;
2206 2207 2208 2209 2210
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2211 2212
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2213 2214 2215

	count_vm_event(THP_SPLIT_PMD);

2216 2217
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2218 2219 2220 2221 2222 2223
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2224
		if (vma_is_special_huge(vma))
2225 2226
			return;
		page = pmd_page(_pmd);
2227 2228
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2229 2230 2231 2232
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2233
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2234 2235
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2236 2237 2238 2239 2240 2241 2242 2243 2244
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2245 2246 2247
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2271
	if (unlikely(pmd_migration)) {
2272 2273
		swp_entry_t entry;

2274
		entry = pmd_to_swp_entry(old_pmd);
2275
		page = pfn_to_page(swp_offset(entry));
2276 2277 2278 2279
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2280
		page = pmd_page(old_pmd);
2281 2282 2283 2284 2285 2286
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2287
	VM_BUG_ON_PAGE(!page_count(page), page);
2288
	page_ref_add(page, HPAGE_PMD_NR - 1);
2289

2290 2291 2292 2293
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2294 2295 2296
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2297
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2298 2299 2300 2301 2302 2303
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2304
		if (freeze || pmd_migration) {
2305 2306 2307
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2308 2309
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2310
		} else {
2311
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2312
			entry = maybe_mkwrite(entry, vma);
2313 2314 2315 2316
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2317 2318
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2319
		}
2320
		pte = pte_offset_map(&_pmd, addr);
2321
		BUG_ON(!pte_none(*pte));
2322
		set_pte_at(mm, addr, pte, entry);
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2338
		__dec_node_page_state(page, NR_ANON_THPS);
2339 2340 2341 2342 2343 2344 2345 2346 2347
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2348 2349

	if (freeze) {
2350
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2351 2352 2353 2354
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2355 2356 2357
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2358
		unsigned long address, bool freeze, struct page *page)
2359 2360
{
	spinlock_t *ptl;
2361
	struct mmu_notifier_range range;
2362

2363
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2364
				address & HPAGE_PMD_MASK,
2365 2366 2367
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2368 2369 2370 2371 2372 2373 2374 2375 2376

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2377
	if (pmd_trans_huge(*pmd)) {
2378
		page = pmd_page(*pmd);
2379
		if (PageMlocked(page))
2380
			clear_page_mlock(page);
2381
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2382
		goto out;
2383
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2384
out:
2385
	spin_unlock(ptl);
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2399
	mmu_notifier_invalidate_range_only_end(&range);
2400 2401
}

2402 2403
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2404
{
2405
	pgd_t *pgd;
2406
	p4d_t *p4d;
2407
	pud_t *pud;
2408 2409
	pmd_t *pmd;

2410
	pgd = pgd_offset(vma->vm_mm, address);
2411 2412 2413
	if (!pgd_present(*pgd))
		return;

2414 2415 2416 2417 2418
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2419 2420 2421 2422
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2423

2424
	__split_huge_pmd(vma, pmd, address, freeze, page);
2425 2426
}

2427
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2440
		split_huge_pmd_address(vma, start, false, NULL);
2441 2442 2443 2444 2445 2446 2447 2448 2449

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2450
		split_huge_pmd_address(vma, end, false, NULL);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2464
			split_huge_pmd_address(next, nstart, false, NULL);
2465 2466
	}
}
2467

2468
static void unmap_page(struct page *page)
2469
{
2470
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2471
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2472
	bool unmap_success;
2473 2474 2475

	VM_BUG_ON_PAGE(!PageHead(page), page);

2476
	if (PageAnon(page))
2477
		ttu_flags |= TTU_SPLIT_FREEZE;
2478

M
Minchan Kim 已提交
2479 2480
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2481 2482
}

2483
static void remap_page(struct page *page)
2484
{
2485
	int i;
2486 2487 2488 2489 2490 2491
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2492 2493
}

2494
static void __split_huge_page_tail(struct page *head, int tail,
2495 2496 2497 2498
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2499
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2500 2501

	/*
2502 2503 2504 2505
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2506 2507 2508 2509 2510
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2511
			 (1L << PG_swapcache) |
2512 2513 2514
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2515
			 (1L << PG_workingset) |
2516
			 (1L << PG_locked) |
2517 2518
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2519

2520 2521 2522 2523 2524 2525
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2526
	/* Page flags must be visible before we make the page non-compound. */
2527 2528
	smp_wmb();

2529 2530 2531 2532 2533 2534
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2535 2536
	clear_compound_head(page_tail);

2537 2538 2539 2540
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2541 2542 2543 2544 2545 2546
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2547 2548 2549 2550 2551 2552

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2553 2554 2555
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2556
static void __split_huge_page(struct page *page, struct list_head *list,
2557
		pgoff_t end, unsigned long flags)
2558 2559
{
	struct page *head = compound_head(page);
2560
	pg_data_t *pgdat = page_pgdat(head);
2561
	struct lruvec *lruvec;
2562 2563
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2564
	int i;
2565

2566
	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2567 2568 2569 2570

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2571 2572 2573 2574 2575 2576 2577 2578
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2579
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2580
		__split_huge_page_tail(head, i, lruvec, list);
2581 2582
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2583
			ClearPageDirty(head + i);
2584
			__delete_from_page_cache(head + i, NULL);
2585 2586
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2587
			put_page(head + i);
2588 2589 2590 2591 2592 2593
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2594 2595
		}
	}
2596 2597

	ClearPageCompound(head);
2598 2599 2600

	split_page_owner(head, HPAGE_PMD_ORDER);

2601 2602
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2603
		/* Additional pin to swap cache */
2604
		if (PageSwapCache(head)) {
2605
			page_ref_add(head, 2);
2606 2607
			xa_unlock(&swap_cache->i_pages);
		} else {
2608
			page_ref_inc(head);
2609
		}
2610
	} else {
M
Matthew Wilcox 已提交
2611
		/* Additional pin to page cache */
2612
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2613
		xa_unlock(&head->mapping->i_pages);
2614 2615
	}

2616
	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2617

2618
	remap_page(head);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2637 2638
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2639
	int i, compound, ret;
2640 2641 2642 2643 2644 2645

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2646
	compound = compound_mapcount(page);
2647
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2648 2649
		return compound;
	ret = compound;
2650 2651
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2652 2653 2654
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2655 2656 2657 2658 2659
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2718 2719 2720 2721 2722
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2723
	/* Additional pins from page cache */
2724 2725 2726 2727 2728 2729 2730 2731 2732
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2755
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2756
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2757 2758 2759
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2760
	bool mlocked;
2761
	unsigned long flags;
2762
	pgoff_t end;
2763

2764
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2765 2766
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2767

2768
	if (PageWriteback(head))
2769 2770
		return -EBUSY;

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2785
		end = -1;
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2799 2800 2801 2802 2803 2804 2805 2806 2807

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2808 2809 2810
	}

	/*
2811
	 * Racy check if we can split the page, before unmap_page() will
2812 2813
	 * split PMDs
	 */
2814
	if (!can_split_huge_page(head, &extra_pins)) {
2815 2816 2817 2818
		ret = -EBUSY;
		goto out_unlock;
	}

2819
	mlocked = PageMlocked(head);
2820
	unmap_page(head);
2821 2822
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2823 2824 2825 2826
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2827
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2828
	spin_lock_irqsave(&pgdata->lru_lock, flags);
2829 2830

	if (mapping) {
M
Matthew Wilcox 已提交
2831
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2832 2833

		/*
M
Matthew Wilcox 已提交
2834
		 * Check if the head page is present in page cache.
2835 2836
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2837 2838
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2839 2840 2841
			goto fail;
	}

2842
	/* Prevent deferred_split_scan() touching ->_refcount */
2843
	spin_lock(&ds_queue->split_queue_lock);
2844 2845
	count = page_count(head);
	mapcount = total_mapcount(head);
2846
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2847
		if (!list_empty(page_deferred_list(head))) {
2848
			ds_queue->split_queue_len--;
2849 2850
			list_del(page_deferred_list(head));
		}
2851
		spin_unlock(&ds_queue->split_queue_lock);
2852
		if (mapping) {
2853 2854
			if (PageSwapBacked(head))
				__dec_node_page_state(head, NR_SHMEM_THPS);
2855
			else
2856
				__dec_node_page_state(head, NR_FILE_THPS);
2857 2858
		}

2859
		__split_huge_page(page, list, end, flags);
2860 2861 2862 2863 2864 2865
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2866
	} else {
2867 2868 2869 2870 2871 2872 2873 2874
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2875
		spin_unlock(&ds_queue->split_queue_lock);
2876
fail:		if (mapping)
M
Matthew Wilcox 已提交
2877
			xa_unlock(&mapping->i_pages);
2878
		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2879
		remap_page(head);
2880 2881 2882 2883
		ret = -EBUSY;
	}

out_unlock:
2884 2885 2886 2887 2888 2889
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2890 2891 2892 2893
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2894 2895 2896

void free_transhuge_page(struct page *page)
{
2897
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2898 2899
	unsigned long flags;

2900
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2901
	if (!list_empty(page_deferred_list(page))) {
2902
		ds_queue->split_queue_len--;
2903 2904
		list_del(page_deferred_list(page));
	}
2905
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2906 2907 2908 2909 2910
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2911 2912 2913 2914
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2915 2916 2917 2918
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2932
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2933
	if (list_empty(page_deferred_list(page))) {
2934
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2935 2936
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2937 2938 2939 2940 2941
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2942
	}
2943
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2944 2945 2946 2947 2948
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2949
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2950
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2951 2952 2953 2954 2955

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2956
	return READ_ONCE(ds_queue->split_queue_len);
2957 2958 2959 2960 2961
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2962
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2963
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2964 2965 2966 2967 2968
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2969 2970 2971 2972 2973
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2974
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2975
	/* Take pin on all head pages to avoid freeing them under us */
2976
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2977 2978
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2979 2980 2981 2982
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2983
			list_del_init(page_deferred_list(page));
2984
			ds_queue->split_queue_len--;
2985
		}
2986 2987
		if (!--sc->nr_to_scan)
			break;
2988
	}
2989
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2990 2991 2992

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2993 2994
		if (!trylock_page(page))
			goto next;
2995 2996 2997 2998
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2999
next:
3000 3001 3002
		put_page(page);
	}

3003 3004 3005
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3006

3007 3008 3009 3010
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
3011
	if (!split && list_empty(&ds_queue->split_queue))
3012 3013
		return SHRINK_STOP;
	return split;
3014 3015 3016 3017 3018 3019
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
3020 3021
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
3022
};
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

3048
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

3061
	pr_info("%lu of %lu THP split\n", split, total);
3062 3063 3064

	return 0;
}
3065
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3066 3067 3068 3069
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
3070 3071
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3072 3073 3074 3075
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3086
	pmd_t pmdswp;
3087 3088 3089 3090 3091

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3092
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3093 3094 3095
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
3096 3097 3098 3099
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3119 3120
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3121
	if (is_write_migration_entry(entry))
3122
		pmde = maybe_pmd_mkwrite(pmde, vma);
3123 3124

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3125 3126 3127 3128
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3129
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3130
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3131 3132 3133 3134
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif