huge_memory.c 83.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167 168 169 170 171
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
172
}
173

174 175 176 177
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
178
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
194 195

	if (ret > 0) {
196
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
197 198 199 200
		if (err)
			ret = err;
	}
	return ret;
201 202 203 204
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

205
ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 207 208
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
209 210
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
211
}
212

213
ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 215 216 217
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
218 219 220 221 222 223 224 225 226 227
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
228
		set_bit(flag, &transparent_hugepage_flags);
229
	else
230 231 232 233 234 235 236 237
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
238
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 242 243 244 245 246
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
247
}
248

249 250 251 252
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
253 254 255 256 257 258 259 260 261 262 263 264
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 266 267 268 269 270
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
287 288 289 290
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

291 292 293
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
294
	return single_hugepage_flag_show(kobj, attr, buf,
295 296 297 298 299
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
300
	return single_hugepage_flag_store(kobj, attr, buf, count,
301 302 303 304
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
305 306 307 308 309 310 311 312 313

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

314 315 316 317
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
318
	return single_hugepage_flag_show(kobj, attr, buf,
319 320 321 322 323 324
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
325
	return single_hugepage_flag_store(kobj, attr, buf, count,
326 327 328 329 330 331 332 333 334
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
335
	&use_zero_page_attr.attr,
336
	&hpage_pmd_size_attr.attr,
337
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
338 339
	&shmem_enabled_attr.attr,
#endif
340 341 342 343 344 345
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

346
static const struct attribute_group hugepage_attr_group = {
347
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
348 349
};

S
Shaohua Li 已提交
350
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
351 352 353
{
	int err;

S
Shaohua Li 已提交
354 355
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
356
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
357
		return -ENOMEM;
A
Andrea Arcangeli 已提交
358 359
	}

S
Shaohua Li 已提交
360
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
361
	if (err) {
362
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
363
		goto delete_obj;
A
Andrea Arcangeli 已提交
364 365
	}

S
Shaohua Li 已提交
366
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
367
	if (err) {
368
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
369
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
370
	}
S
Shaohua Li 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

408 409 410 411 412 413 414 415 416 417
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
418 419
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
420
		goto err_sysfs;
A
Andrea Arcangeli 已提交
421

422
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
423
	if (err)
424
		goto err_slab;
A
Andrea Arcangeli 已提交
425

426 427 428
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
429 430 431
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
432

433 434 435 436 437
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
438
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
439
		transparent_hugepage_flags = 0;
440 441
		return 0;
	}
442

443
	err = start_stop_khugepaged();
444 445
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
446

S
Shaohua Li 已提交
447
	return 0;
448
err_khugepaged:
449 450
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
451 452
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
453
	khugepaged_destroy();
454
err_slab:
S
Shaohua Li 已提交
455
	hugepage_exit_sysfs(hugepage_kobj);
456
err_sysfs:
A
Andrea Arcangeli 已提交
457
	return err;
458
}
459
subsys_initcall(hugepage_init);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
487
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
488 489 490 491
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

492
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
493
{
494
	if (likely(vma->vm_flags & VM_WRITE))
495 496 497 498
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

499 500
static inline struct list_head *page_deferred_list(struct page *page)
{
M
Matthew Wilcox 已提交
501 502
	/* ->lru in the tail pages is occupied by compound_head. */
	return &page[2].deferred_list;
503 504 505 506 507 508 509 510 511 512 513 514 515
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

516
static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

559 560
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
561
{
J
Jan Kara 已提交
562
	struct vm_area_struct *vma = vmf->vma;
563
	struct mem_cgroup *memcg;
564
	pgtable_t pgtable;
J
Jan Kara 已提交
565
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
566
	vm_fault_t ret = 0;
567

568
	VM_BUG_ON_PAGE(!PageCompound(page), page);
569

570
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
571 572 573 574
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
575

576
	pgtable = pte_alloc_one(vma->vm_mm);
577
	if (unlikely(!pgtable)) {
578 579
		ret = VM_FAULT_OOM;
		goto release;
580
	}
581

582
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
583 584 585 586 587
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
588 589
	__SetPageUptodate(page);

J
Jan Kara 已提交
590 591
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
592
		goto unlock_release;
593 594
	} else {
		pmd_t entry;
595

596 597 598 599
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

600 601
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
602
			vm_fault_t ret2;
603

J
Jan Kara 已提交
604
			spin_unlock(vmf->ptl);
605
			mem_cgroup_cancel_charge(page, memcg, true);
606
			put_page(page);
K
Kirill A. Shutemov 已提交
607
			pte_free(vma->vm_mm, pgtable);
608 609 610
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
611 612
		}

613
		entry = mk_huge_pmd(page, vma->vm_page_prot);
614
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
615
		page_add_new_anon_rmap(page, vma, haddr, true);
616
		mem_cgroup_commit_charge(page, memcg, false, true);
617
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
618 619
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
620
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
621
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
622
		spin_unlock(vmf->ptl);
623
		count_vm_event(THP_FAULT_ALLOC);
624
		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
625 626
	}

627
	return 0;
628 629 630 631 632 633 634 635 636
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

637 638
}

639
/*
640 641 642 643 644 645 646
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
647
 */
648
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
649
{
650
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
651
	gfp_t this_node = 0;
652

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
#ifdef CONFIG_NUMA
	struct mempolicy *pol;
	/*
	 * __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
	 * specified, to express a general desire to stay on the current
	 * node for optimistic allocation attempts. If the defrag mode
	 * and/or madvise hint requires the direct reclaim then we prefer
	 * to fallback to other node rather than node reclaim because that
	 * can lead to excessive reclaim even though there is free memory
	 * on other nodes. We expect that NUMA preferences are specified
	 * by memory policies.
	 */
	pol = get_vma_policy(vma, addr);
	if (pol->mode != MPOL_BIND)
		this_node = __GFP_THISNODE;
	mpol_cond_put(pol);
#endif
670

671 672
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
673
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
674
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM | this_node;
675
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
676 677
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     __GFP_KSWAPD_RECLAIM | this_node);
678
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
679 680 681
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     this_node);
	return GFP_TRANSHUGE_LIGHT | this_node;
682 683
}

684
/* Caller must hold page table lock. */
685
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
686
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
687
		struct page *zero_page)
688 689
{
	pmd_t entry;
A
Andrew Morton 已提交
690 691
	if (!pmd_none(*pmd))
		return false;
692
	entry = mk_pmd(zero_page, vma->vm_page_prot);
693
	entry = pmd_mkhuge(entry);
694 695
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
696
	set_pmd_at(mm, haddr, pmd, entry);
697
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
698
	return true;
699 700
}

701
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
702
{
J
Jan Kara 已提交
703
	struct vm_area_struct *vma = vmf->vma;
704
	gfp_t gfp;
705
	struct page *page;
J
Jan Kara 已提交
706
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
707

708
	if (!transhuge_vma_suitable(vma, haddr))
709
		return VM_FAULT_FALLBACK;
710 711
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
712
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
713
		return VM_FAULT_OOM;
J
Jan Kara 已提交
714
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
715
			!mm_forbids_zeropage(vma->vm_mm) &&
716 717 718 719
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
720
		vm_fault_t ret;
721
		pgtable = pte_alloc_one(vma->vm_mm);
722
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
723
			return VM_FAULT_OOM;
724
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
725
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
726
			pte_free(vma->vm_mm, pgtable);
727
			count_vm_event(THP_FAULT_FALLBACK);
728
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
729
		}
J
Jan Kara 已提交
730
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
731 732
		ret = 0;
		set = false;
J
Jan Kara 已提交
733
		if (pmd_none(*vmf->pmd)) {
734 735 736 737
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
738 739
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
740 741
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
742
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
743 744
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
745 746 747
				set = true;
			}
		} else
J
Jan Kara 已提交
748
			spin_unlock(vmf->ptl);
749
		if (!set)
K
Kirill A. Shutemov 已提交
750
			pte_free(vma->vm_mm, pgtable);
751
		return ret;
752
	}
753 754
	gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
755 756
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
757
		return VM_FAULT_FALLBACK;
758
	}
759
	prep_transhuge_page(page);
J
Jan Kara 已提交
760
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
761 762
}

763
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
764 765
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
766 767 768 769 770 771
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

787 788 789
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
790
	if (write) {
791 792
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
793
	}
794 795 796

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
797
		mm_inc_nr_ptes(mm);
798
		pgtable = NULL;
799 800
	}

801 802
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
803 804

out_unlock:
M
Matthew Wilcox 已提交
805
	spin_unlock(ptl);
806 807
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
808 809
}

810
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
811
{
812 813
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
M
Matthew Wilcox 已提交
814
	pgprot_t pgprot = vma->vm_page_prot;
815
	pgtable_t pgtable = NULL;
816

M
Matthew Wilcox 已提交
817 818 819 820 821
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
822 823
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
824 825 826 827 828 829
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
830

831
	if (arch_needs_pgtable_deposit()) {
832
		pgtable = pte_alloc_one(vma->vm_mm);
833 834 835 836
		if (!pgtable)
			return VM_FAULT_OOM;
	}

837 838
	track_pfn_insert(vma, &pgprot, pfn);

839
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
840
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
841
}
842
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
843

844
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
845
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
846
{
847
	if (likely(vma->vm_flags & VM_WRITE))
848 849 850 851 852 853 854 855 856 857 858 859
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
860 861 862 863 864 865 866 867 868 869 870 871 872 873
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

874 875 876 877
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
878 879
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
880 881 882
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
883 884

out_unlock:
885 886 887
	spin_unlock(ptl);
}

888
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
889
{
890 891
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;
892
	pgprot_t pgprot = vma->vm_page_prot;
893

894 895 896 897 898
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
899 900
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
901 902 903 904 905 906 907 908 909
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

910
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
911 912 913 914 915
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

916
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
917
		pmd_t *pmd, int flags)
918 919 920
{
	pmd_t _pmd;

921 922 923
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
924
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
925
				pmd, _pmd, flags & FOLL_WRITE))
926 927 928 929
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
930
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
931 932 933 934 935 936 937
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

938 939 940 941 942 943
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

944
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
945 946 947 948 949 950 951 952
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
953
		touch_pmd(vma, addr, pmd, flags);
954 955 956 957 958 959 960 961 962

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
963 964
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
965 966 967 968 969 970 971
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

972 973 974 975
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
976
	spinlock_t *dst_ptl, *src_ptl;
977 978
	struct page *src_page;
	pmd_t pmd;
979
	pgtable_t pgtable = NULL;
980
	int ret = -ENOMEM;
981

982 983 984 985
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

986
	pgtable = pte_alloc_one(dst_mm);
987 988
	if (unlikely(!pgtable))
		goto out;
989

990 991 992
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
993 994 995

	ret = -EAGAIN;
	pmd = *src_pmd;
996 997 998 999 1000 1001 1002 1003 1004

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1005 1006
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1007 1008
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1009
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1010
		mm_inc_nr_ptes(dst_mm);
1011
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1012 1013 1014 1015 1016 1017
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1018
	if (unlikely(!pmd_trans_huge(pmd))) {
1019 1020 1021
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1022
	/*
1023
	 * When page table lock is held, the huge zero pmd should not be
1024 1025 1026 1027
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1028
		struct page *zero_page;
1029 1030 1031 1032 1033
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1034
		zero_page = mm_get_huge_zero_page(dst_mm);
1035
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1036
				zero_page);
1037 1038 1039
		ret = 0;
		goto out_unlock;
	}
1040

1041 1042 1043 1044 1045
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1046
	mm_inc_nr_ptes(dst_mm);
1047
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1048 1049 1050 1051 1052 1053 1054

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1055 1056
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1057 1058 1059 1060
out:
	return ret;
}

1061 1062
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1063
		pud_t *pud, int flags)
1064 1065 1066
{
	pud_t _pud;

1067 1068 1069
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1070
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1071
				pud, _pud, flags & FOLL_WRITE))
1072 1073 1074 1075
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1076
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1077 1078 1079 1080 1081 1082 1083
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1084
	if (flags & FOLL_WRITE && !pud_write(*pud))
1085 1086 1087 1088 1089 1090 1091 1092
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1093
		touch_pud(vma, addr, pud, flags);
1094 1095 1096 1097 1098 1099 1100 1101 1102

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1103 1104
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1171
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1172 1173 1174
{
	pmd_t entry;
	unsigned long haddr;
1175
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1176

J
Jan Kara 已提交
1177 1178
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179 1180 1181
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1182 1183
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1184
	haddr = vmf->address & HPAGE_PMD_MASK;
1185
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1186
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1187 1188

unlock:
J
Jan Kara 已提交
1189
	spin_unlock(vmf->ptl);
1190 1191
}

1192 1193
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
1194
{
J
Jan Kara 已提交
1195 1196
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1197
	struct mem_cgroup *memcg;
1198 1199
	pgtable_t pgtable;
	pmd_t _pmd;
1200 1201
	int i;
	vm_fault_t ret = 0;
1202
	struct page **pages;
1203
	struct mmu_notifier_range range;
1204

1205 1206
	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
1207 1208 1209 1210 1211 1212
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1213
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1214
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1215
		if (unlikely(!pages[i] ||
1216
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
K
Kirill A. Shutemov 已提交
1217
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1218
			if (pages[i])
1219
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1220
			while (--i >= 0) {
1221 1222
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1223 1224
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1225 1226
				put_page(pages[i]);
			}
1227 1228 1229 1230
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1231
		set_page_private(pages[i], (unsigned long)memcg);
1232 1233 1234 1235
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1236
				   haddr + PAGE_SIZE * i, vma);
1237 1238 1239 1240
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1241 1242
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1243
	mmu_notifier_invalidate_range_start(&range);
1244

J
Jan Kara 已提交
1245 1246
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1247
		goto out_free_pages;
1248
	VM_BUG_ON_PAGE(!PageHead(page), page);
1249

1250 1251 1252 1253 1254 1255
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
1256
	 * See Documentation/vm/mmu_notifier.rst
1257
	 */
J
Jan Kara 已提交
1258
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1259

J
Jan Kara 已提交
1260
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1261
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1262 1263

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1264
		pte_t entry;
1265 1266
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1267 1268
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1269
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1270
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1271
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1272 1273 1274 1275
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1276 1277 1278 1279
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1280
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1281
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1282
	spin_unlock(vmf->ptl);
1283

1284 1285 1286 1287
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1288
	mmu_notifier_invalidate_range_only_end(&range);
1289

1290 1291 1292 1293 1294 1295 1296
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1297
	spin_unlock(vmf->ptl);
1298
	mmu_notifier_invalidate_range_end(&range);
A
Andrea Arcangeli 已提交
1299
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1300 1301
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1302
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1303
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1304
	}
1305 1306 1307 1308
	kfree(pages);
	goto out;
}

1309
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1310
{
J
Jan Kara 已提交
1311
	struct vm_area_struct *vma = vmf->vma;
1312
	struct page *page = NULL, *new_page;
1313
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1314
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1315
	struct mmu_notifier_range range;
1316
	gfp_t huge_gfp;			/* for allocation and charge */
1317
	vm_fault_t ret = 0;
1318

J
Jan Kara 已提交
1319
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1320
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1321 1322
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1323 1324
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1325 1326 1327
		goto out_unlock;

	page = pmd_page(orig_pmd);
1328
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1329 1330
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1331
	 * part.
1332
	 */
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1346 1347
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1348
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1349 1350
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1351
		ret |= VM_FAULT_WRITE;
1352
		unlock_page(page);
1353 1354
		goto out_unlock;
	}
1355
	unlock_page(page);
1356
	get_page(page);
J
Jan Kara 已提交
1357
	spin_unlock(vmf->ptl);
1358
alloc:
1359
	if (__transparent_hugepage_enabled(vma) &&
1360
	    !transparent_hugepage_debug_cow()) {
1361 1362 1363
		huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
		new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
				haddr, numa_node_id());
1364
	} else
1365 1366
		new_page = NULL;

1367 1368 1369
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1370
		if (!page) {
J
Jan Kara 已提交
1371
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1372
			ret |= VM_FAULT_FALLBACK;
1373
		} else {
J
Jan Kara 已提交
1374
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1375
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1376
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1377 1378
				ret |= VM_FAULT_FALLBACK;
			}
1379
			put_page(page);
1380
		}
1381
		count_vm_event(THP_FAULT_FALLBACK);
1382 1383 1384
		goto out;
	}

1385
	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1386
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1387
		put_page(new_page);
J
Jan Kara 已提交
1388
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1389
		if (page)
1390
			put_page(page);
1391
		ret |= VM_FAULT_FALLBACK;
1392
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1393 1394 1395
		goto out;
	}

1396
	count_vm_event(THP_FAULT_ALLOC);
1397
	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1398

1399
	if (!page)
1400
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1401
	else
1402 1403
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
1404 1405
	__SetPageUptodate(new_page);

1406 1407
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
				haddr, haddr + HPAGE_PMD_SIZE);
1408
	mmu_notifier_invalidate_range_start(&range);
1409

J
Jan Kara 已提交
1410
	spin_lock(vmf->ptl);
1411
	if (page)
1412
		put_page(page);
J
Jan Kara 已提交
1413 1414
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1415
		mem_cgroup_cancel_charge(new_page, memcg, true);
1416
		put_page(new_page);
1417
		goto out_mn;
A
Andrea Arcangeli 已提交
1418
	} else {
1419
		pmd_t entry;
1420
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1421
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1422
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1423
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1424
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1425
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1426 1427
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1428
		if (!page) {
K
Kirill A. Shutemov 已提交
1429
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1430
		} else {
1431
			VM_BUG_ON_PAGE(!PageHead(page), page);
1432
			page_remove_rmap(page, true);
1433 1434
			put_page(page);
		}
1435 1436
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1437
	spin_unlock(vmf->ptl);
1438
out_mn:
1439 1440 1441 1442
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
1443
	mmu_notifier_invalidate_range_only_end(&range);
1444 1445
out:
	return ret;
1446
out_unlock:
J
Jan Kara 已提交
1447
	spin_unlock(vmf->ptl);
1448
	return ret;
1449 1450
}

1451 1452 1453 1454 1455 1456
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1457
	return pmd_write(pmd) ||
1458 1459 1460
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1461
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1462 1463 1464 1465
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1466
	struct mm_struct *mm = vma->vm_mm;
1467 1468
	struct page *page = NULL;

1469
	assert_spin_locked(pmd_lockptr(mm, pmd));
1470

1471
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1472 1473
		goto out;

1474 1475 1476 1477
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1478
	/* Full NUMA hinting faults to serialise migration in fault paths */
1479
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1480 1481
		goto out;

1482
	page = pmd_page(*pmd);
1483
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1484
	if (flags & FOLL_TOUCH)
1485
		touch_pmd(vma, addr, pmd, flags);
E
Eric B Munson 已提交
1486
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1487 1488 1489 1490
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1491 1492
		 * For anon THP:
		 *
1493 1494 1495 1496 1497 1498 1499
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1500 1501 1502 1503 1504 1505
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1506
		 */
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1518
	}
1519
skip_mlock:
1520
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1521
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1522
	if (flags & FOLL_GET)
1523
		get_page(page);
1524 1525 1526 1527 1528

out:
	return page;
}

1529
/* NUMA hinting page fault entry point for trans huge pmds */
1530
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1531
{
J
Jan Kara 已提交
1532
	struct vm_area_struct *vma = vmf->vma;
1533
	struct anon_vma *anon_vma = NULL;
1534
	struct page *page;
J
Jan Kara 已提交
1535
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1536
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1537
	int target_nid, last_cpupid = -1;
1538 1539
	bool page_locked;
	bool migrated = false;
1540
	bool was_writable;
1541
	int flags = 0;
1542

J
Jan Kara 已提交
1543 1544
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1545 1546
		goto out_unlock;

1547 1548 1549 1550 1551
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1552 1553
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1554 1555
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1556
		spin_unlock(vmf->ptl);
1557
		put_and_wait_on_page_locked(page);
1558 1559 1560
		goto out;
	}

1561
	page = pmd_page(pmd);
1562
	BUG_ON(is_huge_zero_page(page));
1563
	page_nid = page_to_nid(page);
1564
	last_cpupid = page_cpupid_last(page);
1565
	count_vm_numa_event(NUMA_HINT_FAULTS);
1566
	if (page_nid == this_nid) {
1567
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1568 1569
		flags |= TNF_FAULT_LOCAL;
	}
1570

1571
	/* See similar comment in do_numa_page for explanation */
1572
	if (!pmd_savedwrite(pmd))
1573 1574
		flags |= TNF_NO_GROUP;

1575 1576 1577 1578
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1579 1580
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1581
	if (target_nid == NUMA_NO_NODE) {
1582
		/* If the page was locked, there are no parallel migrations */
1583
		if (page_locked)
1584
			goto clear_pmdnuma;
1585
	}
1586

1587
	/* Migration could have started since the pmd_trans_migrating check */
1588
	if (!page_locked) {
1589
		page_nid = NUMA_NO_NODE;
1590 1591
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1592
		spin_unlock(vmf->ptl);
1593
		put_and_wait_on_page_locked(page);
1594 1595 1596
		goto out;
	}

1597 1598 1599 1600
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1601
	get_page(page);
J
Jan Kara 已提交
1602
	spin_unlock(vmf->ptl);
1603
	anon_vma = page_lock_anon_vma_read(page);
1604

P
Peter Zijlstra 已提交
1605
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1606 1607
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1608 1609
		unlock_page(page);
		put_page(page);
1610
		page_nid = NUMA_NO_NODE;
1611
		goto out_unlock;
1612
	}
1613

1614 1615 1616
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1617
		page_nid = NUMA_NO_NODE;
1618 1619 1620
		goto clear_pmdnuma;
	}

1621 1622 1623 1624 1625 1626
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1627 1628 1629 1630
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1631
	 */
1632
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1633
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1646

1647 1648
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1649
	 * and access rights restored.
1650
	 */
J
Jan Kara 已提交
1651
	spin_unlock(vmf->ptl);
1652

K
Kirill A. Shutemov 已提交
1653
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1654
				vmf->pmd, pmd, vmf->address, page, target_nid);
1655 1656
	if (migrated) {
		flags |= TNF_MIGRATED;
1657
		page_nid = target_nid;
1658 1659
	} else
		flags |= TNF_MIGRATE_FAIL;
1660

1661
	goto out;
1662
clear_pmdnuma:
1663
	BUG_ON(!PageLocked(page));
1664
	was_writable = pmd_savedwrite(pmd);
1665
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1666
	pmd = pmd_mkyoung(pmd);
1667 1668
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1669 1670
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1671
	unlock_page(page);
1672
out_unlock:
J
Jan Kara 已提交
1673
	spin_unlock(vmf->ptl);
1674 1675 1676 1677 1678

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1679
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1680
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1681
				flags);
1682

1683 1684 1685
	return 0;
}

1686 1687 1688 1689 1690
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1691 1692 1693 1694 1695 1696
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1697
	bool ret = false;
1698

1699
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1700

1701 1702
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1703
		goto out_unlocked;
1704 1705

	orig_pmd = *pmd;
1706
	if (is_huge_zero_pmd(orig_pmd))
1707 1708
		goto out;

1709 1710 1711 1712 1713 1714
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1733
		split_huge_page(page);
1734
		unlock_page(page);
1735
		put_page(page);
1736 1737 1738 1739 1740 1741 1742 1743
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1744
		pmdp_invalidate(vma, addr, pmd);
1745 1746 1747 1748 1749 1750
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1751 1752

	mark_page_lazyfree(page);
1753
	ret = true;
1754 1755 1756 1757 1758 1759
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1760 1761 1762 1763 1764 1765
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1766
	mm_dec_nr_ptes(mm);
1767 1768
}

1769
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1770
		 pmd_t *pmd, unsigned long addr)
1771
{
1772
	pmd_t orig_pmd;
1773
	spinlock_t *ptl;
1774

1775
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1776

1777 1778
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
1790 1791
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1792 1793
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1794
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1795
	} else if (is_huge_zero_pmd(orig_pmd)) {
1796
		zap_deposited_table(tlb->mm, pmd);
1797
		spin_unlock(ptl);
1798
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1799
	} else {
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1818
		if (PageAnon(page)) {
1819
			zap_deposited_table(tlb->mm, pmd);
1820 1821
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1822 1823
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1824
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1825
		}
1826

1827
		spin_unlock(ptl);
1828 1829
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1830
	}
1831
	return 1;
1832 1833
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1860
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1861
		  unsigned long new_addr, unsigned long old_end,
1862
		  pmd_t *old_pmd, pmd_t *new_pmd)
1863
{
1864
	spinlock_t *old_ptl, *new_ptl;
1865 1866
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1867
	bool force_flush = false;
1868 1869 1870

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1871
	    old_end - old_addr < HPAGE_PMD_SIZE)
1872
		return false;
1873 1874 1875 1876 1877 1878 1879

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1880
		return false;
1881 1882
	}

1883 1884 1885 1886
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1887 1888
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1889 1890 1891
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1892
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1893
		if (pmd_present(pmd))
1894
			force_flush = true;
1895
		VM_BUG_ON(!pmd_none(*new_pmd));
1896

1897
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1898
			pgtable_t pgtable;
1899 1900 1901
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1902 1903
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1904 1905
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1906 1907
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1908
		spin_unlock(old_ptl);
1909
		return true;
1910
	}
1911
	return false;
1912 1913
}

1914 1915 1916 1917 1918 1919
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1920
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1921
		unsigned long addr, pgprot_t newprot, int prot_numa)
1922 1923
{
	struct mm_struct *mm = vma->vm_mm;
1924
	spinlock_t *ptl;
1925 1926 1927
	pmd_t entry;
	bool preserve_write;
	int ret;
1928

1929
	ptl = __pmd_trans_huge_lock(pmd, vma);
1930 1931
	if (!ptl)
		return 0;
1932

1933 1934
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1935

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1949 1950
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1951 1952 1953 1954 1955 1956
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1957 1958 1959 1960 1961 1962 1963
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1964

1965 1966 1967
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1989
	entry = pmdp_invalidate(vma, addr, pmd);
1990

1991 1992 1993 1994 1995 1996 1997 1998
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1999 2000 2001 2002
	return ret;
}

/*
2003
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2004
 *
2005 2006
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
2007
 */
2008
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2009
{
2010 2011
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
2012 2013
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
2014 2015 2016
		return ptl;
	spin_unlock(ptl);
	return NULL;
2017 2018
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
2051
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2071
	count_vm_event(THP_SPLIT_PUD);
2072 2073 2074 2075 2076 2077 2078 2079

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
2080
	struct mmu_notifier_range range;
2081

2082
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2083
				address & HPAGE_PUD_MASK,
2084 2085 2086
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
2087 2088
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
2089
	__split_huge_pud_locked(vma, pud, range.start);
2090 2091 2092

out:
	spin_unlock(ptl);
2093 2094 2095 2096
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
2097
	mmu_notifier_invalidate_range_only_end(&range);
2098 2099 2100
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2101 2102 2103 2104 2105 2106 2107 2108
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2109 2110 2111 2112 2113 2114
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2115
	 * See Documentation/vm/mmu_notifier.rst
2116 2117
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2136
		unsigned long haddr, bool freeze)
2137 2138 2139 2140
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2141
	pmd_t old_pmd, _pmd;
2142
	bool young, write, soft_dirty, pmd_migration = false;
2143
	unsigned long addr;
2144 2145 2146 2147 2148
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2149 2150
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2151 2152 2153

	count_vm_event(THP_SPLIT_PMD);

2154 2155
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2156 2157 2158 2159 2160 2161
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2162 2163 2164
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
2165 2166
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2167 2168 2169 2170
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2171
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2172 2173
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2174 2175 2176 2177 2178 2179 2180 2181 2182
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2183 2184 2185
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2209
	if (unlikely(pmd_migration)) {
2210 2211
		swp_entry_t entry;

2212
		entry = pmd_to_swp_entry(old_pmd);
2213
		page = pfn_to_page(swp_offset(entry));
2214 2215 2216 2217
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2218
		page = pmd_page(old_pmd);
2219 2220 2221 2222 2223 2224
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2225
	VM_BUG_ON_PAGE(!page_count(page), page);
2226
	page_ref_add(page, HPAGE_PMD_NR - 1);
2227

2228 2229 2230 2231
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2232 2233 2234
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2235
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2236 2237 2238 2239 2240 2241
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2242
		if (freeze || pmd_migration) {
2243 2244 2245
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2246 2247
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2248
		} else {
2249
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2250
			entry = maybe_mkwrite(entry, vma);
2251 2252 2253 2254
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2255 2256
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2257
		}
2258
		pte = pte_offset_map(&_pmd, addr);
2259
		BUG_ON(!pte_none(*pte));
2260
		set_pte_at(mm, addr, pte, entry);
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2276
		__dec_node_page_state(page, NR_ANON_THPS);
2277 2278 2279 2280 2281 2282 2283 2284 2285
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2286 2287

	if (freeze) {
2288
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2289 2290 2291 2292
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2293 2294 2295
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2296
		unsigned long address, bool freeze, struct page *page)
2297 2298
{
	spinlock_t *ptl;
2299
	struct mmu_notifier_range range;
2300

2301
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2302
				address & HPAGE_PMD_MASK,
2303 2304 2305
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2306 2307 2308 2309 2310 2311 2312 2313 2314

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2315
	if (pmd_trans_huge(*pmd)) {
2316
		page = pmd_page(*pmd);
2317
		if (PageMlocked(page))
2318
			clear_page_mlock(page);
2319
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2320
		goto out;
2321
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2322
out:
2323
	spin_unlock(ptl);
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2337
	mmu_notifier_invalidate_range_only_end(&range);
2338 2339
}

2340 2341
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2342
{
2343
	pgd_t *pgd;
2344
	p4d_t *p4d;
2345
	pud_t *pud;
2346 2347
	pmd_t *pmd;

2348
	pgd = pgd_offset(vma->vm_mm, address);
2349 2350 2351
	if (!pgd_present(*pgd))
		return;

2352 2353 2354 2355 2356
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2357 2358 2359 2360
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2361

2362
	__split_huge_pmd(vma, pmd, address, freeze, page);
2363 2364
}

2365
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2378
		split_huge_pmd_address(vma, start, false, NULL);
2379 2380 2381 2382 2383 2384 2385 2386 2387

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2388
		split_huge_pmd_address(vma, end, false, NULL);
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2402
			split_huge_pmd_address(next, nstart, false, NULL);
2403 2404
	}
}
2405

2406
static void unmap_page(struct page *page)
2407
{
2408
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2409
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2410
	bool unmap_success;
2411 2412 2413

	VM_BUG_ON_PAGE(!PageHead(page), page);

2414
	if (PageAnon(page))
2415
		ttu_flags |= TTU_SPLIT_FREEZE;
2416

M
Minchan Kim 已提交
2417 2418
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2419 2420
}

2421
static void remap_page(struct page *page)
2422
{
2423
	int i;
2424 2425 2426 2427 2428 2429
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2430 2431
}

2432
static void __split_huge_page_tail(struct page *head, int tail,
2433 2434 2435 2436
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2437
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2438 2439

	/*
2440 2441 2442 2443
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2444 2445 2446 2447 2448
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2449
			 (1L << PG_swapcache) |
2450 2451 2452
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2453
			 (1L << PG_workingset) |
2454
			 (1L << PG_locked) |
2455 2456
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2457

2458 2459 2460 2461 2462 2463
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2464
	/* Page flags must be visible before we make the page non-compound. */
2465 2466
	smp_wmb();

2467 2468 2469 2470 2471 2472
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2473 2474
	clear_compound_head(page_tail);

2475 2476 2477 2478
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2479 2480 2481 2482 2483 2484
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2485 2486 2487 2488 2489 2490

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2491 2492 2493
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2494
static void __split_huge_page(struct page *page, struct list_head *list,
2495
		pgoff_t end, unsigned long flags)
2496 2497
{
	struct page *head = compound_head(page);
2498
	pg_data_t *pgdat = page_pgdat(head);
2499
	struct lruvec *lruvec;
2500
	int i;
2501

2502
	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2503 2504 2505 2506

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2507
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2508
		__split_huge_page_tail(head, i, lruvec, list);
2509 2510
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2511
			ClearPageDirty(head + i);
2512
			__delete_from_page_cache(head + i, NULL);
2513 2514
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2515 2516 2517
			put_page(head + i);
		}
	}
2518 2519

	ClearPageCompound(head);
2520 2521 2522

	split_page_owner(head, HPAGE_PMD_ORDER);

2523 2524
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2525
		/* Additional pin to swap cache */
2526 2527 2528 2529
		if (PageSwapCache(head))
			page_ref_add(head, 2);
		else
			page_ref_inc(head);
2530
	} else {
M
Matthew Wilcox 已提交
2531
		/* Additional pin to page cache */
2532
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2533
		xa_unlock(&head->mapping->i_pages);
2534 2535
	}

2536
	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2537

2538
	remap_page(head);
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2557 2558
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2559
	int i, compound, ret;
2560 2561 2562 2563 2564 2565

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2566
	compound = compound_mapcount(page);
2567
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2568 2569
		return compound;
	ret = compound;
2570 2571
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2572 2573 2574
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2575 2576 2577 2578 2579
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2638 2639 2640 2641 2642
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2643
	/* Additional pins from page cache */
2644 2645 2646 2647 2648 2649 2650 2651 2652
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2675
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2676 2677 2678
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2679
	bool mlocked;
2680
	unsigned long flags;
2681
	pgoff_t end;
2682 2683 2684 2685 2686

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2687 2688 2689
	if (PageWriteback(page))
		return -EBUSY;

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2704
		end = -1;
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2718 2719 2720 2721 2722 2723 2724 2725 2726

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2727 2728 2729
	}

	/*
2730
	 * Racy check if we can split the page, before unmap_page() will
2731 2732
	 * split PMDs
	 */
2733
	if (!can_split_huge_page(head, &extra_pins)) {
2734 2735 2736 2737
		ret = -EBUSY;
		goto out_unlock;
	}

2738
	mlocked = PageMlocked(page);
2739
	unmap_page(head);
2740 2741
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2742 2743 2744 2745
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2746
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2747
	spin_lock_irqsave(&pgdata->lru_lock, flags);
2748 2749

	if (mapping) {
M
Matthew Wilcox 已提交
2750
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2751 2752

		/*
M
Matthew Wilcox 已提交
2753
		 * Check if the head page is present in page cache.
2754 2755
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2756 2757
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2758 2759 2760
			goto fail;
	}

2761
	/* Prevent deferred_split_scan() touching ->_refcount */
2762
	spin_lock(&pgdata->split_queue_lock);
2763 2764
	count = page_count(head);
	mapcount = total_mapcount(head);
2765
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2766
		if (!list_empty(page_deferred_list(head))) {
2767
			pgdata->split_queue_len--;
2768 2769
			list_del(page_deferred_list(head));
		}
2770
		if (mapping)
2771
			__dec_node_page_state(page, NR_SHMEM_THPS);
2772
		spin_unlock(&pgdata->split_queue_lock);
2773
		__split_huge_page(page, list, end, flags);
2774 2775 2776 2777 2778 2779
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2780
	} else {
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
M
Matthew Wilcox 已提交
2791
			xa_unlock(&mapping->i_pages);
2792
		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2793
		remap_page(head);
2794 2795 2796 2797
		ret = -EBUSY;
	}

out_unlock:
2798 2799 2800 2801 2802 2803
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2804 2805 2806 2807
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2808 2809 2810

void free_transhuge_page(struct page *page)
{
2811
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2812 2813
	unsigned long flags;

2814
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2815
	if (!list_empty(page_deferred_list(page))) {
2816
		pgdata->split_queue_len--;
2817 2818
		list_del(page_deferred_list(page));
	}
2819
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2820 2821 2822 2823 2824
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2825
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2826 2827 2828 2829
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2830
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2831
	if (list_empty(page_deferred_list(page))) {
2832
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2833 2834
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2835
	}
2836
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2837 2838 2839 2840 2841
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2842
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2843
	return READ_ONCE(pgdata->split_queue_len);
2844 2845 2846 2847 2848
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2849
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2850 2851 2852 2853 2854
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2855
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2856
	/* Take pin on all head pages to avoid freeing them under us */
2857
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2858 2859
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2860 2861 2862 2863
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2864
			list_del_init(page_deferred_list(page));
2865
			pgdata->split_queue_len--;
2866
		}
2867 2868
		if (!--sc->nr_to_scan)
			break;
2869
	}
2870
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2871 2872 2873

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2874 2875
		if (!trylock_page(page))
			goto next;
2876 2877 2878 2879
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2880
next:
2881 2882 2883
		put_page(page);
	}

2884 2885 2886
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2887

2888 2889 2890 2891 2892 2893 2894
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2895 2896 2897 2898 2899 2900
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2901
	.flags = SHRINKER_NUMA_AWARE,
2902
};
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2928
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2941
	pr_info("%lu of %lu THP split\n", split, total);
2942 2943 2944 2945 2946 2947 2948 2949

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
2950 2951
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
2952 2953 2954 2955
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2966
	pmd_t pmdswp;
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
	pmdval = *pvmw->pmd;
	pmdp_invalidate(vma, address, pvmw->pmd);
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2977 2978 2979 2980
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3000 3001
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3002
	if (is_write_migration_entry(entry))
3003
		pmde = maybe_pmd_mkwrite(pmde, vma);
3004 3005

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3006 3007 3008 3009
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3010
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3011
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3012 3013 3014 3015
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif