huge_memory.c 84.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/mm.h>
11
#include <linux/sched/coredump.h>
12
#include <linux/sched/numa_balancing.h>
13 14 15 16 17
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
18
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
19
#include <linux/mm_inline.h>
20
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
21
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
22
#include <linux/khugepaged.h>
23
#include <linux/freezer.h>
24
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
25
#include <linux/mman.h>
26
#include <linux/memremap.h>
R
Ralf Baechle 已提交
27
#include <linux/pagemap.h>
28
#include <linux/debugfs.h>
29
#include <linux/migrate.h>
30
#include <linux/hashtable.h>
31
#include <linux/userfaultfd_k.h>
32
#include <linux/page_idle.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/oom.h>
35
#include <linux/numa.h>
36
#include <linux/page_owner.h>
37
#include <linux/sched/sysctl.h>
38

39 40 41 42
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

43 44 45
#define CREATE_TRACE_POINTS
#include <trace/events/thp.h>

A
Andrea Arcangeli 已提交
46
/*
47 48 49 50
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
51 52
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
53
 */
54
unsigned long transparent_hugepage_flags __read_mostly =
55
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
56
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
57 58 59 60
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
61
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
62 63
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
64

65
static struct shrinker deferred_split_shrinker;
66

67
static atomic_t huge_zero_refcount;
68
struct page *huge_zero_page __read_mostly;
69
unsigned long huge_zero_pfn __read_mostly = ~0UL;
70

71 72 73 74 75 76 77 78
static inline bool file_thp_enabled(struct vm_area_struct *vma)
{
	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
	       (vma->vm_flags & VM_EXEC);
}

bool transparent_hugepage_active(struct vm_area_struct *vma)
79
{
80 81 82 83 84
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
85 86
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
87 88
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
89 90
	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
		return file_thp_enabled(vma);
91 92 93 94

	return false;
}

95
static bool get_huge_zero_page(void)
96 97 98 99
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
100
		return true;
101 102

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
103
			HPAGE_PMD_ORDER);
104 105
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
106
		return false;
107 108
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
109
	preempt_disable();
110
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
111
		preempt_enable();
112
		__free_pages(zero_page, compound_order(zero_page));
113 114
		goto retry;
	}
115
	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
116 117 118 119

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
120
	return true;
121 122
}

123
static void put_huge_zero_page(void)
124
{
125 126 127 128 129
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
130 131
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

152 153
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
154
{
155 156 157
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
158

159 160 161
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
162
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
163 164
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
165
		WRITE_ONCE(huge_zero_pfn, ~0UL);
166
		__free_pages(zero_page, compound_order(zero_page));
167
		return HPAGE_PMD_NR;
168 169 170
	}

	return 0;
171 172
}

173
static struct shrinker huge_zero_page_shrinker = {
174 175
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
176 177 178
	.seeks = DEFAULT_SEEKS,
};

179 180 181 182
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
183 184
	const char *output;

185
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
186 187 188 189
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
190
	else
191 192 193
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
194
}
195

196 197 198 199
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
200
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
201

202
	if (sysfs_streq(buf, "always")) {
203 204
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
205
	} else if (sysfs_streq(buf, "madvise")) {
206 207
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
208
	} else if (sysfs_streq(buf, "never")) {
209 210 211 212
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
213 214

	if (ret > 0) {
215
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
216 217 218 219
		if (err)
			ret = err;
	}
	return ret;
220 221 222 223
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

224
ssize_t single_hugepage_flag_show(struct kobject *kobj,
225 226
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
227
{
228 229
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
230
}
231

232
ssize_t single_hugepage_flag_store(struct kobject *kobj,
233 234 235 236
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
237 238 239 240 241 242 243 244 245 246
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
247
		set_bit(flag, &transparent_hugepage_flags);
248
	else
249 250 251 252 253 254 255 256
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
275
}
276

277 278 279 280
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
281
	if (sysfs_streq(buf, "always")) {
282 283 284 285
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286
	} else if (sysfs_streq(buf, "defer+madvise")) {
287 288 289 290
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
291
	} else if (sysfs_streq(buf, "defer")) {
292 293 294 295
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
296
	} else if (sysfs_streq(buf, "madvise")) {
297 298 299 300
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
301
	} else if (sysfs_streq(buf, "never")) {
302 303 304 305 306 307 308 309
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
310 311 312 313
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

314
static ssize_t use_zero_page_show(struct kobject *kobj,
315
				  struct kobj_attribute *attr, char *buf)
316
{
317
	return single_hugepage_flag_show(kobj, attr, buf,
318
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
319 320 321 322
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
323
	return single_hugepage_flag_store(kobj, attr, buf, count,
324 325 326 327
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
328 329

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
330
				   struct kobj_attribute *attr, char *buf)
331
{
332
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
333 334 335 336
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

337 338 339
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
340
	&use_zero_page_attr.attr,
341
	&hpage_pmd_size_attr.attr,
342
#ifdef CONFIG_SHMEM
343
	&shmem_enabled_attr.attr,
344 345 346 347
#endif
	NULL,
};

348
static const struct attribute_group hugepage_attr_group = {
349
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
350 351
};

S
Shaohua Li 已提交
352
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
353 354 355
{
	int err;

S
Shaohua Li 已提交
356 357
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
358
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
359
		return -ENOMEM;
A
Andrea Arcangeli 已提交
360 361
	}

S
Shaohua Li 已提交
362
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
363
	if (err) {
364
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
365
		goto delete_obj;
A
Andrea Arcangeli 已提交
366 367
	}

S
Shaohua Li 已提交
368
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
369
	if (err) {
370
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
371
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
372
	}
S
Shaohua Li 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
406 407 408 409 410
		/*
		 * Hardware doesn't support hugepages, hence disable
		 * DAX PMD support.
		 */
		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
S
Shaohua Li 已提交
411 412 413
		return -EINVAL;
	}

414 415 416 417 418 419 420 421 422 423
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
424 425
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
426
		goto err_sysfs;
A
Andrea Arcangeli 已提交
427

428
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
429
	if (err)
430
		goto err_slab;
A
Andrea Arcangeli 已提交
431

432 433 434
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
435 436 437
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
438

439 440 441 442 443
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
444
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
445
		transparent_hugepage_flags = 0;
446 447
		return 0;
	}
448

449
	err = start_stop_khugepaged();
450 451
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
452

S
Shaohua Li 已提交
453
	return 0;
454
err_khugepaged:
455 456
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
457 458
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
459
	khugepaged_destroy();
460
err_slab:
S
Shaohua Li 已提交
461
	hugepage_exit_sysfs(hugepage_kobj);
462
err_sysfs:
A
Andrea Arcangeli 已提交
463
	return err;
464
}
465
subsys_initcall(hugepage_init);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
493
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
494 495 496 497
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

498
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
499
{
500
	if (likely(vma->vm_flags & VM_WRITE))
501 502 503 504
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

505 506
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
507
{
508
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
509 510 511 512 513 514
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
515
}
516 517 518 519 520 521 522 523
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
524 525 526 527 528 529 530 531 532 533 534 535

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

536
static inline bool is_transparent_hugepage(struct page *page)
537 538
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
539
		return false;
540 541 542 543 544 545

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}

546 547
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
548 549 550 551
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
552
	unsigned long len_pad, ret;
553 554 555 556 557 558 559 560

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

561
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
562
					      off >> PAGE_SHIFT, flags);
563 564 565 566 567 568

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
569 570
		return 0;

571 572 573 574 575 576 577 578 579
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
580 581 582 583 584
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
585
	unsigned long ret;
586 587
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

588 589 590
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
591

592 593 594 595
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

596 597
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
598
{
J
Jan Kara 已提交
599
	struct vm_area_struct *vma = vmf->vma;
600
	pgtable_t pgtable;
J
Jan Kara 已提交
601
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
602
	vm_fault_t ret = 0;
603

604
	VM_BUG_ON_PAGE(!PageCompound(page), page);
605

606
	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
607 608
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
609
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
610 611
		return VM_FAULT_FALLBACK;
	}
612
	cgroup_throttle_swaprate(page, gfp);
613

614
	pgtable = pte_alloc_one(vma->vm_mm);
615
	if (unlikely(!pgtable)) {
616 617
		ret = VM_FAULT_OOM;
		goto release;
618
	}
619

620
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
621 622 623 624 625
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
626 627
	__SetPageUptodate(page);

J
Jan Kara 已提交
628 629
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
630
		goto unlock_release;
631 632
	} else {
		pmd_t entry;
633

634 635 636 637
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

638 639
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
640
			spin_unlock(vmf->ptl);
641
			put_page(page);
K
Kirill A. Shutemov 已提交
642
			pte_free(vma->vm_mm, pgtable);
643 644 645
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
646 647
		}

648
		entry = mk_huge_pmd(page, vma->vm_page_prot);
649
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650
		page_add_new_anon_rmap(page, vma, haddr, true);
651
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
652 653
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
654
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
K
Kirill A. Shutemov 已提交
655
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
657
		spin_unlock(vmf->ptl);
658
		count_vm_event(THP_FAULT_ALLOC);
659
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
660 661
	}

662
	return 0;
663 664 665 666 667 668 669 670
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

671 672
}

673
/*
674 675 676 677 678 679 680
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
681
 */
682
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
683
{
684
	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
685

686
	/* Always do synchronous compaction */
687 688
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
689 690

	/* Kick kcompactd and fail quickly */
691
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
692
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
693 694

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
695
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
696 697 698
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
699 700

	/* Only do synchronous compaction if madvised */
701
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
702 703
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
704

705
	return GFP_TRANSHUGE_LIGHT;
706 707
}

708
/* Caller must hold page table lock. */
709
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
710
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
711
		struct page *zero_page)
712 713
{
	pmd_t entry;
A
Andrew Morton 已提交
714
	if (!pmd_none(*pmd))
715
		return;
716
	entry = mk_pmd(zero_page, vma->vm_page_prot);
717
	entry = pmd_mkhuge(entry);
718 719
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
720
	set_pmd_at(mm, haddr, pmd, entry);
721
	mm_inc_nr_ptes(mm);
722 723
}

724
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
725
{
J
Jan Kara 已提交
726
	struct vm_area_struct *vma = vmf->vma;
727
	gfp_t gfp;
728
	struct page *page;
J
Jan Kara 已提交
729
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
730

731
	if (!transhuge_vma_suitable(vma, haddr))
732
		return VM_FAULT_FALLBACK;
733 734
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
735
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
736
		return VM_FAULT_OOM;
J
Jan Kara 已提交
737
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
738
			!mm_forbids_zeropage(vma->vm_mm) &&
739 740 741
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
742
		vm_fault_t ret;
743
		pgtable = pte_alloc_one(vma->vm_mm);
744
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
745
			return VM_FAULT_OOM;
746
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
747
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
748
			pte_free(vma->vm_mm, pgtable);
749
			count_vm_event(THP_FAULT_FALLBACK);
750
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
751
		}
J
Jan Kara 已提交
752
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
753
		ret = 0;
J
Jan Kara 已提交
754
		if (pmd_none(*vmf->pmd)) {
755 756 757
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
758
				pte_free(vma->vm_mm, pgtable);
759
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
760
				spin_unlock(vmf->ptl);
761
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
762
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
763 764
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
765
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
766
						   haddr, vmf->pmd, zero_page);
767
				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
J
Jan Kara 已提交
768
				spin_unlock(vmf->ptl);
769
			}
770
		} else {
J
Jan Kara 已提交
771
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
772
			pte_free(vma->vm_mm, pgtable);
773
		}
774
		return ret;
775
	}
776
	gfp = vma_thp_gfp_mask(vma);
777
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
778 779
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
780
		return VM_FAULT_FALLBACK;
781
	}
782
	prep_transhuge_page(page);
J
Jan Kara 已提交
783
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
784 785
}

786
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
787 788
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
789 790 791 792 793 794
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

810 811 812
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
813
	if (write) {
814 815
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
816
	}
817 818 819

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
820
		mm_inc_nr_ptes(mm);
821
		pgtable = NULL;
822 823
	}

824 825
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
826 827

out_unlock:
M
Matthew Wilcox 已提交
828
	spin_unlock(ptl);
829 830
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
831 832
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
848
{
849 850
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
851
	pgtable_t pgtable = NULL;
852

M
Matthew Wilcox 已提交
853 854 855 856 857
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
858 859
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
860 861 862 863 864 865
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
866

867
	if (arch_needs_pgtable_deposit()) {
868
		pgtable = pte_alloc_one(vma->vm_mm);
869 870 871 872
		if (!pgtable)
			return VM_FAULT_OOM;
	}

873 874
	track_pfn_insert(vma, &pgprot, pfn);

875
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
876
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
877
}
878
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
879

880
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
881
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
882
{
883
	if (likely(vma->vm_flags & VM_WRITE))
884 885 886 887 888 889 890 891 892 893 894 895
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
896 897 898 899 900 901 902 903 904 905 906 907 908 909
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

910 911 912 913
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
914 915
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
916 917 918
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
919 920

out_unlock:
921 922 923
	spin_unlock(ptl);
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
939
{
940 941 942
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

943 944 945 946 947
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
948 949
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
950 951 952 953 954 955 956 957 958
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

959
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
960 961
	return VM_FAULT_NOPAGE;
}
962
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
963 964
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

965
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
966
		pmd_t *pmd, int flags)
967 968 969
{
	pmd_t _pmd;

970 971 972
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
973
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
974
				pmd, _pmd, flags & FOLL_WRITE))
975 976 977 978
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
979
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
980 981 982 983 984 985 986
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

987 988 989 990 991 992
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
993 994 995 996 997
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

998
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
999 1000 1001 1002 1003 1004 1005 1006
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1007
		touch_pmd(vma, addr, pmd, flags);
1008 1009 1010 1011 1012

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1013
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1014 1015 1016
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017 1018
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1019 1020
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1021 1022
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1023 1024 1025 1026

	return page;
}

1027 1028
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029
		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030
{
1031
	spinlock_t *dst_ptl, *src_ptl;
1032 1033
	struct page *src_page;
	pmd_t pmd;
1034
	pgtable_t pgtable = NULL;
1035
	int ret = -ENOMEM;
1036

1037
	/* Skip if can be re-fill on fault */
1038
	if (!vma_is_anonymous(dst_vma))
1039 1040
		return 0;

1041
	pgtable = pte_alloc_one(dst_mm);
1042 1043
	if (unlikely(!pgtable))
		goto out;
1044

1045 1046 1047
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048 1049 1050

	ret = -EAGAIN;
	pmd = *src_pmd;
1051 1052 1053 1054 1055 1056

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 1058 1059
		if (is_writable_migration_entry(entry)) {
			entry = make_readable_migration_entry(
							swp_offset(entry));
1060
			pmd = swp_entry_to_pmd(entry);
1061 1062
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1063 1064
			if (pmd_swp_uffd_wp(*src_pmd))
				pmd = pmd_swp_mkuffd_wp(pmd);
1065 1066
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1067
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068
		mm_inc_nr_ptes(dst_mm);
1069
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070 1071
		if (!userfaultfd_wp(dst_vma))
			pmd = pmd_swp_clear_uffd_wp(pmd);
1072 1073 1074 1075 1076 1077
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1078
	if (unlikely(!pmd_trans_huge(pmd))) {
1079 1080 1081
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1082
	/*
1083
	 * When page table lock is held, the huge zero pmd should not be
1084 1085 1086 1087
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1088 1089 1090 1091 1092
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1093 1094
		mm_get_huge_zero_page(dst_mm);
		goto out_zero_page;
1095
	}
1096

1097 1098
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099 1100 1101 1102 1103 1104 1105 1106

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
1107
	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1108 1109 1110
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
1111
		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1112 1113 1114
		return -EAGAIN;
	}

1115 1116 1117
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118
out_zero_page:
1119
	mm_inc_nr_ptes(dst_mm);
1120
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1121
	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122 1123
	if (!userfaultfd_wp(dst_vma))
		pmd = pmd_clear_uffd_wp(pmd);
1124 1125 1126 1127 1128
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1129 1130
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1131 1132 1133 1134
out:
	return ret;
}

1135 1136
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1137
		pud_t *pud, int flags)
1138 1139 1140
{
	pud_t _pud;

1141 1142 1143
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1144
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1145
				pud, _pud, flags & FOLL_WRITE))
1146 1147 1148 1149
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1150
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1151 1152 1153 1154 1155 1156 1157
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1158
	if (flags & FOLL_WRITE && !pud_write(*pud))
1159 1160
		return NULL;

J
John Hubbard 已提交
1161 1162 1163 1164 1165
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1166 1167 1168 1169 1170 1171
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1172
		touch_pud(vma, addr, pud, flags);
1173 1174 1175 1176

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1177 1178
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1179
	 */
J
John Hubbard 已提交
1180
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1181 1182 1183
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1184 1185
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1186 1187
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1188 1189
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1220
	/* Please refer to comments in copy_huge_pmd() */
1221
	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1222 1223 1224 1225 1226 1227
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1261
void huge_pmd_set_accessed(struct vm_fault *vmf)
1262 1263 1264
{
	pmd_t entry;
	unsigned long haddr;
1265
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1266
	pmd_t orig_pmd = vmf->orig_pmd;
1267

J
Jan Kara 已提交
1268 1269
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270 1271 1272
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1273 1274
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1275
	haddr = vmf->address & HPAGE_PMD_MASK;
1276
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1277
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1278 1279

unlock:
J
Jan Kara 已提交
1280
	spin_unlock(vmf->ptl);
1281 1282
}

1283
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1284
{
J
Jan Kara 已提交
1285
	struct vm_area_struct *vma = vmf->vma;
1286
	struct page *page;
J
Jan Kara 已提交
1287
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1288
	pmd_t orig_pmd = vmf->orig_pmd;
1289

J
Jan Kara 已提交
1290
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1291
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1292

1293
	if (is_huge_zero_pmd(orig_pmd))
1294 1295
		goto fallback;

J
Jan Kara 已提交
1296
	spin_lock(vmf->ptl);
1297 1298 1299 1300 1301

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1302 1303

	page = pmd_page(orig_pmd);
1304
	VM_BUG_ON_PAGE(!PageHead(page), page);
1305 1306

	/* Lock page for reuse_swap_page() */
1307 1308 1309 1310 1311 1312
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1313
			spin_unlock(vmf->ptl);
1314 1315
			unlock_page(page);
			put_page(page);
1316
			return 0;
1317 1318 1319
		}
		put_page(page);
	}
1320 1321 1322 1323 1324

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1325
	if (reuse_swap_page(page)) {
1326 1327
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1328
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1329
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1330
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1331
		unlock_page(page);
J
Jan Kara 已提交
1332
		spin_unlock(vmf->ptl);
1333
		return VM_FAULT_WRITE;
1334
	}
1335 1336

	unlock_page(page);
J
Jan Kara 已提交
1337
	spin_unlock(vmf->ptl);
1338 1339 1340
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1341 1342
}

1343
/*
1344 1345
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1346 1347 1348
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1349 1350
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1351 1352
}

1353
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1354 1355 1356 1357
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1358
	struct mm_struct *mm = vma->vm_mm;
1359 1360
	struct page *page = NULL;

1361
	assert_spin_locked(pmd_lockptr(mm, pmd));
1362

1363
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1364 1365
		goto out;

1366 1367 1368 1369
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1370
	/* Full NUMA hinting faults to serialise migration in fault paths */
1371
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1372 1373
		goto out;

1374
	page = pmd_page(*pmd);
1375
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1376 1377 1378 1379

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1380
	if (flags & FOLL_TOUCH)
1381
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1382

1383
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1384
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1385 1386 1387 1388 1389

out:
	return page;
}

1390
/* NUMA hinting page fault entry point for trans huge pmds */
1391
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1392
{
J
Jan Kara 已提交
1393
	struct vm_area_struct *vma = vmf->vma;
Y
Yang Shi 已提交
1394 1395
	pmd_t oldpmd = vmf->orig_pmd;
	pmd_t pmd;
1396
	struct page *page;
J
Jan Kara 已提交
1397
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
Y
Yang Shi 已提交
1398
	int page_nid = NUMA_NO_NODE;
1399
	int target_nid, last_cpupid = -1;
1400
	bool migrated = false;
Y
Yang Shi 已提交
1401
	bool was_writable = pmd_savedwrite(oldpmd);
1402
	int flags = 0;
1403

J
Jan Kara 已提交
1404
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
Y
Yang Shi 已提交
1405
	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
J
Jan Kara 已提交
1406
		spin_unlock(vmf->ptl);
1407 1408 1409
		goto out;
	}

Y
Yang Shi 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	page = vm_normal_page_pmd(vma, haddr, pmd);
	if (!page)
		goto out_map;

	/* See similar comment in do_numa_page for explanation */
	if (!was_writable)
		flags |= TNF_NO_GROUP;

	page_nid = page_to_nid(page);
	last_cpupid = page_cpupid_last(page);
	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
				       &flags);

	if (target_nid == NUMA_NO_NODE) {
		put_page(page);
		goto out_map;
	}

J
Jan Kara 已提交
1429
	spin_unlock(vmf->ptl);
1430

Y
Yang Shi 已提交
1431
	migrated = migrate_misplaced_page(page, vma, target_nid);
1432 1433
	if (migrated) {
		flags |= TNF_MIGRATED;
1434
		page_nid = target_nid;
Y
Yang Shi 已提交
1435
	} else {
1436
		flags |= TNF_MIGRATE_FAIL;
Y
Yang Shi 已提交
1437 1438 1439 1440 1441 1442 1443
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
			spin_unlock(vmf->ptl);
			goto out;
		}
		goto out_map;
	}
1444 1445

out:
1446
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1447
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1448
				flags);
1449

1450
	return 0;
Y
Yang Shi 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

out_map:
	/* Restore the PMD */
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	pmd = pmd_mkyoung(pmd);
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
	spin_unlock(vmf->ptl);
	goto out;
1462 1463
}

1464 1465 1466 1467 1468
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1469 1470 1471 1472 1473 1474
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1475
	bool ret = false;
1476

1477
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1478

1479 1480
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1481
		goto out_unlocked;
1482 1483

	orig_pmd = *pmd;
1484
	if (is_huge_zero_pmd(orig_pmd))
1485 1486
		goto out;

1487 1488 1489 1490 1491 1492
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1493 1494 1495 1496 1497
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
1498
	if (total_mapcount(page) != 1)
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1511
		split_huge_page(page);
1512
		unlock_page(page);
1513
		put_page(page);
1514 1515 1516 1517 1518 1519 1520 1521
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1522
		pmdp_invalidate(vma, addr, pmd);
1523 1524 1525 1526 1527 1528
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1529 1530

	mark_page_lazyfree(page);
1531
	ret = true;
1532 1533 1534 1535 1536 1537
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1538 1539 1540 1541 1542 1543
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1544
	mm_dec_nr_ptes(mm);
1545 1546
}

1547
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1548
		 pmd_t *pmd, unsigned long addr)
1549
{
1550
	pmd_t orig_pmd;
1551
	spinlock_t *ptl;
1552

1553
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1554

1555 1556
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1557 1558 1559 1560 1561 1562 1563
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1564 1565
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1566
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1567
	if (vma_is_special_huge(vma)) {
1568 1569
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1570 1571
		spin_unlock(ptl);
	} else if (is_huge_zero_pmd(orig_pmd)) {
1572
		zap_deposited_table(tlb->mm, pmd);
1573 1574
		spin_unlock(ptl);
	} else {
1575 1576 1577 1578 1579
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
1580
			page_remove_rmap(page, vma, true);
1581 1582 1583 1584 1585 1586 1587
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
1588
			page = pfn_swap_entry_to_page(entry);
1589 1590 1591 1592
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1593
		if (PageAnon(page)) {
1594
			zap_deposited_table(tlb->mm, pmd);
1595 1596
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1597 1598
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1599
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1600
		}
1601

1602
		spin_unlock(ptl);
1603 1604
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1605
	}
1606
	return 1;
1607 1608
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1635
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1636
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1637
{
1638
	spinlock_t *old_ptl, *new_ptl;
1639 1640
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1641
	bool force_flush = false;
1642 1643 1644 1645 1646 1647 1648

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1649
		return false;
1650 1651
	}

1652 1653
	/*
	 * We don't have to worry about the ordering of src and dst
1654
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1655
	 */
1656 1657
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1658 1659 1660
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1661
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1662
		if (pmd_present(pmd))
1663
			force_flush = true;
1664
		VM_BUG_ON(!pmd_none(*new_pmd));
1665

1666
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1667
			pgtable_t pgtable;
1668 1669 1670
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1671 1672
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1673 1674
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1675 1676
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1677
		spin_unlock(old_ptl);
1678
		return true;
1679
	}
1680
	return false;
1681 1682
}

1683 1684 1685
/*
 * Returns
 *  - 0 if PMD could not be locked
I
Ingo Molnar 已提交
1686
 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1687
 *      or if prot_numa but THP migration is not supported
I
Ingo Molnar 已提交
1688
 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1689
 */
1690
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1691
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1692 1693
{
	struct mm_struct *mm = vma->vm_mm;
1694
	spinlock_t *ptl;
1695 1696 1697
	pmd_t entry;
	bool preserve_write;
	int ret;
1698
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1699 1700
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1701

1702 1703 1704
	if (prot_numa && !thp_migration_supported())
		return 1;

1705
	ptl = __pmd_trans_huge_lock(pmd, vma);
1706 1707
	if (!ptl)
		return 0;
1708

1709 1710
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1711

1712 1713 1714 1715 1716
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1717
		if (is_writable_migration_entry(entry)) {
1718 1719 1720 1721 1722
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
1723 1724
			entry = make_readable_migration_entry(
							swp_offset(entry));
1725
			newpmd = swp_entry_to_pmd(entry);
1726 1727
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1728 1729
			if (pmd_swp_uffd_wp(*pmd))
				newpmd = pmd_swp_mkuffd_wp(newpmd);
1730 1731 1732 1733 1734 1735
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1736 1737 1738 1739 1740 1741 1742 1743 1744
	if (prot_numa) {
		struct page *page;
		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (is_huge_zero_pmd(*pmd))
			goto unlock;
1745

1746 1747
		if (pmd_protnone(*pmd))
			goto unlock;
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757
		page = pmd_page(*pmd);
		/*
		 * Skip scanning top tier node if normal numa
		 * balancing is disabled
		 */
		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
		    node_is_toptier(page_to_nid(page)))
			goto unlock;
	}
1758
	/*
1759
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1760
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1761
	 * which is also under mmap_read_lock(mm):
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1779
	entry = pmdp_invalidate(vma, addr, pmd);
1780

1781 1782 1783
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1795 1796 1797 1798 1799
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1800 1801 1802 1803
	return ret;
}

/*
1804
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1805
 *
1806 1807
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1808
 */
1809
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1810
{
1811 1812
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1813 1814
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1815 1816 1817
		return ptl;
	spin_unlock(ptl);
	return NULL;
1818 1819
}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1852
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1853
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1854
	if (vma_is_special_huge(vma)) {
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1872
	count_vm_event(THP_SPLIT_PUD);
1873 1874 1875 1876 1877 1878 1879 1880

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1881
	struct mmu_notifier_range range;
1882

1883
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1884
				address & HPAGE_PUD_MASK,
1885 1886 1887
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1888 1889
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1890
	__split_huge_pud_locked(vma, pud, range.start);
1891 1892 1893

out:
	spin_unlock(ptl);
1894 1895 1896 1897
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1898
	mmu_notifier_invalidate_range_only_end(&range);
1899 1900 1901
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1902 1903 1904 1905 1906 1907 1908 1909
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1910 1911 1912 1913 1914 1915
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1916
	 * See Documentation/vm/mmu_notifier.rst
1917 1918
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1937
		unsigned long haddr, bool freeze)
1938 1939 1940 1941
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
1942
	pmd_t old_pmd, _pmd;
1943
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1944
	unsigned long addr;
1945 1946 1947 1948 1949
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1950 1951
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
1952 1953 1954

	count_vm_event(THP_SPLIT_PMD);

1955
	if (!vma_is_anonymous(vma)) {
1956
		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1957 1958 1959 1960 1961 1962
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
1963
		if (vma_is_special_huge(vma))
1964
			return;
1965 1966 1967 1968
		if (unlikely(is_pmd_migration_entry(old_pmd))) {
			swp_entry_t entry;

			entry = pmd_to_swp_entry(old_pmd);
1969
			page = pfn_swap_entry_to_page(entry);
1970 1971 1972 1973 1974 1975
		} else {
			page = pmd_page(old_pmd);
			if (!PageDirty(page) && pmd_dirty(old_pmd))
				set_page_dirty(page);
			if (!PageReferenced(page) && pmd_young(old_pmd))
				SetPageReferenced(page);
1976
			page_remove_rmap(page, vma, true);
1977 1978
			put_page(page);
		}
1979
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
1980
		return;
1981 1982
	}

1983
	if (is_huge_zero_pmd(*pmd)) {
1984 1985 1986 1987 1988 1989 1990 1991 1992
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
1993 1994 1995
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

1996 1997 1998 1999 2000 2001 2002 2003
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2004 2005
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2019
	if (unlikely(pmd_migration)) {
2020 2021
		swp_entry_t entry;

2022
		entry = pmd_to_swp_entry(old_pmd);
2023
		page = pfn_swap_entry_to_page(entry);
2024
		write = is_writable_migration_entry(entry);
2025 2026
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2027
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2028
	} else {
2029
		page = pmd_page(old_pmd);
2030 2031 2032 2033 2034
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2035
		uffd_wp = pmd_uffd_wp(old_pmd);
2036 2037
		VM_BUG_ON_PAGE(!page_count(page), page);
		page_ref_add(page, HPAGE_PMD_NR - 1);
2038
	}
2039

2040 2041 2042 2043
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2044 2045 2046
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2047
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2048 2049 2050 2051 2052 2053
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2054
		if (freeze || pmd_migration) {
2055
			swp_entry_t swp_entry;
2056 2057 2058 2059 2060 2061
			if (write)
				swp_entry = make_writable_migration_entry(
							page_to_pfn(page + i));
			else
				swp_entry = make_readable_migration_entry(
							page_to_pfn(page + i));
2062
			entry = swp_entry_to_pte(swp_entry);
2063 2064
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2065 2066
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2067
		} else {
2068
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2069
			entry = maybe_mkwrite(entry, vma);
2070 2071 2072 2073
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2074 2075
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2076 2077
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2078
		}
2079
		pte = pte_offset_map(&_pmd, addr);
2080
		BUG_ON(!pte_none(*pte));
2081
		set_pte_at(mm, addr, pte, entry);
2082
		if (!pmd_migration)
2083
			atomic_inc(&page[i]._mapcount);
2084
		pte_unmap(pte);
2085 2086
	}

2087 2088 2089 2090 2091 2092 2093
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2094
			for (i = 0; i < HPAGE_PMD_NR; i++)
2095 2096 2097 2098 2099 2100
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
2101 2102
			__mod_lruvec_page_state(page, NR_ANON_THPS,
						-HPAGE_PMD_NR);
2103 2104 2105 2106 2107
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2108
		}
2109
		unlock_page_memcg(page);
2110 2111 2112

		/* Above is effectively page_remove_rmap(page, vma, true) */
		munlock_vma_page(page, vma, true);
2113 2114 2115 2116
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2117 2118

	if (freeze) {
2119
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2120
			page_remove_rmap(page + i, vma, false);
2121 2122 2123
			put_page(page + i);
		}
	}
2124 2125 2126
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2127
		unsigned long address, bool freeze, struct folio *folio)
2128 2129
{
	spinlock_t *ptl;
2130
	struct mmu_notifier_range range;
2131
	bool do_unlock_folio = false;
2132
	pmd_t _pmd;
2133

2134
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2135
				address & HPAGE_PMD_MASK,
2136 2137 2138
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2139 2140

	/*
2141 2142
	 * If caller asks to setup a migration entry, we need a folio to check
	 * pmd against. Otherwise we can end up replacing wrong folio.
2143
	 */
2144 2145 2146 2147
	VM_BUG_ON(freeze && !folio);
	if (folio) {
		VM_WARN_ON_ONCE(!folio_test_locked(folio));
		if (folio != page_folio(pmd_page(*pmd)))
2148 2149
			goto out;
	}
2150

2151
repeat:
2152
	if (pmd_trans_huge(*pmd)) {
2153 2154
		if (!folio) {
			folio = page_folio(pmd_page(*pmd));
2155 2156 2157 2158 2159 2160 2161
			/*
			 * An anonymous page must be locked, to ensure that a
			 * concurrent reuse_swap_page() sees stable mapcount;
			 * but reuse_swap_page() is not used on shmem or file,
			 * and page lock must not be taken when zap_pmd_range()
			 * calls __split_huge_pmd() while i_mmap_lock is held.
			 */
2162 2163 2164
			if (folio_test_anon(folio)) {
				if (unlikely(!folio_trylock(folio))) {
					folio_get(folio);
2165 2166
					_pmd = *pmd;
					spin_unlock(ptl);
2167
					folio_lock(folio);
2168 2169
					spin_lock(ptl);
					if (unlikely(!pmd_same(*pmd, _pmd))) {
2170 2171 2172
						folio_unlock(folio);
						folio_put(folio);
						folio = NULL;
2173 2174
						goto repeat;
					}
2175
					folio_put(folio);
2176
				}
2177
				do_unlock_folio = true;
2178 2179
			}
		}
2180
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2181
		goto out;
2182
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2183
out:
2184
	spin_unlock(ptl);
2185 2186
	if (do_unlock_folio)
		folio_unlock(folio);
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2200
	mmu_notifier_invalidate_range_only_end(&range);
2201 2202
}

2203
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2204
		bool freeze, struct folio *folio)
2205
{
2206
	pgd_t *pgd;
2207
	p4d_t *p4d;
2208
	pud_t *pud;
2209 2210
	pmd_t *pmd;

2211
	pgd = pgd_offset(vma->vm_mm, address);
2212 2213 2214
	if (!pgd_present(*pgd))
		return;

2215 2216 2217 2218 2219
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2220 2221 2222 2223
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2224

2225
	__split_huge_pmd(vma, pmd, address, freeze, folio);
2226 2227
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
{
	/*
	 * If the new address isn't hpage aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
			 ALIGN(address, HPAGE_PMD_SIZE)))
		split_huge_pmd_address(vma, address, false, NULL);
}

2240
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2241 2242 2243 2244
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
2245 2246
	/* Check if we need to split start first. */
	split_huge_pmd_if_needed(vma, start);
2247

2248 2249
	/* Check if we need to split end next. */
	split_huge_pmd_if_needed(vma, end);
2250 2251

	/*
2252 2253
	 * If we're also updating the vma->vm_next->vm_start,
	 * check if we need to split it.
2254 2255 2256 2257
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2258
		nstart += adjust_next;
2259
		split_huge_pmd_if_needed(next, nstart);
2260 2261
	}
}
2262

2263
static void unmap_page(struct page *page)
2264
{
2265
	struct folio *folio = page_folio(page);
2266 2267
	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
		TTU_SYNC;
2268 2269 2270

	VM_BUG_ON_PAGE(!PageHead(page), page);

2271 2272 2273 2274 2275
	/*
	 * Anon pages need migration entries to preserve them, but file
	 * pages can simply be left unmapped, then faulted back on demand.
	 * If that is ever changed (perhaps for mlock), update remap_page().
	 */
2276 2277
	if (folio_test_anon(folio))
		try_to_migrate(folio, ttu_flags);
2278
	else
2279
		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2280 2281

	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2282 2283
}

2284
static void remap_page(struct folio *folio, unsigned long nr)
2285
{
2286
	int i = 0;
2287

2288
	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2289
	if (!folio_test_anon(folio))
2290
		return;
2291 2292 2293 2294 2295 2296
	for (;;) {
		remove_migration_ptes(folio, folio, true);
		i += folio_nr_pages(folio);
		if (i >= nr)
			break;
		folio = folio_next(folio);
2297
	}
2298 2299
}

2300
static void lru_add_page_tail(struct page *head, struct page *tail,
2301 2302
		struct lruvec *lruvec, struct list_head *list)
{
2303 2304 2305
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2306
	lockdep_assert_held(&lruvec->lru_lock);
2307

A
Alex Shi 已提交
2308
	if (list) {
2309
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2310
		VM_WARN_ON(PageLRU(head));
2311 2312
		get_page(tail);
		list_add_tail(&tail->lru, list);
2313
	} else {
A
Alex Shi 已提交
2314 2315
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
2316 2317 2318 2319
		if (PageUnevictable(tail))
			tail->mlock_count = 0;
		else
			list_add_tail(&tail->lru, &head->lru);
A
Alex Shi 已提交
2320
		SetPageLRU(tail);
2321 2322 2323
	}
}

2324
static void __split_huge_page_tail(struct page *head, int tail,
2325 2326 2327 2328
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2329
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2330 2331

	/*
2332 2333 2334
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2335
	 * for example lock_page() which set PG_waiters.
2336 2337 2338 2339 2340
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2341
			 (1L << PG_swapcache) |
2342 2343 2344
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2345
			 (1L << PG_workingset) |
2346
			 (1L << PG_locked) |
2347
			 (1L << PG_unevictable) |
2348 2349 2350
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2351
			 (1L << PG_dirty)));
2352

2353 2354 2355 2356 2357 2358
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2359
	/* Page flags must be visible before we make the page non-compound. */
2360 2361
	smp_wmb();

2362 2363 2364 2365 2366 2367
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2368 2369
	clear_compound_head(page_tail);

2370 2371 2372 2373
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2374 2375 2376 2377 2378 2379
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2380 2381 2382 2383 2384 2385

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2386 2387 2388
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2389
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2390
		pgoff_t end)
2391
{
2392 2393
	struct folio *folio = page_folio(page);
	struct page *head = &folio->page;
2394
	struct lruvec *lruvec;
2395 2396
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2397
	unsigned int nr = thp_nr_pages(head);
2398
	int i;
2399 2400

	/* complete memcg works before add pages to LRU */
2401
	split_page_memcg(head, nr);
2402

2403 2404 2405 2406 2407 2408 2409 2410
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

I
Ingo Molnar 已提交
2411
	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2412
	lruvec = folio_lruvec_lock(folio);
A
Alex Shi 已提交
2413

2414 2415
	ClearPageHasHWPoisoned(head);

2416
	for (i = nr - 1; i >= 1; i--) {
2417
		__split_huge_page_tail(head, i, lruvec, list);
2418
		/* Some pages can be beyond EOF: drop them from page cache */
2419
		if (head[i].index >= end) {
2420
			ClearPageDirty(head + i);
2421
			__delete_from_page_cache(head + i, NULL);
2422
			if (shmem_mapping(head->mapping))
2423
				shmem_uncharge(head->mapping->host, 1);
2424
			put_page(head + i);
2425 2426 2427 2428 2429 2430
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2431 2432
		}
	}
2433 2434

	ClearPageCompound(head);
2435
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2436
	/* Caller disabled irqs, so they are still disabled here */
2437

2438
	split_page_owner(head, nr);
2439

2440 2441
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2442
		/* Additional pin to swap cache */
2443
		if (PageSwapCache(head)) {
2444
			page_ref_add(head, 2);
2445 2446
			xa_unlock(&swap_cache->i_pages);
		} else {
2447
			page_ref_inc(head);
2448
		}
2449
	} else {
M
Matthew Wilcox 已提交
2450
		/* Additional pin to page cache */
2451
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2452
		xa_unlock(&head->mapping->i_pages);
2453
	}
A
Alex Shi 已提交
2454
	local_irq_enable();
2455

2456
	remap_page(folio, nr);
2457

H
Huang Ying 已提交
2458 2459 2460 2461 2462 2463
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2464
	for (i = 0; i < nr; i++) {
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
2505
int page_trans_huge_mapcount(struct page *page)
2506
{
2507
	int i, ret;
2508 2509 2510 2511

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

2512 2513
	if (likely(!PageTransCompound(page)))
		return atomic_read(&page->_mapcount) + 1;
2514 2515 2516

	page = compound_head(page);

2517
	ret = 0;
2518
	for (i = 0; i < thp_nr_pages(page); i++) {
2519
		int mapcount = atomic_read(&page[i]._mapcount) + 1;
2520 2521
		ret = max(ret, mapcount);
	}
2522 2523

	if (PageDoubleMap(page))
2524
		ret -= 1;
2525 2526

	return ret + compound_mapcount(page);
2527 2528
}

2529
/* Racy check whether the huge page can be split */
2530
bool can_split_folio(struct folio *folio, int *pextra_pins)
2531 2532 2533
{
	int extra_pins;

M
Matthew Wilcox 已提交
2534
	/* Additional pins from page cache */
2535 2536 2537
	if (folio_test_anon(folio))
		extra_pins = folio_test_swapcache(folio) ?
				folio_nr_pages(folio) : 0;
2538
	else
2539
		extra_pins = folio_nr_pages(folio);
2540 2541
	if (pextra_pins)
		*pextra_pins = extra_pins;
2542
	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2543 2544
}

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
2566 2567
	struct folio *folio = page_folio(page);
	struct page *head = &folio->page;
2568
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2569
	XA_STATE(xas, &head->mapping->i_pages, head->index);
2570 2571
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
2572
	int extra_pins, ret;
2573
	pgoff_t end;
2574

2575
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2576 2577
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2578

2579
	if (PageWriteback(head))
2580 2581
		return -EBUSY;

2582 2583
	if (PageAnon(head)) {
		/*
2584
		 * The caller does not necessarily hold an mmap_lock that would
2585 2586
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
2587
		 * is similar to folio_lock_anon_vma_read except the write lock
2588 2589 2590 2591 2592 2593 2594 2595
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2596
		end = -1;
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

2608 2609 2610 2611 2612 2613 2614
		xas_split_alloc(&xas, head, compound_order(head),
				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
		if (xas_error(&xas)) {
			ret = xas_error(&xas);
			goto out;
		}

2615 2616
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2617 2618 2619 2620 2621 2622 2623 2624 2625

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2626 2627
		if (shmem_mapping(mapping))
			end = shmem_fallocend(mapping->host, end);
2628 2629 2630
	}

	/*
2631
	 * Racy check if we can split the page, before unmap_page() will
2632 2633
	 * split PMDs
	 */
2634
	if (!can_split_folio(folio, &extra_pins)) {
2635 2636 2637 2638
		ret = -EBUSY;
		goto out_unlock;
	}

2639
	unmap_page(head);
2640

A
Alex Shi 已提交
2641 2642
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2643 2644
	if (mapping) {
		/*
M
Matthew Wilcox 已提交
2645
		 * Check if the head page is present in page cache.
2646 2647
		 * We assume all tail are present too, if head is there.
		 */
2648 2649
		xas_lock(&xas);
		xas_reset(&xas);
M
Matthew Wilcox 已提交
2650
		if (xas_load(&xas) != head)
2651 2652 2653
			goto fail;
	}

2654
	/* Prevent deferred_split_scan() touching ->_refcount */
2655
	spin_lock(&ds_queue->split_queue_lock);
2656
	if (page_ref_freeze(head, 1 + extra_pins)) {
2657
		if (!list_empty(page_deferred_list(head))) {
2658
			ds_queue->split_queue_len--;
2659 2660
			list_del(page_deferred_list(head));
		}
2661
		spin_unlock(&ds_queue->split_queue_lock);
2662
		if (mapping) {
2663 2664
			int nr = thp_nr_pages(head);

2665
			xas_split(&xas, head, thp_order(head));
2666
			if (PageSwapBacked(head)) {
2667 2668
				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
							-nr);
2669
			} else {
2670 2671
				__mod_lruvec_page_state(head, NR_FILE_THPS,
							-nr);
2672 2673
				filemap_nr_thps_dec(mapping);
			}
2674 2675
		}

A
Alex Shi 已提交
2676
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2677
		ret = 0;
2678
	} else {
2679
		spin_unlock(&ds_queue->split_queue_lock);
2680 2681
fail:
		if (mapping)
2682
			xas_unlock(&xas);
A
Alex Shi 已提交
2683
		local_irq_enable();
2684
		remap_page(folio, folio_nr_pages(folio));
2685 2686 2687 2688
		ret = -EBUSY;
	}

out_unlock:
2689 2690 2691 2692 2693 2694
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2695
out:
2696 2697
	/* Free any memory we didn't use */
	xas_nomem(&xas, 0);
2698 2699 2700
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2701 2702 2703

void free_transhuge_page(struct page *page)
{
2704
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2705 2706
	unsigned long flags;

2707
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2708
	if (!list_empty(page_deferred_list(page))) {
2709
		ds_queue->split_queue_len--;
2710 2711
		list_del(page_deferred_list(page));
	}
2712
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2713 2714 2715 2716 2717
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2718 2719
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2720
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2721
#endif
2722 2723 2724 2725
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2739
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2740
	if (list_empty(page_deferred_list(page))) {
2741
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2742 2743
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2744 2745
#ifdef CONFIG_MEMCG
		if (memcg)
2746 2747
			set_shrinker_bit(memcg, page_to_nid(page),
					 deferred_split_shrinker.id);
2748
#endif
2749
	}
2750
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2751 2752 2753 2754 2755
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2756
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2757
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2758 2759 2760 2761 2762

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2763
	return READ_ONCE(ds_queue->split_queue_len);
2764 2765 2766 2767 2768
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2769
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2770
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2771 2772 2773 2774 2775
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2776 2777 2778 2779 2780
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2781
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2782
	/* Take pin on all head pages to avoid freeing them under us */
2783
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2784
		page = list_entry((void *)pos, struct page, deferred_list);
2785
		page = compound_head(page);
2786 2787 2788 2789
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2790
			list_del_init(page_deferred_list(page));
2791
			ds_queue->split_queue_len--;
2792
		}
2793 2794
		if (!--sc->nr_to_scan)
			break;
2795
	}
2796
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2797 2798

	list_for_each_safe(pos, next, &list) {
2799
		page = list_entry((void *)pos, struct page, deferred_list);
2800 2801
		if (!trylock_page(page))
			goto next;
2802 2803 2804 2805
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2806
next:
2807 2808 2809
		put_page(page);
	}

2810 2811 2812
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2813

2814 2815 2816 2817
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2818
	if (!split && list_empty(&ds_queue->split_queue))
2819 2820
		return SHRINK_STOP;
	return split;
2821 2822 2823 2824 2825 2826
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2827 2828
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2829
};
2830 2831

#ifdef CONFIG_DEBUG_FS
2832
static void split_huge_pages_all(void)
2833 2834 2835 2836 2837 2838
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

2839
	pr_debug("Split all THPs\n");
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2853
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2854 2855 2856 2857 2858 2859 2860 2861 2862
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
2863
			cond_resched();
2864 2865 2866
		}
	}

2867 2868
	pr_debug("%lu of %lu THP split\n", split, total);
}
2869

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
{
	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
		    is_vm_hugetlb_page(vma);
}

static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
				unsigned long vaddr_end)
{
	int ret = 0;
	struct task_struct *task;
	struct mm_struct *mm;
	unsigned long total = 0, split = 0;
	unsigned long addr;

	vaddr_start &= PAGE_MASK;
	vaddr_end &= PAGE_MASK;

	/* Find the task_struct from pid */
	rcu_read_lock();
	task = find_task_by_vpid(pid);
	if (!task) {
		rcu_read_unlock();
		ret = -ESRCH;
		goto out;
	}
	get_task_struct(task);
	rcu_read_unlock();

	/* Find the mm_struct */
	mm = get_task_mm(task);
	put_task_struct(task);

	if (!mm) {
		ret = -EINVAL;
		goto out;
	}

	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
		 pid, vaddr_start, vaddr_end);

	mmap_read_lock(mm);
	/*
	 * always increase addr by PAGE_SIZE, since we could have a PTE page
	 * table filled with PTE-mapped THPs, each of which is distinct.
	 */
	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
		struct vm_area_struct *vma = find_vma(mm, addr);
		struct page *page;

		if (!vma || addr < vma->vm_start)
			break;

		/* skip special VMA and hugetlb VMA */
		if (vma_not_suitable_for_thp_split(vma)) {
			addr = vma->vm_end;
			continue;
		}

		/* FOLL_DUMP to ignore special (like zero) pages */
2930
		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

		if (IS_ERR(page))
			continue;
		if (!page)
			continue;

		if (!is_transparent_hugepage(page))
			goto next;

		total++;
2941
		if (!can_split_folio(page_folio(page), NULL))
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
			goto next;

		if (!trylock_page(page))
			goto next;

		if (!split_huge_page(page))
			split++;

		unlock_page(page);
next:
		put_page(page);
		cond_resched();
	}
	mmap_read_unlock(mm);
	mmput(mm);

	pr_debug("%lu of %lu THP split\n", split, total);

out:
	return ret;
2962
}
2963

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
				pgoff_t off_end)
{
	struct filename *file;
	struct file *candidate;
	struct address_space *mapping;
	int ret = -EINVAL;
	pgoff_t index;
	int nr_pages = 1;
	unsigned long total = 0, split = 0;

	file = getname_kernel(file_path);
	if (IS_ERR(file))
		return ret;

	candidate = file_open_name(file, O_RDONLY, 0);
	if (IS_ERR(candidate))
		goto out;

	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
		 file_path, off_start, off_end);

	mapping = candidate->f_mapping;

	for (index = off_start; index < off_end; index += nr_pages) {
		struct page *fpage = pagecache_get_page(mapping, index,
						FGP_ENTRY | FGP_HEAD, 0);

		nr_pages = 1;
		if (xa_is_value(fpage) || !fpage)
			continue;

		if (!is_transparent_hugepage(fpage))
			goto next;

		total++;
		nr_pages = thp_nr_pages(fpage);

		if (!trylock_page(fpage))
			goto next;

		if (!split_huge_page(fpage))
			split++;

		unlock_page(fpage);
next:
		put_page(fpage);
		cond_resched();
	}

	filp_close(candidate, NULL);
	ret = 0;

	pr_debug("%lu of %lu file-backed THP split\n", split, total);
out:
	putname(file);
	return ret;
}

3023 3024 3025 3026 3027 3028 3029
#define MAX_INPUT_BUF_SZ 255

static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
				size_t count, loff_t *ppops)
{
	static DEFINE_MUTEX(split_debug_mutex);
	ssize_t ret;
3030 3031
	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
	char input_buf[MAX_INPUT_BUF_SZ];
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	int pid;
	unsigned long vaddr_start, vaddr_end;

	ret = mutex_lock_interruptible(&split_debug_mutex);
	if (ret)
		return ret;

	ret = -EFAULT;

	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
		goto out;

	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055

	if (input_buf[0] == '/') {
		char *tok;
		char *buf = input_buf;
		char file_path[MAX_INPUT_BUF_SZ];
		pgoff_t off_start = 0, off_end = 0;
		size_t input_len = strlen(input_buf);

		tok = strsep(&buf, ",");
		if (tok) {
3056
			strcpy(file_path, tok);
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
		} else {
			ret = -EINVAL;
			goto out;
		}

		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
		if (ret != 2) {
			ret = -EINVAL;
			goto out;
		}
		ret = split_huge_pages_in_file(file_path, off_start, off_end);
		if (!ret)
			ret = input_len;

		goto out;
	}

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
	if (ret == 1 && pid == 1) {
		split_huge_pages_all();
		ret = strlen(input_buf);
		goto out;
	} else if (ret != 3) {
		ret = -EINVAL;
		goto out;
	}

	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
	if (!ret)
		ret = strlen(input_buf);
out:
	mutex_unlock(&split_debug_mutex);
	return ret;

}

static const struct file_operations split_huge_pages_fops = {
	.owner	 = THIS_MODULE,
	.write	 = split_huge_pages_write,
	.llseek  = no_llseek,
};
3098 3099 3100

static int __init split_huge_pages_debugfs(void)
{
3101 3102
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3103 3104 3105 3106
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3117
	pmd_t pmdswp;
3118 3119 3120 3121 3122

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3123
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3124 3125
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
3126 3127 3128 3129
	if (pmd_write(pmdval))
		entry = make_writable_migration_entry(page_to_pfn(page));
	else
		entry = make_readable_migration_entry(page_to_pfn(page));
3130 3131 3132 3133
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3134
	page_remove_rmap(page, vma, true);
3135
	put_page(page);
3136
	trace_set_migration_pmd(address, pmd_val(pmdswp));
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3154 3155
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3156
	if (is_writable_migration_entry(entry))
3157
		pmde = maybe_pmd_mkwrite(pmde, vma);
3158 3159
	if (pmd_swp_uffd_wp(*pvmw->pmd))
		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3160

3161 3162 3163
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
3164
		page_add_file_rmap(new, vma, true);
3165
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3166 3167

	/* No need to invalidate - it was non-present before */
3168
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3169
	trace_remove_migration_pmd(address, pmd_val(pmde));
3170 3171
}
#endif