huge_memory.c 87.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/mm.h>
11
#include <linux/sched/coredump.h>
12
#include <linux/sched/numa_balancing.h>
13 14 15 16 17
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
18
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
19
#include <linux/mm_inline.h>
20
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
21
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
22
#include <linux/khugepaged.h>
23
#include <linux/freezer.h>
24
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
25
#include <linux/mman.h>
26
#include <linux/memremap.h>
R
Ralf Baechle 已提交
27
#include <linux/pagemap.h>
28
#include <linux/debugfs.h>
29
#include <linux/migrate.h>
30
#include <linux/hashtable.h>
31
#include <linux/userfaultfd_k.h>
32
#include <linux/page_idle.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/oom.h>
35
#include <linux/numa.h>
36
#include <linux/page_owner.h>
37

38 39 40 41
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
42
/*
43 44 45 46
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 48
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
49
 */
50
unsigned long transparent_hugepage_flags __read_mostly =
51
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
52
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 54 55 56
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
57
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 59
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
60

61
static struct shrinker deferred_split_shrinker;
62

63
static atomic_t huge_zero_refcount;
64
struct page *huge_zero_page __read_mostly;
65
unsigned long huge_zero_pfn __read_mostly = ~0UL;
66

67 68
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
69 70 71 72 73
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
74 75
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
76 77
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
78 79 80 81

	return false;
}

82
static bool get_huge_zero_page(void)
83 84 85 86
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
87
		return true;
88 89

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
90
			HPAGE_PMD_ORDER);
91 92
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
93
		return false;
94 95
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
96
	preempt_disable();
97
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
98
		preempt_enable();
99
		__free_pages(zero_page, compound_order(zero_page));
100 101
		goto retry;
	}
102
	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
103 104 105 106

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
107
	return true;
108 109
}

110
static void put_huge_zero_page(void)
111
{
112 113 114 115 116
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
117 118
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

139 140
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
141
{
142 143 144
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
145

146 147 148
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
149
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
150 151
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
152
		WRITE_ONCE(huge_zero_pfn, ~0UL);
153
		__free_pages(zero_page, compound_order(zero_page));
154
		return HPAGE_PMD_NR;
155 156 157
	}

	return 0;
158 159
}

160
static struct shrinker huge_zero_page_shrinker = {
161 162
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
163 164 165
	.seeks = DEFAULT_SEEKS,
};

166 167 168 169
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
170 171
	const char *output;

172
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
173 174 175 176
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
177
	else
178 179 180
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
181
}
182

183 184 185 186
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
187
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
188

189
	if (sysfs_streq(buf, "always")) {
190 191
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
192
	} else if (sysfs_streq(buf, "madvise")) {
193 194
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
195
	} else if (sysfs_streq(buf, "never")) {
196 197 198 199
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
200 201

	if (ret > 0) {
202
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
203 204 205 206
		if (err)
			ret = err;
	}
	return ret;
207 208 209 210
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

211
ssize_t single_hugepage_flag_show(struct kobject *kobj,
212 213
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
214
{
215 216
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
217
}
218

219
ssize_t single_hugepage_flag_store(struct kobject *kobj,
220 221 222 223
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
224 225 226 227 228 229 230 231 232 233
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
234
		set_bit(flag, &transparent_hugepage_flags);
235
	else
236 237 238 239 240 241 242 243
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
262
}
263

264 265 266 267
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
268
	if (sysfs_streq(buf, "always")) {
269 270 271 272
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
273
	} else if (sysfs_streq(buf, "defer+madvise")) {
274 275 276 277
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278
	} else if (sysfs_streq(buf, "defer")) {
279 280 281 282
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
283
	} else if (sysfs_streq(buf, "madvise")) {
284 285 286 287
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
288
	} else if (sysfs_streq(buf, "never")) {
289 290 291 292 293 294 295 296
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
297 298 299 300
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

301
static ssize_t use_zero_page_show(struct kobject *kobj,
302
				  struct kobj_attribute *attr, char *buf)
303
{
304
	return single_hugepage_flag_show(kobj, attr, buf,
305
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
306 307 308 309
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
310
	return single_hugepage_flag_store(kobj, attr, buf, count,
311 312 313 314
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
315 316

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
317
				   struct kobj_attribute *attr, char *buf)
318
{
319
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
320 321 322 323
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

324 325 326
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
327
	&use_zero_page_attr.attr,
328
	&hpage_pmd_size_attr.attr,
329
#ifdef CONFIG_SHMEM
330
	&shmem_enabled_attr.attr,
331 332 333 334
#endif
	NULL,
};

335
static const struct attribute_group hugepage_attr_group = {
336
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
337 338
};

S
Shaohua Li 已提交
339
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
340 341 342
{
	int err;

S
Shaohua Li 已提交
343 344
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
345
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
346
		return -ENOMEM;
A
Andrea Arcangeli 已提交
347 348
	}

S
Shaohua Li 已提交
349
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
350
	if (err) {
351
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
352
		goto delete_obj;
A
Andrea Arcangeli 已提交
353 354
	}

S
Shaohua Li 已提交
355
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
356
	if (err) {
357
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
358
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
359
	}
S
Shaohua Li 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
393 394 395 396 397
		/*
		 * Hardware doesn't support hugepages, hence disable
		 * DAX PMD support.
		 */
		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
S
Shaohua Li 已提交
398 399 400
		return -EINVAL;
	}

401 402 403 404 405 406 407 408 409 410
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
411 412
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
413
		goto err_sysfs;
A
Andrea Arcangeli 已提交
414

415
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
416
	if (err)
417
		goto err_slab;
A
Andrea Arcangeli 已提交
418

419 420 421
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
422 423 424
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
425

426 427 428 429 430
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
431
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
432
		transparent_hugepage_flags = 0;
433 434
		return 0;
	}
435

436
	err = start_stop_khugepaged();
437 438
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
439

S
Shaohua Li 已提交
440
	return 0;
441
err_khugepaged:
442 443
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
444 445
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
446
	khugepaged_destroy();
447
err_slab:
S
Shaohua Li 已提交
448
	hugepage_exit_sysfs(hugepage_kobj);
449
err_sysfs:
A
Andrea Arcangeli 已提交
450
	return err;
451
}
452
subsys_initcall(hugepage_init);
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
480
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
481 482 483 484
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

485
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
486
{
487
	if (likely(vma->vm_flags & VM_WRITE))
488 489 490 491
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

492 493
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
494
{
495
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
496 497 498 499 500 501
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
502
}
503 504 505 506 507 508 509 510
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
511 512 513 514 515 516 517 518 519 520 521 522

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

523 524 525
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
526
		return false;
527 528 529 530 531 532 533

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

534 535
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
536 537 538 539
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
540
	unsigned long len_pad, ret;
541 542 543 544 545 546 547 548

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

549
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
550
					      off >> PAGE_SHIFT, flags);
551 552 553 554 555 556

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
557 558
		return 0;

559 560 561 562 563 564 565 566 567
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
568 569 570 571 572
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
573
	unsigned long ret;
574 575 576 577 578
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

579 580 581 582
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
583 584 585 586
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

587 588
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
589
{
J
Jan Kara 已提交
590
	struct vm_area_struct *vma = vmf->vma;
591
	pgtable_t pgtable;
J
Jan Kara 已提交
592
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
593
	vm_fault_t ret = 0;
594

595
	VM_BUG_ON_PAGE(!PageCompound(page), page);
596

597
	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
598 599
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
600
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
601 602
		return VM_FAULT_FALLBACK;
	}
603
	cgroup_throttle_swaprate(page, gfp);
604

605
	pgtable = pte_alloc_one(vma->vm_mm);
606
	if (unlikely(!pgtable)) {
607 608
		ret = VM_FAULT_OOM;
		goto release;
609
	}
610

611
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
612 613 614 615 616
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
617 618
	__SetPageUptodate(page);

J
Jan Kara 已提交
619 620
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
621
		goto unlock_release;
622 623
	} else {
		pmd_t entry;
624

625 626 627 628
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

629 630
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
631
			spin_unlock(vmf->ptl);
632
			put_page(page);
K
Kirill A. Shutemov 已提交
633
			pte_free(vma->vm_mm, pgtable);
634 635 636
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
637 638
		}

639
		entry = mk_huge_pmd(page, vma->vm_page_prot);
640
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
641
		page_add_new_anon_rmap(page, vma, haddr, true);
642
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
643 644
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
645
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
K
Kirill A. Shutemov 已提交
646
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
647
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
648
		spin_unlock(vmf->ptl);
649
		count_vm_event(THP_FAULT_ALLOC);
650
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
651 652
	}

653
	return 0;
654 655 656 657 658 659 660 661
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

662 663
}

664
/*
665 666 667 668 669 670 671
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
672
 */
673
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
674
{
675
	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
676

677
	/* Always do synchronous compaction */
678 679
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
680 681

	/* Kick kcompactd and fail quickly */
682
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
683
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
684 685

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
686
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
687 688 689
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
690 691

	/* Only do synchronous compaction if madvised */
692
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
693 694
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
695

696
	return GFP_TRANSHUGE_LIGHT;
697 698
}

699
/* Caller must hold page table lock. */
700
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
701
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
702
		struct page *zero_page)
703 704
{
	pmd_t entry;
A
Andrew Morton 已提交
705
	if (!pmd_none(*pmd))
706
		return;
707
	entry = mk_pmd(zero_page, vma->vm_page_prot);
708
	entry = pmd_mkhuge(entry);
709 710
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
711
	set_pmd_at(mm, haddr, pmd, entry);
712
	mm_inc_nr_ptes(mm);
713 714
}

715
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
716
{
J
Jan Kara 已提交
717
	struct vm_area_struct *vma = vmf->vma;
718
	gfp_t gfp;
719
	struct page *page;
J
Jan Kara 已提交
720
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
721

722
	if (!transhuge_vma_suitable(vma, haddr))
723
		return VM_FAULT_FALLBACK;
724 725
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
726
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
727
		return VM_FAULT_OOM;
J
Jan Kara 已提交
728
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
729
			!mm_forbids_zeropage(vma->vm_mm) &&
730 731 732
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
733
		vm_fault_t ret;
734
		pgtable = pte_alloc_one(vma->vm_mm);
735
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
736
			return VM_FAULT_OOM;
737
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
738
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
739
			pte_free(vma->vm_mm, pgtable);
740
			count_vm_event(THP_FAULT_FALLBACK);
741
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
742
		}
J
Jan Kara 已提交
743
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
744
		ret = 0;
J
Jan Kara 已提交
745
		if (pmd_none(*vmf->pmd)) {
746 747 748
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
749
				pte_free(vma->vm_mm, pgtable);
750
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
751
				spin_unlock(vmf->ptl);
752
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
753
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
754 755
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
756
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
757
						   haddr, vmf->pmd, zero_page);
758
				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
J
Jan Kara 已提交
759
				spin_unlock(vmf->ptl);
760
			}
761
		} else {
J
Jan Kara 已提交
762
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
763
			pte_free(vma->vm_mm, pgtable);
764
		}
765
		return ret;
766
	}
767
	gfp = vma_thp_gfp_mask(vma);
768
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
769 770
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
771
		return VM_FAULT_FALLBACK;
772
	}
773
	prep_transhuge_page(page);
J
Jan Kara 已提交
774
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
775 776
}

777
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
778 779
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
780 781 782 783 784 785
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

801 802 803
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
804
	if (write) {
805 806
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
807
	}
808 809 810

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
811
		mm_inc_nr_ptes(mm);
812
		pgtable = NULL;
813 814
	}

815 816
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
817 818

out_unlock:
M
Matthew Wilcox 已提交
819
	spin_unlock(ptl);
820 821
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
822 823
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
839
{
840 841
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
842
	pgtable_t pgtable = NULL;
843

M
Matthew Wilcox 已提交
844 845 846 847 848
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
849 850
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
851 852 853 854 855 856
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
857

858
	if (arch_needs_pgtable_deposit()) {
859
		pgtable = pte_alloc_one(vma->vm_mm);
860 861 862 863
		if (!pgtable)
			return VM_FAULT_OOM;
	}

864 865
	track_pfn_insert(vma, &pgprot, pfn);

866
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
867
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
868
}
869
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
870

871
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
872
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
873
{
874
	if (likely(vma->vm_flags & VM_WRITE))
875 876 877 878 879 880 881 882 883 884 885 886
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
887 888 889 890 891 892 893 894 895 896 897 898 899 900
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

901 902 903 904
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
905 906
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
907 908 909
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
910 911

out_unlock:
912 913 914
	spin_unlock(ptl);
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
930
{
931 932 933
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

934 935 936 937 938
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
939 940
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
941 942 943 944 945 946 947 948 949
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

950
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
951 952
	return VM_FAULT_NOPAGE;
}
953
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
954 955
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

956
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
957
		pmd_t *pmd, int flags)
958 959 960
{
	pmd_t _pmd;

961 962 963
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
964
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
965
				pmd, _pmd, flags & FOLL_WRITE))
966 967 968 969
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
970
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
971 972 973 974 975 976 977
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

978 979 980 981 982 983
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
984 985 986 987 988
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

989
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
990 991 992 993 994 995 996 997
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
998
		touch_pmd(vma, addr, pmd, flags);
999 1000 1001 1002 1003

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1004
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1005 1006 1007
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1008 1009
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1010 1011
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1012 1013
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1014 1015 1016 1017

	return page;
}

1018 1019 1020 1021
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1022
	spinlock_t *dst_ptl, *src_ptl;
1023 1024
	struct page *src_page;
	pmd_t pmd;
1025
	pgtable_t pgtable = NULL;
1026
	int ret = -ENOMEM;
1027

1028 1029 1030 1031
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1032
	pgtable = pte_alloc_one(dst_mm);
1033 1034
	if (unlikely(!pgtable))
		goto out;
1035

1036 1037 1038
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1039 1040 1041

	ret = -EAGAIN;
	pmd = *src_pmd;
1042

1043 1044 1045 1046 1047 1048 1049 1050
	/*
	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
	 * does not have the VM_UFFD_WP, which means that the uffd
	 * fork event is not enabled.
	 */
	if (!(vma->vm_flags & VM_UFFD_WP))
		pmd = pmd_clear_uffd_wp(pmd);

1051 1052 1053 1054 1055 1056 1057 1058
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1059 1060
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1061 1062
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1063
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1064
		mm_inc_nr_ptes(dst_mm);
1065
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1066 1067 1068 1069 1070 1071
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1072
	if (unlikely(!pmd_trans_huge(pmd))) {
1073 1074 1075
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1076
	/*
1077
	 * When page table lock is held, the huge zero pmd should not be
1078 1079 1080 1081
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1082
		struct page *zero_page;
1083 1084 1085 1086 1087
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1088
		zero_page = mm_get_huge_zero_page(dst_mm);
1089
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1090
				zero_page);
1091 1092 1093
		ret = 0;
		goto out_unlock;
	}
1094

1095 1096
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1097 1098 1099 1100 1101 1102 1103 1104

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
1105
	if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1106 1107 1108 1109 1110 1111 1112
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
		return -EAGAIN;
	}

1113 1114 1115
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116
	mm_inc_nr_ptes(dst_mm);
1117
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1118 1119 1120 1121 1122 1123 1124

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1125 1126
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1127 1128 1129 1130
out:
	return ret;
}

1131 1132
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1133
		pud_t *pud, int flags)
1134 1135 1136
{
	pud_t _pud;

1137 1138 1139
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1140
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1141
				pud, _pud, flags & FOLL_WRITE))
1142 1143 1144 1145
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1146
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1147 1148 1149 1150 1151 1152 1153
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1154
	if (flags & FOLL_WRITE && !pud_write(*pud))
1155 1156
		return NULL;

J
John Hubbard 已提交
1157 1158 1159 1160 1161
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1162 1163 1164 1165 1166 1167
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1168
		touch_pud(vma, addr, pud, flags);
1169 1170 1171 1172

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1173 1174
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1175
	 */
J
John Hubbard 已提交
1176
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1177 1178 1179
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1180 1181
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1182 1183
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1184 1185
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1216
	/* Please refer to comments in copy_huge_pmd() */
1217
	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1218 1219 1220 1221 1222 1223
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1257
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1258 1259 1260
{
	pmd_t entry;
	unsigned long haddr;
1261
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1262

J
Jan Kara 已提交
1263 1264
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1265 1266 1267
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1268 1269
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1270
	haddr = vmf->address & HPAGE_PMD_MASK;
1271
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1272
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1273 1274

unlock:
J
Jan Kara 已提交
1275
	spin_unlock(vmf->ptl);
1276 1277
}

1278
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1279
{
J
Jan Kara 已提交
1280
	struct vm_area_struct *vma = vmf->vma;
1281
	struct page *page;
J
Jan Kara 已提交
1282
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1283

J
Jan Kara 已提交
1284
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1285
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1286

1287
	if (is_huge_zero_pmd(orig_pmd))
1288 1289
		goto fallback;

J
Jan Kara 已提交
1290
	spin_lock(vmf->ptl);
1291 1292 1293 1294 1295

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1296 1297

	page = pmd_page(orig_pmd);
1298
	VM_BUG_ON_PAGE(!PageHead(page), page);
1299 1300

	/* Lock page for reuse_swap_page() */
1301 1302 1303 1304 1305 1306
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1307
			spin_unlock(vmf->ptl);
1308 1309
			unlock_page(page);
			put_page(page);
1310
			return 0;
1311 1312 1313
		}
		put_page(page);
	}
1314 1315 1316 1317 1318

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1319
	if (reuse_swap_page(page, NULL)) {
1320 1321
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1322
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1323
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1324
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1325
		unlock_page(page);
J
Jan Kara 已提交
1326
		spin_unlock(vmf->ptl);
1327
		return VM_FAULT_WRITE;
1328
	}
1329 1330

	unlock_page(page);
J
Jan Kara 已提交
1331
	spin_unlock(vmf->ptl);
1332 1333 1334
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1335 1336
}

1337
/*
1338 1339
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1340 1341 1342
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1343 1344
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1345 1346
}

1347
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1348 1349 1350 1351
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1352
	struct mm_struct *mm = vma->vm_mm;
1353 1354
	struct page *page = NULL;

1355
	assert_spin_locked(pmd_lockptr(mm, pmd));
1356

1357
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1358 1359
		goto out;

1360 1361 1362 1363
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1364
	/* Full NUMA hinting faults to serialise migration in fault paths */
1365
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1366 1367
		goto out;

1368
	page = pmd_page(*pmd);
1369
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1370 1371 1372 1373

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1374
	if (flags & FOLL_TOUCH)
1375
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1376

E
Eric B Munson 已提交
1377
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1378 1379 1380 1381
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1382 1383
		 * For anon THP:
		 *
1384 1385 1386 1387 1388 1389 1390
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1391 1392 1393 1394 1395 1396
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1397
		 */
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1408
	}
1409
skip_mlock:
1410
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1411
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1412 1413 1414 1415 1416

out:
	return page;
}

1417
/* NUMA hinting page fault entry point for trans huge pmds */
1418
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1419
{
J
Jan Kara 已提交
1420
	struct vm_area_struct *vma = vmf->vma;
1421
	struct anon_vma *anon_vma = NULL;
1422
	struct page *page;
J
Jan Kara 已提交
1423
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1424
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1425
	int target_nid, last_cpupid = -1;
1426 1427
	bool page_locked;
	bool migrated = false;
1428
	bool was_writable;
1429
	int flags = 0;
1430

J
Jan Kara 已提交
1431 1432
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1433 1434
		goto out_unlock;

1435 1436 1437 1438 1439
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1440 1441
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1442 1443
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1444
		spin_unlock(vmf->ptl);
1445
		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1446 1447 1448
		goto out;
	}

1449
	page = pmd_page(pmd);
1450
	BUG_ON(is_huge_zero_page(page));
1451
	page_nid = page_to_nid(page);
1452
	last_cpupid = page_cpupid_last(page);
1453
	count_vm_numa_event(NUMA_HINT_FAULTS);
1454
	if (page_nid == this_nid) {
1455
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1456 1457
		flags |= TNF_FAULT_LOCAL;
	}
1458

1459
	/* See similar comment in do_numa_page for explanation */
1460
	if (!pmd_savedwrite(pmd))
1461 1462
		flags |= TNF_NO_GROUP;

1463 1464 1465 1466
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1467 1468
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1469
	/* Migration could have started since the pmd_trans_migrating check */
1470
	if (!page_locked) {
1471
		page_nid = NUMA_NO_NODE;
1472 1473
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1474
		spin_unlock(vmf->ptl);
1475
		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1476
		goto out;
1477 1478 1479 1480 1481
	} else if (target_nid == NUMA_NO_NODE) {
		/* There are no parallel migrations and page is in the right
		 * node. Clear the numa hinting info in this pmd.
		 */
		goto clear_pmdnuma;
1482 1483
	}

1484 1485 1486 1487
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1488
	get_page(page);
J
Jan Kara 已提交
1489
	spin_unlock(vmf->ptl);
1490
	anon_vma = page_lock_anon_vma_read(page);
1491

P
Peter Zijlstra 已提交
1492
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1493 1494
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1495 1496
		unlock_page(page);
		put_page(page);
1497
		page_nid = NUMA_NO_NODE;
1498
		goto out_unlock;
1499
	}
1500

1501 1502 1503
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1504
		page_nid = NUMA_NO_NODE;
1505 1506 1507
		goto clear_pmdnuma;
	}

1508 1509 1510 1511 1512 1513
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1514 1515 1516 1517
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1518
	 */
1519
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1520
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1533

1534 1535
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1536
	 * and access rights restored.
1537
	 */
J
Jan Kara 已提交
1538
	spin_unlock(vmf->ptl);
1539

K
Kirill A. Shutemov 已提交
1540
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1541
				vmf->pmd, pmd, vmf->address, page, target_nid);
1542 1543
	if (migrated) {
		flags |= TNF_MIGRATED;
1544
		page_nid = target_nid;
1545 1546
	} else
		flags |= TNF_MIGRATE_FAIL;
1547

1548
	goto out;
1549
clear_pmdnuma:
1550
	BUG_ON(!PageLocked(page));
1551
	was_writable = pmd_savedwrite(pmd);
1552
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1553
	pmd = pmd_mkyoung(pmd);
1554 1555
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1556 1557
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1558
	unlock_page(page);
1559
out_unlock:
J
Jan Kara 已提交
1560
	spin_unlock(vmf->ptl);
1561 1562 1563 1564 1565

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1566
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1567
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1568
				flags);
1569

1570 1571 1572
	return 0;
}

1573 1574 1575 1576 1577
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1578 1579 1580 1581 1582 1583
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1584
	bool ret = false;
1585

1586
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1587

1588 1589
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1590
		goto out_unlocked;
1591 1592

	orig_pmd = *pmd;
1593
	if (is_huge_zero_pmd(orig_pmd))
1594 1595
		goto out;

1596 1597 1598 1599 1600 1601
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1620
		split_huge_page(page);
1621
		unlock_page(page);
1622
		put_page(page);
1623 1624 1625 1626 1627 1628 1629 1630
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1631
		pmdp_invalidate(vma, addr, pmd);
1632 1633 1634 1635 1636 1637
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1638 1639

	mark_page_lazyfree(page);
1640
	ret = true;
1641 1642 1643 1644 1645 1646
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1647 1648 1649 1650 1651 1652
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1653
	mm_dec_nr_ptes(mm);
1654 1655
}

1656
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1657
		 pmd_t *pmd, unsigned long addr)
1658
{
1659
	pmd_t orig_pmd;
1660
	spinlock_t *ptl;
1661

1662
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1663

1664 1665
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1666 1667 1668 1669 1670 1671 1672
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1673 1674
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1675
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1676
	if (vma_is_special_huge(vma)) {
1677 1678
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1679 1680
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1681
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1682
	} else if (is_huge_zero_pmd(orig_pmd)) {
1683
		zap_deposited_table(tlb->mm, pmd);
1684
		spin_unlock(ptl);
1685
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1686
	} else {
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
1700
			page = migration_entry_to_page(entry);
1701 1702 1703 1704
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1705
		if (PageAnon(page)) {
1706
			zap_deposited_table(tlb->mm, pmd);
1707 1708
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1709 1710
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1711
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1712
		}
1713

1714
		spin_unlock(ptl);
1715 1716
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1717
	}
1718
	return 1;
1719 1720
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1747
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1748
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1749
{
1750
	spinlock_t *old_ptl, *new_ptl;
1751 1752
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1753
	bool force_flush = false;
1754 1755 1756 1757 1758 1759 1760

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1761
		return false;
1762 1763
	}

1764 1765
	/*
	 * We don't have to worry about the ordering of src and dst
1766
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1767
	 */
1768 1769
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1770 1771 1772
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1773
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1774
		if (pmd_present(pmd))
1775
			force_flush = true;
1776
		VM_BUG_ON(!pmd_none(*new_pmd));
1777

1778
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1779
			pgtable_t pgtable;
1780 1781 1782
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1783 1784
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1785 1786
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1787 1788
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1789
		spin_unlock(old_ptl);
1790
		return true;
1791
	}
1792
	return false;
1793 1794
}

1795 1796 1797
/*
 * Returns
 *  - 0 if PMD could not be locked
I
Ingo Molnar 已提交
1798 1799
 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1800
 */
1801
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1802
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1803 1804
{
	struct mm_struct *mm = vma->vm_mm;
1805
	spinlock_t *ptl;
1806 1807 1808
	pmd_t entry;
	bool preserve_write;
	int ret;
1809
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1810 1811
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1812

1813
	ptl = __pmd_trans_huge_lock(pmd, vma);
1814 1815
	if (!ptl)
		return 0;
1816

1817 1818
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1833 1834
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1835 1836 1837 1838 1839 1840
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1841 1842 1843 1844 1845 1846 1847
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1848

1849 1850 1851
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1852
	/*
1853
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1854
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1855
	 * which is also under mmap_read_lock(mm):
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1873
	entry = pmdp_invalidate(vma, addr, pmd);
1874

1875 1876 1877
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1889 1890 1891 1892 1893
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1894 1895 1896 1897
	return ret;
}

/*
1898
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1899
 *
1900 1901
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1902
 */
1903
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1904
{
1905 1906
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1907 1908
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1909 1910 1911
		return ptl;
	spin_unlock(ptl);
	return NULL;
1912 1913
}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1946
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1947
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1948
	if (vma_is_special_huge(vma)) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1966
	count_vm_event(THP_SPLIT_PUD);
1967 1968 1969 1970 1971 1972 1973 1974

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1975
	struct mmu_notifier_range range;
1976

1977
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1978
				address & HPAGE_PUD_MASK,
1979 1980 1981
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1982 1983
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1984
	__split_huge_pud_locked(vma, pud, range.start);
1985 1986 1987

out:
	spin_unlock(ptl);
1988 1989 1990 1991
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1992
	mmu_notifier_invalidate_range_only_end(&range);
1993 1994 1995
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1996 1997 1998 1999 2000 2001 2002 2003
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2004 2005 2006 2007 2008 2009
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2010
	 * See Documentation/vm/mmu_notifier.rst
2011 2012
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2031
		unsigned long haddr, bool freeze)
2032 2033 2034 2035
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2036
	pmd_t old_pmd, _pmd;
2037
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2038
	unsigned long addr;
2039 2040 2041 2042 2043
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2044 2045
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2046 2047 2048

	count_vm_event(THP_SPLIT_PMD);

2049
	if (!vma_is_anonymous(vma)) {
2050
		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2051 2052 2053 2054 2055 2056
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2057
		if (vma_is_special_huge(vma))
2058
			return;
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		if (unlikely(is_pmd_migration_entry(old_pmd))) {
			swp_entry_t entry;

			entry = pmd_to_swp_entry(old_pmd);
			page = migration_entry_to_page(entry);
		} else {
			page = pmd_page(old_pmd);
			if (!PageDirty(page) && pmd_dirty(old_pmd))
				set_page_dirty(page);
			if (!PageReferenced(page) && pmd_young(old_pmd))
				SetPageReferenced(page);
			page_remove_rmap(page, true);
			put_page(page);
		}
2073
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2074
		return;
2075 2076
	}

2077
	if (is_huge_zero_pmd(*pmd)) {
2078 2079 2080 2081 2082 2083 2084 2085 2086
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2087 2088 2089
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2090 2091 2092 2093 2094 2095 2096 2097
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2098 2099
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2113
	if (unlikely(pmd_migration)) {
2114 2115
		swp_entry_t entry;

2116
		entry = pmd_to_swp_entry(old_pmd);
2117
		page = migration_entry_to_page(entry);
2118 2119 2120
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2121
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2122
	} else {
2123
		page = pmd_page(old_pmd);
2124 2125 2126 2127 2128
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2129
		uffd_wp = pmd_uffd_wp(old_pmd);
2130
	}
2131
	VM_BUG_ON_PAGE(!page_count(page), page);
2132
	page_ref_add(page, HPAGE_PMD_NR - 1);
2133

2134 2135 2136 2137
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2138 2139 2140
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2141
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2142 2143 2144 2145 2146 2147
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2148
		if (freeze || pmd_migration) {
2149 2150 2151
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2152 2153
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2154 2155
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2156
		} else {
2157
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2158
			entry = maybe_mkwrite(entry, vma);
2159 2160 2161 2162
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2163 2164
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2165 2166
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2167
		}
2168
		pte = pte_offset_map(&_pmd, addr);
2169
		BUG_ON(!pte_none(*pte));
2170
		set_pte_at(mm, addr, pte, entry);
2171
		if (!pmd_migration)
2172
			atomic_inc(&page[i]._mapcount);
2173
		pte_unmap(pte);
2174 2175
	}

2176 2177 2178 2179 2180 2181 2182
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2183
			for (i = 0; i < HPAGE_PMD_NR; i++)
2184 2185 2186 2187 2188 2189
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
2190 2191
			__mod_lruvec_page_state(page, NR_ANON_THPS,
						-HPAGE_PMD_NR);
2192 2193 2194 2195 2196
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2197
		}
2198
		unlock_page_memcg(page);
2199 2200 2201 2202
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2203 2204

	if (freeze) {
2205
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2206 2207 2208 2209
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2210 2211 2212
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2213
		unsigned long address, bool freeze, struct page *page)
2214 2215
{
	spinlock_t *ptl;
2216
	struct mmu_notifier_range range;
2217
	bool do_unlock_page = false;
2218
	pmd_t _pmd;
2219

2220
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2221
				address & HPAGE_PMD_MASK,
2222 2223 2224
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2225 2226 2227 2228 2229 2230

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
2231 2232 2233 2234 2235
	if (page) {
		VM_WARN_ON_ONCE(!PageLocked(page));
		if (page != pmd_page(*pmd))
			goto out;
	}
2236

2237
repeat:
2238
	if (pmd_trans_huge(*pmd)) {
2239 2240
		if (!page) {
			page = pmd_page(*pmd);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
			/*
			 * An anonymous page must be locked, to ensure that a
			 * concurrent reuse_swap_page() sees stable mapcount;
			 * but reuse_swap_page() is not used on shmem or file,
			 * and page lock must not be taken when zap_pmd_range()
			 * calls __split_huge_pmd() while i_mmap_lock is held.
			 */
			if (PageAnon(page)) {
				if (unlikely(!trylock_page(page))) {
					get_page(page);
					_pmd = *pmd;
					spin_unlock(ptl);
					lock_page(page);
					spin_lock(ptl);
					if (unlikely(!pmd_same(*pmd, _pmd))) {
						unlock_page(page);
						put_page(page);
						page = NULL;
						goto repeat;
					}
2261 2262
					put_page(page);
				}
2263
				do_unlock_page = true;
2264 2265
			}
		}
2266
		if (PageMlocked(page))
2267
			clear_page_mlock(page);
2268
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2269
		goto out;
2270
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2271
out:
2272
	spin_unlock(ptl);
2273
	if (do_unlock_page)
2274
		unlock_page(page);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2288
	mmu_notifier_invalidate_range_only_end(&range);
2289 2290
}

2291 2292
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2293
{
2294
	pgd_t *pgd;
2295
	p4d_t *p4d;
2296
	pud_t *pud;
2297 2298
	pmd_t *pmd;

2299
	pgd = pgd_offset(vma->vm_mm, address);
2300 2301 2302
	if (!pgd_present(*pgd))
		return;

2303 2304 2305 2306 2307
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2308 2309 2310 2311
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2312

2313
	__split_huge_pmd(vma, pmd, address, freeze, page);
2314 2315
}

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
{
	/*
	 * If the new address isn't hpage aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
			 ALIGN(address, HPAGE_PMD_SIZE)))
		split_huge_pmd_address(vma, address, false, NULL);
}

2328
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2329 2330 2331 2332
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
2333 2334
	/* Check if we need to split start first. */
	split_huge_pmd_if_needed(vma, start);
2335

2336 2337
	/* Check if we need to split end next. */
	split_huge_pmd_if_needed(vma, end);
2338 2339

	/*
2340 2341
	 * If we're also updating the vma->vm_next->vm_start,
	 * check if we need to split it.
2342 2343 2344 2345
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2346
		nstart += adjust_next;
2347
		split_huge_pmd_if_needed(next, nstart);
2348 2349
	}
}
2350

2351
static void unmap_page(struct page *page)
2352
{
2353
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
2354
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2355 2356 2357

	VM_BUG_ON_PAGE(!PageHead(page), page);

2358
	if (PageAnon(page))
2359
		ttu_flags |= TTU_SPLIT_FREEZE;
2360

2361 2362 2363
	try_to_unmap(page, ttu_flags);

	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2364 2365
}

2366
static void remap_page(struct page *page, unsigned int nr)
2367
{
2368
	int i;
2369 2370 2371
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
2372
		for (i = 0; i < nr; i++)
2373 2374
			remove_migration_ptes(page + i, page + i, true);
	}
2375 2376
}

2377
static void lru_add_page_tail(struct page *head, struct page *tail,
2378 2379
		struct lruvec *lruvec, struct list_head *list)
{
2380 2381 2382
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2383
	lockdep_assert_held(&lruvec->lru_lock);
2384

A
Alex Shi 已提交
2385
	if (list) {
2386
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2387
		VM_WARN_ON(PageLRU(head));
2388 2389
		get_page(tail);
		list_add_tail(&tail->lru, list);
2390
	} else {
A
Alex Shi 已提交
2391 2392 2393 2394
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
		SetPageLRU(tail);
		list_add_tail(&tail->lru, &head->lru);
2395 2396 2397
	}
}

2398
static void __split_huge_page_tail(struct page *head, int tail,
2399 2400 2401 2402
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2403
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2404 2405

	/*
2406 2407 2408
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2409
	 * for example lock_page() which set PG_waiters.
2410 2411 2412 2413 2414
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2415
			 (1L << PG_swapcache) |
2416 2417 2418
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2419
			 (1L << PG_workingset) |
2420
			 (1L << PG_locked) |
2421
			 (1L << PG_unevictable) |
2422 2423 2424
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2425
			 (1L << PG_dirty)));
2426

2427 2428 2429 2430 2431 2432
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2433
	/* Page flags must be visible before we make the page non-compound. */
2434 2435
	smp_wmb();

2436 2437 2438 2439 2440 2441
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2442 2443
	clear_compound_head(page_tail);

2444 2445 2446 2447
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2448 2449 2450 2451 2452 2453
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2454 2455 2456 2457 2458 2459

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2460 2461 2462
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2463
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2464
		pgoff_t end)
2465 2466 2467
{
	struct page *head = compound_head(page);
	struct lruvec *lruvec;
2468 2469
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2470
	unsigned int nr = thp_nr_pages(head);
2471
	int i;
2472 2473

	/* complete memcg works before add pages to LRU */
2474
	split_page_memcg(head, nr);
2475

2476 2477 2478 2479 2480 2481 2482 2483
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

I
Ingo Molnar 已提交
2484
	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2485
	lruvec = lock_page_lruvec(head);
A
Alex Shi 已提交
2486

2487
	for (i = nr - 1; i >= 1; i--) {
2488
		__split_huge_page_tail(head, i, lruvec, list);
2489 2490
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2491
			ClearPageDirty(head + i);
2492
			__delete_from_page_cache(head + i, NULL);
2493 2494
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2495
			put_page(head + i);
2496 2497 2498 2499 2500 2501
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2502 2503
		}
	}
2504 2505

	ClearPageCompound(head);
2506
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2507
	/* Caller disabled irqs, so they are still disabled here */
2508

2509
	split_page_owner(head, nr);
2510

2511 2512
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2513
		/* Additional pin to swap cache */
2514
		if (PageSwapCache(head)) {
2515
			page_ref_add(head, 2);
2516 2517
			xa_unlock(&swap_cache->i_pages);
		} else {
2518
			page_ref_inc(head);
2519
		}
2520
	} else {
M
Matthew Wilcox 已提交
2521
		/* Additional pin to page cache */
2522
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2523
		xa_unlock(&head->mapping->i_pages);
2524
	}
A
Alex Shi 已提交
2525
	local_irq_enable();
2526

2527
	remap_page(head, nr);
2528

H
Huang Ying 已提交
2529 2530 2531 2532 2533 2534
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2535
	for (i = 0; i < nr; i++) {
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2552 2553
int total_mapcount(struct page *page)
{
2554
	int i, compound, nr, ret;
2555 2556 2557 2558 2559 2560

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2561
	compound = compound_mapcount(page);
2562
	nr = compound_nr(page);
2563
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2564 2565
		return compound;
	ret = compound;
2566
	for (i = 0; i < nr; i++)
2567
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2568 2569
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
2570
		return ret - compound * nr;
2571
	if (PageDoubleMap(page))
2572
		ret -= nr;
2573 2574 2575
	return ret;
}

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
2617
	for (i = 0; i < thp_nr_pages(page); i++) {
2618 2619 2620 2621 2622 2623
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
2624
		_total_mapcount -= thp_nr_pages(page);
2625 2626 2627 2628 2629 2630 2631 2632 2633
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2634 2635 2636 2637 2638
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2639
	/* Additional pins from page cache */
2640
	if (PageAnon(page))
2641
		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2642
	else
2643
		extra_pins = thp_nr_pages(page);
2644 2645 2646 2647 2648
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2671
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2672 2673
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
2674
	int extra_pins, ret;
2675
	pgoff_t end;
2676

2677
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2678 2679
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2680

2681
	if (PageWriteback(head))
2682 2683
		return -EBUSY;

2684 2685
	if (PageAnon(head)) {
		/*
2686
		 * The caller does not necessarily hold an mmap_lock that would
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2698
		end = -1;
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2712 2713 2714 2715 2716 2717 2718 2719 2720

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2721 2722 2723
	}

	/*
2724
	 * Racy check if we can split the page, before unmap_page() will
2725 2726
	 * split PMDs
	 */
2727
	if (!can_split_huge_page(head, &extra_pins)) {
2728 2729 2730 2731
		ret = -EBUSY;
		goto out_unlock;
	}

2732
	unmap_page(head);
2733

A
Alex Shi 已提交
2734 2735
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2736
	if (mapping) {
M
Matthew Wilcox 已提交
2737
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2738 2739

		/*
M
Matthew Wilcox 已提交
2740
		 * Check if the head page is present in page cache.
2741 2742
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2743 2744
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2745 2746 2747
			goto fail;
	}

2748
	/* Prevent deferred_split_scan() touching ->_refcount */
2749
	spin_lock(&ds_queue->split_queue_lock);
2750
	if (page_ref_freeze(head, 1 + extra_pins)) {
2751
		if (!list_empty(page_deferred_list(head))) {
2752
			ds_queue->split_queue_len--;
2753 2754
			list_del(page_deferred_list(head));
		}
2755
		spin_unlock(&ds_queue->split_queue_lock);
2756
		if (mapping) {
2757 2758
			int nr = thp_nr_pages(head);

2759
			if (PageSwapBacked(head))
2760 2761
				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
							-nr);
2762
			else
2763 2764
				__mod_lruvec_page_state(head, NR_FILE_THPS,
							-nr);
2765 2766
		}

A
Alex Shi 已提交
2767
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2768
		ret = 0;
2769
	} else {
2770
		spin_unlock(&ds_queue->split_queue_lock);
2771 2772
fail:
		if (mapping)
M
Matthew Wilcox 已提交
2773
			xa_unlock(&mapping->i_pages);
A
Alex Shi 已提交
2774
		local_irq_enable();
2775
		remap_page(head, thp_nr_pages(head));
2776 2777 2778 2779
		ret = -EBUSY;
	}

out_unlock:
2780 2781 2782 2783 2784 2785
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2786 2787 2788 2789
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2790 2791 2792

void free_transhuge_page(struct page *page)
{
2793
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2794 2795
	unsigned long flags;

2796
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2797
	if (!list_empty(page_deferred_list(page))) {
2798
		ds_queue->split_queue_len--;
2799 2800
		list_del(page_deferred_list(page));
	}
2801
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2802 2803 2804 2805 2806
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2807 2808
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2809
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2810
#endif
2811 2812 2813 2814
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2828
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2829
	if (list_empty(page_deferred_list(page))) {
2830
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2831 2832
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2833 2834
#ifdef CONFIG_MEMCG
		if (memcg)
2835 2836
			set_shrinker_bit(memcg, page_to_nid(page),
					 deferred_split_shrinker.id);
2837
#endif
2838
	}
2839
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2840 2841 2842 2843 2844
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2845
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2846
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2847 2848 2849 2850 2851

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2852
	return READ_ONCE(ds_queue->split_queue_len);
2853 2854 2855 2856 2857
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2858
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2859
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2860 2861 2862 2863 2864
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2865 2866 2867 2868 2869
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2870
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2871
	/* Take pin on all head pages to avoid freeing them under us */
2872
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2873 2874
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2875 2876 2877 2878
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2879
			list_del_init(page_deferred_list(page));
2880
			ds_queue->split_queue_len--;
2881
		}
2882 2883
		if (!--sc->nr_to_scan)
			break;
2884
	}
2885
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2886 2887 2888

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2889 2890
		if (!trylock_page(page))
			goto next;
2891 2892 2893 2894
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2895
next:
2896 2897 2898
		put_page(page);
	}

2899 2900 2901
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2902

2903 2904 2905 2906
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2907
	if (!split && list_empty(&ds_queue->split_queue))
2908 2909
		return SHRINK_STOP;
	return split;
2910 2911 2912 2913 2914 2915
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2916 2917
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2918
};
2919 2920

#ifdef CONFIG_DEBUG_FS
2921
static void split_huge_pages_all(void)
2922 2923 2924 2925 2926 2927
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

2928
	pr_debug("Split all THPs\n");
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2942
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2943 2944 2945 2946 2947 2948 2949 2950 2951
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
2952
			cond_resched();
2953 2954 2955
		}
	}

2956 2957
	pr_debug("%lu of %lu THP split\n", split, total);
}
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
{
	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
		    is_vm_hugetlb_page(vma);
}

static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
				unsigned long vaddr_end)
{
	int ret = 0;
	struct task_struct *task;
	struct mm_struct *mm;
	unsigned long total = 0, split = 0;
	unsigned long addr;

	vaddr_start &= PAGE_MASK;
	vaddr_end &= PAGE_MASK;

	/* Find the task_struct from pid */
	rcu_read_lock();
	task = find_task_by_vpid(pid);
	if (!task) {
		rcu_read_unlock();
		ret = -ESRCH;
		goto out;
	}
	get_task_struct(task);
	rcu_read_unlock();

	/* Find the mm_struct */
	mm = get_task_mm(task);
	put_task_struct(task);

	if (!mm) {
		ret = -EINVAL;
		goto out;
	}

	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
		 pid, vaddr_start, vaddr_end);

	mmap_read_lock(mm);
	/*
	 * always increase addr by PAGE_SIZE, since we could have a PTE page
	 * table filled with PTE-mapped THPs, each of which is distinct.
	 */
	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
		struct vm_area_struct *vma = find_vma(mm, addr);
		unsigned int follflags;
		struct page *page;

		if (!vma || addr < vma->vm_start)
			break;

		/* skip special VMA and hugetlb VMA */
		if (vma_not_suitable_for_thp_split(vma)) {
			addr = vma->vm_end;
			continue;
		}

		/* FOLL_DUMP to ignore special (like zero) pages */
		follflags = FOLL_GET | FOLL_DUMP;
		page = follow_page(vma, addr, follflags);

		if (IS_ERR(page))
			continue;
		if (!page)
			continue;

		if (!is_transparent_hugepage(page))
			goto next;

		total++;
		if (!can_split_huge_page(compound_head(page), NULL))
			goto next;

		if (!trylock_page(page))
			goto next;

		if (!split_huge_page(page))
			split++;

		unlock_page(page);
next:
		put_page(page);
		cond_resched();
	}
	mmap_read_unlock(mm);
	mmput(mm);

	pr_debug("%lu of %lu THP split\n", split, total);

out:
	return ret;
3053
}
3054

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
				pgoff_t off_end)
{
	struct filename *file;
	struct file *candidate;
	struct address_space *mapping;
	int ret = -EINVAL;
	pgoff_t index;
	int nr_pages = 1;
	unsigned long total = 0, split = 0;

	file = getname_kernel(file_path);
	if (IS_ERR(file))
		return ret;

	candidate = file_open_name(file, O_RDONLY, 0);
	if (IS_ERR(candidate))
		goto out;

	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
		 file_path, off_start, off_end);

	mapping = candidate->f_mapping;

	for (index = off_start; index < off_end; index += nr_pages) {
		struct page *fpage = pagecache_get_page(mapping, index,
						FGP_ENTRY | FGP_HEAD, 0);

		nr_pages = 1;
		if (xa_is_value(fpage) || !fpage)
			continue;

		if (!is_transparent_hugepage(fpage))
			goto next;

		total++;
		nr_pages = thp_nr_pages(fpage);

		if (!trylock_page(fpage))
			goto next;

		if (!split_huge_page(fpage))
			split++;

		unlock_page(fpage);
next:
		put_page(fpage);
		cond_resched();
	}

	filp_close(candidate, NULL);
	ret = 0;

	pr_debug("%lu of %lu file-backed THP split\n", split, total);
out:
	putname(file);
	return ret;
}

3114 3115 3116 3117 3118 3119 3120
#define MAX_INPUT_BUF_SZ 255

static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
				size_t count, loff_t *ppops)
{
	static DEFINE_MUTEX(split_debug_mutex);
	ssize_t ret;
3121 3122
	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
	char input_buf[MAX_INPUT_BUF_SZ];
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	int pid;
	unsigned long vaddr_start, vaddr_end;

	ret = mutex_lock_interruptible(&split_debug_mutex);
	if (ret)
		return ret;

	ret = -EFAULT;

	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
		goto out;

	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164

	if (input_buf[0] == '/') {
		char *tok;
		char *buf = input_buf;
		char file_path[MAX_INPUT_BUF_SZ];
		pgoff_t off_start = 0, off_end = 0;
		size_t input_len = strlen(input_buf);

		tok = strsep(&buf, ",");
		if (tok) {
			strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
		} else {
			ret = -EINVAL;
			goto out;
		}

		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
		if (ret != 2) {
			ret = -EINVAL;
			goto out;
		}
		ret = split_huge_pages_in_file(file_path, off_start, off_end);
		if (!ret)
			ret = input_len;

		goto out;
	}

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
	if (ret == 1 && pid == 1) {
		split_huge_pages_all();
		ret = strlen(input_buf);
		goto out;
	} else if (ret != 3) {
		ret = -EINVAL;
		goto out;
	}

	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
	if (!ret)
		ret = strlen(input_buf);
out:
	mutex_unlock(&split_debug_mutex);
	return ret;

}

static const struct file_operations split_huge_pages_fops = {
	.owner	 = THIS_MODULE,
	.write	 = split_huge_pages_write,
	.llseek  = no_llseek,
};
3189 3190 3191

static int __init split_huge_pages_debugfs(void)
{
3192 3193
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3194 3195 3196 3197
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3208
	pmd_t pmdswp;
3209 3210 3211 3212 3213

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3214
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3215 3216 3217
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
3218 3219 3220 3221
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3241 3242
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3243
	if (is_write_migration_entry(entry))
3244
		pmde = maybe_pmd_mkwrite(pmde, vma);
3245 3246

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3247 3248 3249 3250
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3251
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3252
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3253 3254 3255 3256
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif