huge_memory.c 83.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/mm.h>
11
#include <linux/sched/coredump.h>
12
#include <linux/sched/numa_balancing.h>
13 14 15 16 17
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
18
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
19
#include <linux/mm_inline.h>
20
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
21
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
22
#include <linux/khugepaged.h>
23
#include <linux/freezer.h>
24
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
25
#include <linux/mman.h>
26
#include <linux/memremap.h>
R
Ralf Baechle 已提交
27
#include <linux/pagemap.h>
28
#include <linux/debugfs.h>
29
#include <linux/migrate.h>
30
#include <linux/hashtable.h>
31
#include <linux/userfaultfd_k.h>
32
#include <linux/page_idle.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/oom.h>
35
#include <linux/numa.h>
36
#include <linux/page_owner.h>
37
#include <linux/sched/sysctl.h>
38

39 40 41 42
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

43 44 45
#define CREATE_TRACE_POINTS
#include <trace/events/thp.h>

A
Andrea Arcangeli 已提交
46
/*
47 48 49 50
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
51 52
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
53
 */
54
unsigned long transparent_hugepage_flags __read_mostly =
55
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
56
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
57 58 59 60
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
61
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
62 63
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
64

65
static struct shrinker deferred_split_shrinker;
66

67
static atomic_t huge_zero_refcount;
68
struct page *huge_zero_page __read_mostly;
69
unsigned long huge_zero_pfn __read_mostly = ~0UL;
70

71 72 73 74 75 76 77 78
static inline bool file_thp_enabled(struct vm_area_struct *vma)
{
	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
	       (vma->vm_flags & VM_EXEC);
}

bool transparent_hugepage_active(struct vm_area_struct *vma)
79
{
80 81 82 83 84
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
85 86
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
87 88
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
89 90
	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
		return file_thp_enabled(vma);
91 92 93 94

	return false;
}

95
static bool get_huge_zero_page(void)
96 97 98 99
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
100
		return true;
101 102

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
103
			HPAGE_PMD_ORDER);
104 105
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
106
		return false;
107 108
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
109
	preempt_disable();
110
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
111
		preempt_enable();
112
		__free_pages(zero_page, compound_order(zero_page));
113 114
		goto retry;
	}
115
	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
116 117 118 119

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
120
	return true;
121 122
}

123
static void put_huge_zero_page(void)
124
{
125 126 127 128 129
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
130 131
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

152 153
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
154
{
155 156 157
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
158

159 160 161
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
162
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
163 164
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
165
		WRITE_ONCE(huge_zero_pfn, ~0UL);
166
		__free_pages(zero_page, compound_order(zero_page));
167
		return HPAGE_PMD_NR;
168 169 170
	}

	return 0;
171 172
}

173
static struct shrinker huge_zero_page_shrinker = {
174 175
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
176 177 178
	.seeks = DEFAULT_SEEKS,
};

179 180 181 182
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
183 184
	const char *output;

185
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
186 187 188 189
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
190
	else
191 192 193
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
194
}
195

196 197 198 199
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
200
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
201

202
	if (sysfs_streq(buf, "always")) {
203 204
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
205
	} else if (sysfs_streq(buf, "madvise")) {
206 207
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
208
	} else if (sysfs_streq(buf, "never")) {
209 210 211 212
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
213 214

	if (ret > 0) {
215
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
216 217 218 219
		if (err)
			ret = err;
	}
	return ret;
220 221 222 223
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

224
ssize_t single_hugepage_flag_show(struct kobject *kobj,
225 226
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
227
{
228 229
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
230
}
231

232
ssize_t single_hugepage_flag_store(struct kobject *kobj,
233 234 235 236
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
237 238 239 240 241 242 243 244 245 246
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
247
		set_bit(flag, &transparent_hugepage_flags);
248
	else
249 250 251 252 253 254 255 256
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
275
}
276

277 278 279 280
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
281
	if (sysfs_streq(buf, "always")) {
282 283 284 285
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286
	} else if (sysfs_streq(buf, "defer+madvise")) {
287 288 289 290
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
291
	} else if (sysfs_streq(buf, "defer")) {
292 293 294 295
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
296
	} else if (sysfs_streq(buf, "madvise")) {
297 298 299 300
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
301
	} else if (sysfs_streq(buf, "never")) {
302 303 304 305 306 307 308 309
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
310 311 312 313
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

314
static ssize_t use_zero_page_show(struct kobject *kobj,
315
				  struct kobj_attribute *attr, char *buf)
316
{
317
	return single_hugepage_flag_show(kobj, attr, buf,
318
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
319 320 321 322
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
323
	return single_hugepage_flag_store(kobj, attr, buf, count,
324 325 326 327
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
328 329

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
330
				   struct kobj_attribute *attr, char *buf)
331
{
332
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
333 334 335 336
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

337 338 339
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
340
	&use_zero_page_attr.attr,
341
	&hpage_pmd_size_attr.attr,
342
#ifdef CONFIG_SHMEM
343
	&shmem_enabled_attr.attr,
344 345 346 347
#endif
	NULL,
};

348
static const struct attribute_group hugepage_attr_group = {
349
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
350 351
};

S
Shaohua Li 已提交
352
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
353 354 355
{
	int err;

S
Shaohua Li 已提交
356 357
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
358
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
359
		return -ENOMEM;
A
Andrea Arcangeli 已提交
360 361
	}

S
Shaohua Li 已提交
362
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
363
	if (err) {
364
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
365
		goto delete_obj;
A
Andrea Arcangeli 已提交
366 367
	}

S
Shaohua Li 已提交
368
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
369
	if (err) {
370
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
371
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
372
	}
S
Shaohua Li 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
406 407 408 409 410
		/*
		 * Hardware doesn't support hugepages, hence disable
		 * DAX PMD support.
		 */
		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
S
Shaohua Li 已提交
411 412 413
		return -EINVAL;
	}

414 415 416 417 418 419 420 421 422 423
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
424 425
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
426
		goto err_sysfs;
A
Andrea Arcangeli 已提交
427

428
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
429
	if (err)
430
		goto err_slab;
A
Andrea Arcangeli 已提交
431

432 433 434
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
435 436 437
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
438

439 440 441 442 443
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
444
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
445
		transparent_hugepage_flags = 0;
446 447
		return 0;
	}
448

449
	err = start_stop_khugepaged();
450 451
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
452

S
Shaohua Li 已提交
453
	return 0;
454
err_khugepaged:
455 456
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
457 458
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
459
	khugepaged_destroy();
460
err_slab:
S
Shaohua Li 已提交
461
	hugepage_exit_sysfs(hugepage_kobj);
462
err_sysfs:
A
Andrea Arcangeli 已提交
463
	return err;
464
}
465
subsys_initcall(hugepage_init);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
493
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
494 495 496 497
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

498
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
499
{
500
	if (likely(vma->vm_flags & VM_WRITE))
501 502 503 504
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

505 506
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
507
{
508
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
509 510 511 512 513 514
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
515
}
516 517 518 519 520 521 522 523
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
524 525 526 527 528 529 530 531 532 533 534 535

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

536
static inline bool is_transparent_hugepage(struct page *page)
537 538
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
539
		return false;
540 541 542 543 544 545

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}

546 547
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
548 549 550 551
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
552
	unsigned long len_pad, ret;
553 554 555 556 557 558 559 560

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

561
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
562
					      off >> PAGE_SHIFT, flags);
563 564 565 566 567 568

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
569 570
		return 0;

571 572 573 574 575 576 577 578 579
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
580 581 582 583 584
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
585
	unsigned long ret;
586 587
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

588 589 590
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
591

592 593 594 595
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

596 597
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
598
{
J
Jan Kara 已提交
599
	struct vm_area_struct *vma = vmf->vma;
600
	pgtable_t pgtable;
J
Jan Kara 已提交
601
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
602
	vm_fault_t ret = 0;
603

604
	VM_BUG_ON_PAGE(!PageCompound(page), page);
605

606
	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
607 608
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
609
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
610 611
		return VM_FAULT_FALLBACK;
	}
612
	cgroup_throttle_swaprate(page, gfp);
613

614
	pgtable = pte_alloc_one(vma->vm_mm);
615
	if (unlikely(!pgtable)) {
616 617
		ret = VM_FAULT_OOM;
		goto release;
618
	}
619

620
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
621 622 623 624 625
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
626 627
	__SetPageUptodate(page);

J
Jan Kara 已提交
628 629
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
630
		goto unlock_release;
631 632
	} else {
		pmd_t entry;
633

634 635 636 637
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

638 639
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
640
			spin_unlock(vmf->ptl);
641
			put_page(page);
K
Kirill A. Shutemov 已提交
642
			pte_free(vma->vm_mm, pgtable);
643 644 645
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
646 647
		}

648
		entry = mk_huge_pmd(page, vma->vm_page_prot);
649
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650
		page_add_new_anon_rmap(page, vma, haddr, true);
651
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
652 653
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
654
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
K
Kirill A. Shutemov 已提交
655
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
657
		spin_unlock(vmf->ptl);
658
		count_vm_event(THP_FAULT_ALLOC);
659
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
660 661
	}

662
	return 0;
663 664 665 666 667 668 669 670
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

671 672
}

673
/*
674 675 676 677 678 679 680
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
681
 */
682
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
683
{
684
	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
685

686
	/* Always do synchronous compaction */
687 688
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
689 690

	/* Kick kcompactd and fail quickly */
691
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
692
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
693 694

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
695
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
696 697 698
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
699 700

	/* Only do synchronous compaction if madvised */
701
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
702 703
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
704

705
	return GFP_TRANSHUGE_LIGHT;
706 707
}

708
/* Caller must hold page table lock. */
709
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
710
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
711
		struct page *zero_page)
712 713
{
	pmd_t entry;
A
Andrew Morton 已提交
714
	if (!pmd_none(*pmd))
715
		return;
716
	entry = mk_pmd(zero_page, vma->vm_page_prot);
717
	entry = pmd_mkhuge(entry);
718 719
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
720
	set_pmd_at(mm, haddr, pmd, entry);
721
	mm_inc_nr_ptes(mm);
722 723
}

724
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
725
{
J
Jan Kara 已提交
726
	struct vm_area_struct *vma = vmf->vma;
727
	gfp_t gfp;
728
	struct page *page;
J
Jan Kara 已提交
729
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
730

731
	if (!transhuge_vma_suitable(vma, haddr))
732
		return VM_FAULT_FALLBACK;
733 734
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
735
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
736
		return VM_FAULT_OOM;
J
Jan Kara 已提交
737
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
738
			!mm_forbids_zeropage(vma->vm_mm) &&
739 740 741
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
742
		vm_fault_t ret;
743
		pgtable = pte_alloc_one(vma->vm_mm);
744
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
745
			return VM_FAULT_OOM;
746
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
747
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
748
			pte_free(vma->vm_mm, pgtable);
749
			count_vm_event(THP_FAULT_FALLBACK);
750
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
751
		}
J
Jan Kara 已提交
752
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
753
		ret = 0;
J
Jan Kara 已提交
754
		if (pmd_none(*vmf->pmd)) {
755 756 757
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
758
				pte_free(vma->vm_mm, pgtable);
759
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
760
				spin_unlock(vmf->ptl);
761
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
762
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
763 764
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
765
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
766
						   haddr, vmf->pmd, zero_page);
767
				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
J
Jan Kara 已提交
768
				spin_unlock(vmf->ptl);
769
			}
770
		} else {
J
Jan Kara 已提交
771
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
772
			pte_free(vma->vm_mm, pgtable);
773
		}
774
		return ret;
775
	}
776
	gfp = vma_thp_gfp_mask(vma);
777
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
778 779
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
780
		return VM_FAULT_FALLBACK;
781
	}
782
	prep_transhuge_page(page);
J
Jan Kara 已提交
783
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
784 785
}

786
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
787 788
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
789 790 791 792 793 794
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

810 811 812
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
813
	if (write) {
814 815
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
816
	}
817 818 819

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
820
		mm_inc_nr_ptes(mm);
821
		pgtable = NULL;
822 823
	}

824 825
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
826 827

out_unlock:
M
Matthew Wilcox 已提交
828
	spin_unlock(ptl);
829 830
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
831 832
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
848
{
849 850
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
851
	pgtable_t pgtable = NULL;
852

M
Matthew Wilcox 已提交
853 854 855 856 857
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
858 859
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
860 861 862 863 864 865
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
866

867
	if (arch_needs_pgtable_deposit()) {
868
		pgtable = pte_alloc_one(vma->vm_mm);
869 870 871 872
		if (!pgtable)
			return VM_FAULT_OOM;
	}

873 874
	track_pfn_insert(vma, &pgprot, pfn);

875
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
876
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
877
}
878
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
879

880
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
881
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
882
{
883
	if (likely(vma->vm_flags & VM_WRITE))
884 885 886 887 888 889 890 891 892 893 894 895
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
896 897 898 899 900 901 902 903 904 905 906 907 908 909
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

910 911 912 913
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
914 915
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
916 917 918
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
919 920

out_unlock:
921 922 923
	spin_unlock(ptl);
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
939
{
940 941 942
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

943 944 945 946 947
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
948 949
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
950 951 952 953 954 955 956 957 958
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

959
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
960 961
	return VM_FAULT_NOPAGE;
}
962
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
963 964
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

965
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
966
		pmd_t *pmd, int flags)
967 968 969
{
	pmd_t _pmd;

970 971 972
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
973
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
974
				pmd, _pmd, flags & FOLL_WRITE))
975 976 977 978
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
979
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
980 981 982 983 984 985 986
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

987 988 989 990 991 992
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
993 994 995 996 997
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

998
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
999 1000 1001 1002 1003 1004 1005 1006
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1007
		touch_pmd(vma, addr, pmd, flags);
1008 1009 1010 1011 1012

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1013
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1014 1015 1016
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017 1018
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1019 1020
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1021 1022
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1023 1024 1025 1026

	return page;
}

1027 1028
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029
		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030
{
1031
	spinlock_t *dst_ptl, *src_ptl;
1032 1033
	struct page *src_page;
	pmd_t pmd;
1034
	pgtable_t pgtable = NULL;
1035
	int ret = -ENOMEM;
1036

1037
	/* Skip if can be re-fill on fault */
1038
	if (!vma_is_anonymous(dst_vma))
1039 1040
		return 0;

1041
	pgtable = pte_alloc_one(dst_mm);
1042 1043
	if (unlikely(!pgtable))
		goto out;
1044

1045 1046 1047
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048 1049 1050

	ret = -EAGAIN;
	pmd = *src_pmd;
1051 1052 1053 1054 1055 1056

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 1058 1059
		if (is_writable_migration_entry(entry)) {
			entry = make_readable_migration_entry(
							swp_offset(entry));
1060
			pmd = swp_entry_to_pmd(entry);
1061 1062
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1063 1064
			if (pmd_swp_uffd_wp(*src_pmd))
				pmd = pmd_swp_mkuffd_wp(pmd);
1065 1066
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1067
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068
		mm_inc_nr_ptes(dst_mm);
1069
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070 1071
		if (!userfaultfd_wp(dst_vma))
			pmd = pmd_swp_clear_uffd_wp(pmd);
1072 1073 1074 1075 1076 1077
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1078
	if (unlikely(!pmd_trans_huge(pmd))) {
1079 1080 1081
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1082
	/*
1083
	 * When page table lock is held, the huge zero pmd should not be
1084 1085 1086 1087
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1088 1089 1090 1091 1092
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1093 1094
		mm_get_huge_zero_page(dst_mm);
		goto out_zero_page;
1095
	}
1096

1097 1098
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099 1100 1101 1102 1103 1104 1105 1106

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
1107
	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1108 1109 1110
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
1111
		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1112 1113 1114
		return -EAGAIN;
	}

1115 1116 1117
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118
out_zero_page:
1119
	mm_inc_nr_ptes(dst_mm);
1120
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1121
	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122 1123
	if (!userfaultfd_wp(dst_vma))
		pmd = pmd_clear_uffd_wp(pmd);
1124 1125 1126 1127 1128
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1129 1130
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1131 1132 1133 1134
out:
	return ret;
}

1135 1136
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1137
		pud_t *pud, int flags)
1138 1139 1140
{
	pud_t _pud;

1141 1142 1143
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1144
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1145
				pud, _pud, flags & FOLL_WRITE))
1146 1147 1148 1149
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1150
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1151 1152 1153 1154 1155 1156 1157
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1158
	if (flags & FOLL_WRITE && !pud_write(*pud))
1159 1160
		return NULL;

J
John Hubbard 已提交
1161 1162 1163 1164 1165
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1166 1167 1168 1169 1170 1171
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1172
		touch_pud(vma, addr, pud, flags);
1173 1174 1175 1176

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1177 1178
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1179
	 */
J
John Hubbard 已提交
1180
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1181 1182 1183
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1184 1185
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1186 1187
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1188 1189
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1220
	/* Please refer to comments in copy_huge_pmd() */
1221
	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1222 1223 1224 1225 1226 1227
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1261
void huge_pmd_set_accessed(struct vm_fault *vmf)
1262 1263 1264
{
	pmd_t entry;
	unsigned long haddr;
1265
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1266
	pmd_t orig_pmd = vmf->orig_pmd;
1267

J
Jan Kara 已提交
1268 1269
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270 1271 1272
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1273 1274
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1275
	haddr = vmf->address & HPAGE_PMD_MASK;
1276
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1277
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1278 1279

unlock:
J
Jan Kara 已提交
1280
	spin_unlock(vmf->ptl);
1281 1282
}

1283
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1284
{
J
Jan Kara 已提交
1285
	struct vm_area_struct *vma = vmf->vma;
1286
	struct page *page;
J
Jan Kara 已提交
1287
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1288
	pmd_t orig_pmd = vmf->orig_pmd;
1289

J
Jan Kara 已提交
1290
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1291
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1292

1293
	if (is_huge_zero_pmd(orig_pmd))
1294 1295
		goto fallback;

J
Jan Kara 已提交
1296
	spin_lock(vmf->ptl);
1297 1298 1299 1300 1301

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1302 1303

	page = pmd_page(orig_pmd);
1304
	VM_BUG_ON_PAGE(!PageHead(page), page);
1305

1306 1307 1308 1309 1310 1311
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1312
			spin_unlock(vmf->ptl);
1313 1314
			unlock_page(page);
			put_page(page);
1315
			return 0;
1316 1317 1318
		}
		put_page(page);
	}
1319 1320

	/*
1321 1322 1323
	 * See do_wp_page(): we can only map the page writable if there are
	 * no additional references. Note that we always drain the LRU
	 * pagevecs immediately after adding a THP.
1324
	 */
1325 1326 1327 1328 1329
	if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
		goto unlock_fallback;
	if (PageSwapCache(page))
		try_to_free_swap(page);
	if (page_count(page) == 1) {
1330 1331
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1332
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1333
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1334
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1335
		unlock_page(page);
J
Jan Kara 已提交
1336
		spin_unlock(vmf->ptl);
1337
		return VM_FAULT_WRITE;
1338
	}
1339

1340
unlock_fallback:
1341
	unlock_page(page);
J
Jan Kara 已提交
1342
	spin_unlock(vmf->ptl);
1343 1344 1345
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1346 1347
}

1348
/*
1349 1350
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1351 1352 1353
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1354 1355
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1356 1357
}

1358
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1359 1360 1361 1362
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1363
	struct mm_struct *mm = vma->vm_mm;
1364 1365
	struct page *page = NULL;

1366
	assert_spin_locked(pmd_lockptr(mm, pmd));
1367

1368
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1369 1370
		goto out;

1371 1372 1373 1374
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1375
	/* Full NUMA hinting faults to serialise migration in fault paths */
1376
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1377 1378
		goto out;

1379
	page = pmd_page(*pmd);
1380
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1381 1382 1383 1384

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1385
	if (flags & FOLL_TOUCH)
1386
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1387

1388
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1389
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1390 1391 1392 1393 1394

out:
	return page;
}

1395
/* NUMA hinting page fault entry point for trans huge pmds */
1396
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1397
{
J
Jan Kara 已提交
1398
	struct vm_area_struct *vma = vmf->vma;
Y
Yang Shi 已提交
1399 1400
	pmd_t oldpmd = vmf->orig_pmd;
	pmd_t pmd;
1401
	struct page *page;
J
Jan Kara 已提交
1402
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
Y
Yang Shi 已提交
1403
	int page_nid = NUMA_NO_NODE;
1404
	int target_nid, last_cpupid = -1;
1405
	bool migrated = false;
Y
Yang Shi 已提交
1406
	bool was_writable = pmd_savedwrite(oldpmd);
1407
	int flags = 0;
1408

J
Jan Kara 已提交
1409
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
Y
Yang Shi 已提交
1410
	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
J
Jan Kara 已提交
1411
		spin_unlock(vmf->ptl);
1412 1413 1414
		goto out;
	}

Y
Yang Shi 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	page = vm_normal_page_pmd(vma, haddr, pmd);
	if (!page)
		goto out_map;

	/* See similar comment in do_numa_page for explanation */
	if (!was_writable)
		flags |= TNF_NO_GROUP;

	page_nid = page_to_nid(page);
	last_cpupid = page_cpupid_last(page);
	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
				       &flags);

	if (target_nid == NUMA_NO_NODE) {
		put_page(page);
		goto out_map;
	}

J
Jan Kara 已提交
1434
	spin_unlock(vmf->ptl);
1435

Y
Yang Shi 已提交
1436
	migrated = migrate_misplaced_page(page, vma, target_nid);
1437 1438
	if (migrated) {
		flags |= TNF_MIGRATED;
1439
		page_nid = target_nid;
Y
Yang Shi 已提交
1440
	} else {
1441
		flags |= TNF_MIGRATE_FAIL;
Y
Yang Shi 已提交
1442 1443 1444 1445 1446 1447 1448
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
			spin_unlock(vmf->ptl);
			goto out;
		}
		goto out_map;
	}
1449 1450

out:
1451
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1452
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1453
				flags);
1454

1455
	return 0;
Y
Yang Shi 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

out_map:
	/* Restore the PMD */
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	pmd = pmd_mkyoung(pmd);
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
	spin_unlock(vmf->ptl);
	goto out;
1467 1468
}

1469 1470 1471 1472 1473
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1474 1475 1476 1477 1478 1479
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1480
	bool ret = false;
1481

1482
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1483

1484 1485
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1486
		goto out_unlocked;
1487 1488

	orig_pmd = *pmd;
1489
	if (is_huge_zero_pmd(orig_pmd))
1490 1491
		goto out;

1492 1493 1494 1495 1496 1497
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1498 1499 1500 1501 1502
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
1503
	if (total_mapcount(page) != 1)
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1516
		split_huge_page(page);
1517
		unlock_page(page);
1518
		put_page(page);
1519 1520 1521 1522 1523 1524 1525 1526
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1527
		pmdp_invalidate(vma, addr, pmd);
1528 1529 1530 1531 1532 1533
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1534 1535

	mark_page_lazyfree(page);
1536
	ret = true;
1537 1538 1539 1540 1541 1542
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1543 1544 1545 1546 1547 1548
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1549
	mm_dec_nr_ptes(mm);
1550 1551
}

1552
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1553
		 pmd_t *pmd, unsigned long addr)
1554
{
1555
	pmd_t orig_pmd;
1556
	spinlock_t *ptl;
1557

1558
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1559

1560 1561
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1562 1563 1564 1565 1566 1567 1568
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1569 1570
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1571
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1572
	if (vma_is_special_huge(vma)) {
1573 1574
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1575 1576
		spin_unlock(ptl);
	} else if (is_huge_zero_pmd(orig_pmd)) {
1577
		zap_deposited_table(tlb->mm, pmd);
1578 1579
		spin_unlock(ptl);
	} else {
1580 1581 1582 1583 1584
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
1585
			page_remove_rmap(page, vma, true);
1586 1587 1588 1589 1590 1591 1592
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
1593
			page = pfn_swap_entry_to_page(entry);
1594 1595 1596 1597
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1598
		if (PageAnon(page)) {
1599
			zap_deposited_table(tlb->mm, pmd);
1600 1601
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1602 1603
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1604
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1605
		}
1606

1607
		spin_unlock(ptl);
1608 1609
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1610
	}
1611
	return 1;
1612 1613
}

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1640
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1641
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1642
{
1643
	spinlock_t *old_ptl, *new_ptl;
1644 1645
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1646
	bool force_flush = false;
1647 1648 1649 1650 1651 1652 1653

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1654
		return false;
1655 1656
	}

1657 1658
	/*
	 * We don't have to worry about the ordering of src and dst
1659
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1660
	 */
1661 1662
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1663 1664 1665
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1666
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1667
		if (pmd_present(pmd))
1668
			force_flush = true;
1669
		VM_BUG_ON(!pmd_none(*new_pmd));
1670

1671
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1672
			pgtable_t pgtable;
1673 1674 1675
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1676 1677
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1678 1679
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1680 1681
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1682
		spin_unlock(old_ptl);
1683
		return true;
1684
	}
1685
	return false;
1686 1687
}

1688 1689 1690
/*
 * Returns
 *  - 0 if PMD could not be locked
I
Ingo Molnar 已提交
1691
 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1692
 *      or if prot_numa but THP migration is not supported
I
Ingo Molnar 已提交
1693
 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1694
 */
1695
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1696
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1697 1698
{
	struct mm_struct *mm = vma->vm_mm;
1699
	spinlock_t *ptl;
1700 1701 1702
	pmd_t entry;
	bool preserve_write;
	int ret;
1703
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1704 1705
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1706

1707 1708 1709
	if (prot_numa && !thp_migration_supported())
		return 1;

1710
	ptl = __pmd_trans_huge_lock(pmd, vma);
1711 1712
	if (!ptl)
		return 0;
1713

1714 1715
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1716

1717 1718 1719 1720 1721
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1722
		if (is_writable_migration_entry(entry)) {
1723 1724 1725 1726 1727
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
1728 1729
			entry = make_readable_migration_entry(
							swp_offset(entry));
1730
			newpmd = swp_entry_to_pmd(entry);
1731 1732
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1733 1734
			if (pmd_swp_uffd_wp(*pmd))
				newpmd = pmd_swp_mkuffd_wp(newpmd);
1735 1736 1737 1738 1739 1740
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1741 1742 1743 1744 1745 1746 1747 1748 1749
	if (prot_numa) {
		struct page *page;
		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (is_huge_zero_pmd(*pmd))
			goto unlock;
1750

1751 1752
		if (pmd_protnone(*pmd))
			goto unlock;
1753

1754 1755 1756 1757 1758 1759 1760 1761 1762
		page = pmd_page(*pmd);
		/*
		 * Skip scanning top tier node if normal numa
		 * balancing is disabled
		 */
		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
		    node_is_toptier(page_to_nid(page)))
			goto unlock;
	}
1763
	/*
1764
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1765
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1766
	 * which is also under mmap_read_lock(mm):
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1784
	entry = pmdp_invalidate(vma, addr, pmd);
1785

1786 1787 1788
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1800 1801 1802 1803 1804
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1805 1806 1807 1808
	return ret;
}

/*
1809
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1810
 *
1811 1812
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1813
 */
1814
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1815
{
1816 1817
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1818 1819
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1820 1821 1822
		return ptl;
	spin_unlock(ptl);
	return NULL;
1823 1824
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1857
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1858
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1859
	if (vma_is_special_huge(vma)) {
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1877
	count_vm_event(THP_SPLIT_PUD);
1878 1879 1880 1881 1882 1883 1884 1885

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1886
	struct mmu_notifier_range range;
1887

1888
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1889
				address & HPAGE_PUD_MASK,
1890 1891 1892
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1893 1894
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1895
	__split_huge_pud_locked(vma, pud, range.start);
1896 1897 1898

out:
	spin_unlock(ptl);
1899 1900 1901 1902
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1903
	mmu_notifier_invalidate_range_only_end(&range);
1904 1905 1906
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1907 1908 1909 1910 1911 1912 1913 1914
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1915 1916 1917 1918 1919 1920
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1921
	 * See Documentation/vm/mmu_notifier.rst
1922 1923
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1942
		unsigned long haddr, bool freeze)
1943 1944 1945 1946
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
1947
	pmd_t old_pmd, _pmd;
1948
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1949
	unsigned long addr;
1950 1951 1952 1953 1954
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1955 1956
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
1957 1958 1959

	count_vm_event(THP_SPLIT_PMD);

1960
	if (!vma_is_anonymous(vma)) {
1961
		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1962 1963 1964 1965 1966 1967
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
1968
		if (vma_is_special_huge(vma))
1969
			return;
1970 1971 1972 1973
		if (unlikely(is_pmd_migration_entry(old_pmd))) {
			swp_entry_t entry;

			entry = pmd_to_swp_entry(old_pmd);
1974
			page = pfn_swap_entry_to_page(entry);
1975 1976 1977 1978 1979 1980
		} else {
			page = pmd_page(old_pmd);
			if (!PageDirty(page) && pmd_dirty(old_pmd))
				set_page_dirty(page);
			if (!PageReferenced(page) && pmd_young(old_pmd))
				SetPageReferenced(page);
1981
			page_remove_rmap(page, vma, true);
1982 1983
			put_page(page);
		}
1984
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
1985
		return;
1986 1987
	}

1988
	if (is_huge_zero_pmd(*pmd)) {
1989 1990 1991 1992 1993 1994 1995 1996 1997
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
1998 1999 2000
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2001 2002 2003 2004 2005 2006 2007 2008
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2009 2010
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2024
	if (unlikely(pmd_migration)) {
2025 2026
		swp_entry_t entry;

2027
		entry = pmd_to_swp_entry(old_pmd);
2028
		page = pfn_swap_entry_to_page(entry);
2029
		write = is_writable_migration_entry(entry);
2030 2031
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2032
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2033
	} else {
2034
		page = pmd_page(old_pmd);
2035 2036 2037 2038 2039
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2040
		uffd_wp = pmd_uffd_wp(old_pmd);
2041 2042
		VM_BUG_ON_PAGE(!page_count(page), page);
		page_ref_add(page, HPAGE_PMD_NR - 1);
2043
	}
2044

2045 2046 2047 2048
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2049 2050 2051
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2052
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2053 2054 2055 2056 2057 2058
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2059
		if (freeze || pmd_migration) {
2060
			swp_entry_t swp_entry;
2061 2062 2063 2064 2065 2066
			if (write)
				swp_entry = make_writable_migration_entry(
							page_to_pfn(page + i));
			else
				swp_entry = make_readable_migration_entry(
							page_to_pfn(page + i));
2067
			entry = swp_entry_to_pte(swp_entry);
2068 2069
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2070 2071
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2072
		} else {
2073
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2074
			entry = maybe_mkwrite(entry, vma);
2075 2076 2077 2078
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2079 2080
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2081 2082
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2083
		}
2084
		pte = pte_offset_map(&_pmd, addr);
2085
		BUG_ON(!pte_none(*pte));
2086
		set_pte_at(mm, addr, pte, entry);
2087
		if (!pmd_migration)
2088
			atomic_inc(&page[i]._mapcount);
2089
		pte_unmap(pte);
2090 2091
	}

2092 2093 2094 2095 2096 2097 2098
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2099
			for (i = 0; i < HPAGE_PMD_NR; i++)
2100 2101 2102 2103 2104 2105
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
2106 2107
			__mod_lruvec_page_state(page, NR_ANON_THPS,
						-HPAGE_PMD_NR);
2108 2109 2110 2111 2112
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2113
		}
2114
		unlock_page_memcg(page);
2115 2116 2117

		/* Above is effectively page_remove_rmap(page, vma, true) */
		munlock_vma_page(page, vma, true);
2118 2119 2120 2121
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2122 2123

	if (freeze) {
2124
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2125
			page_remove_rmap(page + i, vma, false);
2126 2127 2128
			put_page(page + i);
		}
	}
2129 2130 2131
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2132
		unsigned long address, bool freeze, struct folio *folio)
2133 2134
{
	spinlock_t *ptl;
2135
	struct mmu_notifier_range range;
2136
	bool do_unlock_folio = false;
2137
	pmd_t _pmd;
2138

2139
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2140
				address & HPAGE_PMD_MASK,
2141 2142 2143
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2144 2145

	/*
2146 2147
	 * If caller asks to setup a migration entry, we need a folio to check
	 * pmd against. Otherwise we can end up replacing wrong folio.
2148
	 */
2149 2150 2151 2152
	VM_BUG_ON(freeze && !folio);
	if (folio) {
		VM_WARN_ON_ONCE(!folio_test_locked(folio));
		if (folio != page_folio(pmd_page(*pmd)))
2153 2154
			goto out;
	}
2155

2156
repeat:
2157
	if (pmd_trans_huge(*pmd)) {
2158 2159
		if (!folio) {
			folio = page_folio(pmd_page(*pmd));
2160 2161 2162 2163 2164 2165 2166
			/*
			 * An anonymous page must be locked, to ensure that a
			 * concurrent reuse_swap_page() sees stable mapcount;
			 * but reuse_swap_page() is not used on shmem or file,
			 * and page lock must not be taken when zap_pmd_range()
			 * calls __split_huge_pmd() while i_mmap_lock is held.
			 */
2167 2168 2169
			if (folio_test_anon(folio)) {
				if (unlikely(!folio_trylock(folio))) {
					folio_get(folio);
2170 2171
					_pmd = *pmd;
					spin_unlock(ptl);
2172
					folio_lock(folio);
2173 2174
					spin_lock(ptl);
					if (unlikely(!pmd_same(*pmd, _pmd))) {
2175 2176 2177
						folio_unlock(folio);
						folio_put(folio);
						folio = NULL;
2178 2179
						goto repeat;
					}
2180
					folio_put(folio);
2181
				}
2182
				do_unlock_folio = true;
2183 2184
			}
		}
2185
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2186
		goto out;
2187
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2188
out:
2189
	spin_unlock(ptl);
2190 2191
	if (do_unlock_folio)
		folio_unlock(folio);
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2205
	mmu_notifier_invalidate_range_only_end(&range);
2206 2207
}

2208
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2209
		bool freeze, struct folio *folio)
2210
{
2211
	pgd_t *pgd;
2212
	p4d_t *p4d;
2213
	pud_t *pud;
2214 2215
	pmd_t *pmd;

2216
	pgd = pgd_offset(vma->vm_mm, address);
2217 2218 2219
	if (!pgd_present(*pgd))
		return;

2220 2221 2222 2223 2224
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2225 2226 2227 2228
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2229

2230
	__split_huge_pmd(vma, pmd, address, freeze, folio);
2231 2232
}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
{
	/*
	 * If the new address isn't hpage aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
			 ALIGN(address, HPAGE_PMD_SIZE)))
		split_huge_pmd_address(vma, address, false, NULL);
}

2245
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2246 2247 2248 2249
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
2250 2251
	/* Check if we need to split start first. */
	split_huge_pmd_if_needed(vma, start);
2252

2253 2254
	/* Check if we need to split end next. */
	split_huge_pmd_if_needed(vma, end);
2255 2256

	/*
2257 2258
	 * If we're also updating the vma->vm_next->vm_start,
	 * check if we need to split it.
2259 2260 2261 2262
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2263
		nstart += adjust_next;
2264
		split_huge_pmd_if_needed(next, nstart);
2265 2266
	}
}
2267

2268
static void unmap_page(struct page *page)
2269
{
2270
	struct folio *folio = page_folio(page);
2271 2272
	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
		TTU_SYNC;
2273 2274 2275

	VM_BUG_ON_PAGE(!PageHead(page), page);

2276 2277 2278 2279 2280
	/*
	 * Anon pages need migration entries to preserve them, but file
	 * pages can simply be left unmapped, then faulted back on demand.
	 * If that is ever changed (perhaps for mlock), update remap_page().
	 */
2281 2282
	if (folio_test_anon(folio))
		try_to_migrate(folio, ttu_flags);
2283
	else
2284
		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2285 2286

	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2287 2288
}

2289
static void remap_page(struct folio *folio, unsigned long nr)
2290
{
2291
	int i = 0;
2292

2293
	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2294
	if (!folio_test_anon(folio))
2295
		return;
2296 2297 2298 2299 2300 2301
	for (;;) {
		remove_migration_ptes(folio, folio, true);
		i += folio_nr_pages(folio);
		if (i >= nr)
			break;
		folio = folio_next(folio);
2302
	}
2303 2304
}

2305
static void lru_add_page_tail(struct page *head, struct page *tail,
2306 2307
		struct lruvec *lruvec, struct list_head *list)
{
2308 2309 2310
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2311
	lockdep_assert_held(&lruvec->lru_lock);
2312

A
Alex Shi 已提交
2313
	if (list) {
2314
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2315
		VM_WARN_ON(PageLRU(head));
2316 2317
		get_page(tail);
		list_add_tail(&tail->lru, list);
2318
	} else {
A
Alex Shi 已提交
2319 2320
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
2321 2322 2323 2324
		if (PageUnevictable(tail))
			tail->mlock_count = 0;
		else
			list_add_tail(&tail->lru, &head->lru);
A
Alex Shi 已提交
2325
		SetPageLRU(tail);
2326 2327 2328
	}
}

2329
static void __split_huge_page_tail(struct page *head, int tail,
2330 2331 2332 2333
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2334
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2335 2336

	/*
2337 2338 2339
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2340
	 * for example lock_page() which set PG_waiters.
2341 2342 2343 2344 2345
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2346
			 (1L << PG_swapcache) |
2347 2348 2349
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2350
			 (1L << PG_workingset) |
2351
			 (1L << PG_locked) |
2352
			 (1L << PG_unevictable) |
2353 2354 2355
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2356
			 (1L << PG_dirty)));
2357

2358 2359 2360 2361 2362 2363
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2364
	/* Page flags must be visible before we make the page non-compound. */
2365 2366
	smp_wmb();

2367 2368 2369 2370 2371 2372
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2373 2374
	clear_compound_head(page_tail);

2375 2376 2377 2378
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2379 2380 2381 2382 2383 2384
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2385 2386 2387 2388 2389 2390

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2391 2392 2393
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2394
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2395
		pgoff_t end)
2396
{
2397 2398
	struct folio *folio = page_folio(page);
	struct page *head = &folio->page;
2399
	struct lruvec *lruvec;
2400 2401
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2402
	unsigned int nr = thp_nr_pages(head);
2403
	int i;
2404 2405

	/* complete memcg works before add pages to LRU */
2406
	split_page_memcg(head, nr);
2407

2408 2409 2410 2411 2412 2413 2414 2415
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

I
Ingo Molnar 已提交
2416
	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2417
	lruvec = folio_lruvec_lock(folio);
A
Alex Shi 已提交
2418

2419 2420
	ClearPageHasHWPoisoned(head);

2421
	for (i = nr - 1; i >= 1; i--) {
2422
		__split_huge_page_tail(head, i, lruvec, list);
2423
		/* Some pages can be beyond EOF: drop them from page cache */
2424
		if (head[i].index >= end) {
2425
			ClearPageDirty(head + i);
2426
			__delete_from_page_cache(head + i, NULL);
2427
			if (shmem_mapping(head->mapping))
2428
				shmem_uncharge(head->mapping->host, 1);
2429
			put_page(head + i);
2430 2431 2432 2433 2434 2435
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2436 2437
		}
	}
2438 2439

	ClearPageCompound(head);
2440
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2441
	/* Caller disabled irqs, so they are still disabled here */
2442

2443
	split_page_owner(head, nr);
2444

2445 2446
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2447
		/* Additional pin to swap cache */
2448
		if (PageSwapCache(head)) {
2449
			page_ref_add(head, 2);
2450 2451
			xa_unlock(&swap_cache->i_pages);
		} else {
2452
			page_ref_inc(head);
2453
		}
2454
	} else {
M
Matthew Wilcox 已提交
2455
		/* Additional pin to page cache */
2456
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2457
		xa_unlock(&head->mapping->i_pages);
2458
	}
A
Alex Shi 已提交
2459
	local_irq_enable();
2460

2461
	remap_page(folio, nr);
2462

H
Huang Ying 已提交
2463 2464 2465 2466 2467 2468
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2469
	for (i = 0; i < nr; i++) {
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2486
/* Racy check whether the huge page can be split */
2487
bool can_split_folio(struct folio *folio, int *pextra_pins)
2488 2489 2490
{
	int extra_pins;

M
Matthew Wilcox 已提交
2491
	/* Additional pins from page cache */
2492 2493 2494
	if (folio_test_anon(folio))
		extra_pins = folio_test_swapcache(folio) ?
				folio_nr_pages(folio) : 0;
2495
	else
2496
		extra_pins = folio_nr_pages(folio);
2497 2498
	if (pextra_pins)
		*pextra_pins = extra_pins;
2499
	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2500 2501
}

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
2523 2524
	struct folio *folio = page_folio(page);
	struct page *head = &folio->page;
2525
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2526
	XA_STATE(xas, &head->mapping->i_pages, head->index);
2527 2528
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
2529
	int extra_pins, ret;
2530
	pgoff_t end;
2531

2532
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2533 2534
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2535

2536
	if (PageWriteback(head))
2537 2538
		return -EBUSY;

2539 2540
	if (PageAnon(head)) {
		/*
2541
		 * The caller does not necessarily hold an mmap_lock that would
2542 2543
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
2544
		 * is similar to folio_lock_anon_vma_read except the write lock
2545 2546 2547 2548 2549 2550 2551 2552
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2553
		end = -1;
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

2565 2566 2567 2568 2569 2570 2571
		xas_split_alloc(&xas, head, compound_order(head),
				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
		if (xas_error(&xas)) {
			ret = xas_error(&xas);
			goto out;
		}

2572 2573
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2574 2575 2576 2577 2578 2579 2580 2581 2582

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2583 2584
		if (shmem_mapping(mapping))
			end = shmem_fallocend(mapping->host, end);
2585 2586 2587
	}

	/*
2588
	 * Racy check if we can split the page, before unmap_page() will
2589 2590
	 * split PMDs
	 */
2591
	if (!can_split_folio(folio, &extra_pins)) {
2592 2593 2594 2595
		ret = -EBUSY;
		goto out_unlock;
	}

2596
	unmap_page(head);
2597

A
Alex Shi 已提交
2598 2599
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2600 2601
	if (mapping) {
		/*
M
Matthew Wilcox 已提交
2602
		 * Check if the head page is present in page cache.
2603 2604
		 * We assume all tail are present too, if head is there.
		 */
2605 2606
		xas_lock(&xas);
		xas_reset(&xas);
M
Matthew Wilcox 已提交
2607
		if (xas_load(&xas) != head)
2608 2609 2610
			goto fail;
	}

2611
	/* Prevent deferred_split_scan() touching ->_refcount */
2612
	spin_lock(&ds_queue->split_queue_lock);
2613
	if (page_ref_freeze(head, 1 + extra_pins)) {
2614
		if (!list_empty(page_deferred_list(head))) {
2615
			ds_queue->split_queue_len--;
2616 2617
			list_del(page_deferred_list(head));
		}
2618
		spin_unlock(&ds_queue->split_queue_lock);
2619
		if (mapping) {
2620 2621
			int nr = thp_nr_pages(head);

2622
			xas_split(&xas, head, thp_order(head));
2623
			if (PageSwapBacked(head)) {
2624 2625
				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
							-nr);
2626
			} else {
2627 2628
				__mod_lruvec_page_state(head, NR_FILE_THPS,
							-nr);
2629 2630
				filemap_nr_thps_dec(mapping);
			}
2631 2632
		}

A
Alex Shi 已提交
2633
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2634
		ret = 0;
2635
	} else {
2636
		spin_unlock(&ds_queue->split_queue_lock);
2637 2638
fail:
		if (mapping)
2639
			xas_unlock(&xas);
A
Alex Shi 已提交
2640
		local_irq_enable();
2641
		remap_page(folio, folio_nr_pages(folio));
2642 2643 2644 2645
		ret = -EBUSY;
	}

out_unlock:
2646 2647 2648 2649 2650 2651
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2652
out:
2653 2654
	/* Free any memory we didn't use */
	xas_nomem(&xas, 0);
2655 2656 2657
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2658 2659 2660

void free_transhuge_page(struct page *page)
{
2661
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2662 2663
	unsigned long flags;

2664
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2665
	if (!list_empty(page_deferred_list(page))) {
2666
		ds_queue->split_queue_len--;
2667 2668
		list_del(page_deferred_list(page));
	}
2669
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2670 2671 2672 2673 2674
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2675 2676
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2677
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2678
#endif
2679 2680 2681 2682
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2696
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2697
	if (list_empty(page_deferred_list(page))) {
2698
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2699 2700
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2701 2702
#ifdef CONFIG_MEMCG
		if (memcg)
2703 2704
			set_shrinker_bit(memcg, page_to_nid(page),
					 deferred_split_shrinker.id);
2705
#endif
2706
	}
2707
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2708 2709 2710 2711 2712
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2713
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2714
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2715 2716 2717 2718 2719

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2720
	return READ_ONCE(ds_queue->split_queue_len);
2721 2722 2723 2724 2725
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2726
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2727
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2728 2729 2730 2731 2732
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2733 2734 2735 2736 2737
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2738
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2739
	/* Take pin on all head pages to avoid freeing them under us */
2740
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2741
		page = list_entry((void *)pos, struct page, deferred_list);
2742
		page = compound_head(page);
2743 2744 2745 2746
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2747
			list_del_init(page_deferred_list(page));
2748
			ds_queue->split_queue_len--;
2749
		}
2750 2751
		if (!--sc->nr_to_scan)
			break;
2752
	}
2753
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2754 2755

	list_for_each_safe(pos, next, &list) {
2756
		page = list_entry((void *)pos, struct page, deferred_list);
2757 2758
		if (!trylock_page(page))
			goto next;
2759 2760 2761 2762
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2763
next:
2764 2765 2766
		put_page(page);
	}

2767 2768 2769
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2770

2771 2772 2773 2774
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2775
	if (!split && list_empty(&ds_queue->split_queue))
2776 2777
		return SHRINK_STOP;
	return split;
2778 2779 2780 2781 2782 2783
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2784 2785
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2786
};
2787 2788

#ifdef CONFIG_DEBUG_FS
2789
static void split_huge_pages_all(void)
2790 2791 2792 2793 2794 2795
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

2796
	pr_debug("Split all THPs\n");
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2810
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2811 2812 2813 2814 2815 2816 2817 2818 2819
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
2820
			cond_resched();
2821 2822 2823
		}
	}

2824 2825
	pr_debug("%lu of %lu THP split\n", split, total);
}
2826

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
{
	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
		    is_vm_hugetlb_page(vma);
}

static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
				unsigned long vaddr_end)
{
	int ret = 0;
	struct task_struct *task;
	struct mm_struct *mm;
	unsigned long total = 0, split = 0;
	unsigned long addr;

	vaddr_start &= PAGE_MASK;
	vaddr_end &= PAGE_MASK;

	/* Find the task_struct from pid */
	rcu_read_lock();
	task = find_task_by_vpid(pid);
	if (!task) {
		rcu_read_unlock();
		ret = -ESRCH;
		goto out;
	}
	get_task_struct(task);
	rcu_read_unlock();

	/* Find the mm_struct */
	mm = get_task_mm(task);
	put_task_struct(task);

	if (!mm) {
		ret = -EINVAL;
		goto out;
	}

	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
		 pid, vaddr_start, vaddr_end);

	mmap_read_lock(mm);
	/*
	 * always increase addr by PAGE_SIZE, since we could have a PTE page
	 * table filled with PTE-mapped THPs, each of which is distinct.
	 */
	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
		struct vm_area_struct *vma = find_vma(mm, addr);
		struct page *page;

		if (!vma || addr < vma->vm_start)
			break;

		/* skip special VMA and hugetlb VMA */
		if (vma_not_suitable_for_thp_split(vma)) {
			addr = vma->vm_end;
			continue;
		}

		/* FOLL_DUMP to ignore special (like zero) pages */
2887
		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

		if (IS_ERR(page))
			continue;
		if (!page)
			continue;

		if (!is_transparent_hugepage(page))
			goto next;

		total++;
2898
		if (!can_split_folio(page_folio(page), NULL))
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
			goto next;

		if (!trylock_page(page))
			goto next;

		if (!split_huge_page(page))
			split++;

		unlock_page(page);
next:
		put_page(page);
		cond_resched();
	}
	mmap_read_unlock(mm);
	mmput(mm);

	pr_debug("%lu of %lu THP split\n", split, total);

out:
	return ret;
2919
}
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
				pgoff_t off_end)
{
	struct filename *file;
	struct file *candidate;
	struct address_space *mapping;
	int ret = -EINVAL;
	pgoff_t index;
	int nr_pages = 1;
	unsigned long total = 0, split = 0;

	file = getname_kernel(file_path);
	if (IS_ERR(file))
		return ret;

	candidate = file_open_name(file, O_RDONLY, 0);
	if (IS_ERR(candidate))
		goto out;

	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
		 file_path, off_start, off_end);

	mapping = candidate->f_mapping;

	for (index = off_start; index < off_end; index += nr_pages) {
		struct page *fpage = pagecache_get_page(mapping, index,
						FGP_ENTRY | FGP_HEAD, 0);

		nr_pages = 1;
		if (xa_is_value(fpage) || !fpage)
			continue;

		if (!is_transparent_hugepage(fpage))
			goto next;

		total++;
		nr_pages = thp_nr_pages(fpage);

		if (!trylock_page(fpage))
			goto next;

		if (!split_huge_page(fpage))
			split++;

		unlock_page(fpage);
next:
		put_page(fpage);
		cond_resched();
	}

	filp_close(candidate, NULL);
	ret = 0;

	pr_debug("%lu of %lu file-backed THP split\n", split, total);
out:
	putname(file);
	return ret;
}

2980 2981 2982 2983 2984 2985 2986
#define MAX_INPUT_BUF_SZ 255

static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
				size_t count, loff_t *ppops)
{
	static DEFINE_MUTEX(split_debug_mutex);
	ssize_t ret;
2987 2988
	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
	char input_buf[MAX_INPUT_BUF_SZ];
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
	int pid;
	unsigned long vaddr_start, vaddr_end;

	ret = mutex_lock_interruptible(&split_debug_mutex);
	if (ret)
		return ret;

	ret = -EFAULT;

	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
		goto out;

	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

	if (input_buf[0] == '/') {
		char *tok;
		char *buf = input_buf;
		char file_path[MAX_INPUT_BUF_SZ];
		pgoff_t off_start = 0, off_end = 0;
		size_t input_len = strlen(input_buf);

		tok = strsep(&buf, ",");
		if (tok) {
3013
			strcpy(file_path, tok);
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
		} else {
			ret = -EINVAL;
			goto out;
		}

		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
		if (ret != 2) {
			ret = -EINVAL;
			goto out;
		}
		ret = split_huge_pages_in_file(file_path, off_start, off_end);
		if (!ret)
			ret = input_len;

		goto out;
	}

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
	if (ret == 1 && pid == 1) {
		split_huge_pages_all();
		ret = strlen(input_buf);
		goto out;
	} else if (ret != 3) {
		ret = -EINVAL;
		goto out;
	}

	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
	if (!ret)
		ret = strlen(input_buf);
out:
	mutex_unlock(&split_debug_mutex);
	return ret;

}

static const struct file_operations split_huge_pages_fops = {
	.owner	 = THIS_MODULE,
	.write	 = split_huge_pages_write,
	.llseek  = no_llseek,
};
3055 3056 3057

static int __init split_huge_pages_debugfs(void)
{
3058 3059
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3060 3061 3062 3063
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3074
	pmd_t pmdswp;
3075 3076 3077 3078 3079

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3080
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3081 3082
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
3083 3084 3085 3086
	if (pmd_write(pmdval))
		entry = make_writable_migration_entry(page_to_pfn(page));
	else
		entry = make_readable_migration_entry(page_to_pfn(page));
3087 3088 3089 3090
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3091
	page_remove_rmap(page, vma, true);
3092
	put_page(page);
3093
	trace_set_migration_pmd(address, pmd_val(pmdswp));
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3111 3112
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3113
	if (is_writable_migration_entry(entry))
3114
		pmde = maybe_pmd_mkwrite(pmde, vma);
3115 3116
	if (pmd_swp_uffd_wp(*pvmw->pmd))
		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3117

3118 3119 3120
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
3121
		page_add_file_rmap(new, vma, true);
3122
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3123 3124

	/* No need to invalidate - it was non-present before */
3125
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3126
	trace_remove_migration_pmd(address, pmd_val(pmde));
3127 3128
}
#endif