huge_memory.c 81.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167 168 169 170 171
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
172
}
173

174 175 176 177
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
178
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
179

180
	if (sysfs_streq(buf, "always")) {
181 182
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183
	} else if (sysfs_streq(buf, "madvise")) {
184 185
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186
	} else if (sysfs_streq(buf, "never")) {
187 188 189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
191 192

	if (ret > 0) {
193
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
194 195 196 197
		if (err)
			ret = err;
	}
	return ret;
198 199 200 201
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

202
ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 204 205
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
206 207
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
208
}
209

210
ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 212 213 214
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
215 216 217 218 219 220 221 222 223 224
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
225
		set_bit(flag, &transparent_hugepage_flags);
226
	else
227 228 229 230 231 232 233 234
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
235
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 239 240 241 242 243
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244
}
245

246 247 248 249
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
250
	if (sysfs_streq(buf, "always")) {
251 252 253 254
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255
	} else if (sysfs_streq(buf, "defer+madvise")) {
256 257 258 259
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260
	} else if (sysfs_streq(buf, "defer")) {
261 262 263 264
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265
	} else if (sysfs_streq(buf, "madvise")) {
266 267 268 269
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270
	} else if (sysfs_streq(buf, "never")) {
271 272 273 274 275 276 277 278
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
279 280 281 282
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

283 284 285
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
286
	return single_hugepage_flag_show(kobj, attr, buf,
287 288 289 290 291
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
292
	return single_hugepage_flag_store(kobj, attr, buf, count,
293 294 295 296
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 298 299 300 301 302 303 304 305

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

306 307 308
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
309
	&use_zero_page_attr.attr,
310
	&hpage_pmd_size_attr.attr,
311
#ifdef CONFIG_SHMEM
312
	&shmem_enabled_attr.attr,
313 314 315 316
#endif
	NULL,
};

317
static const struct attribute_group hugepage_attr_group = {
318
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
319 320
};

S
Shaohua Li 已提交
321
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
322 323 324
{
	int err;

S
Shaohua Li 已提交
325 326
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
327
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
328
		return -ENOMEM;
A
Andrea Arcangeli 已提交
329 330
	}

S
Shaohua Li 已提交
331
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
332
	if (err) {
333
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
334
		goto delete_obj;
A
Andrea Arcangeli 已提交
335 336
	}

S
Shaohua Li 已提交
337
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
338
	if (err) {
339
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
340
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
341
	}
S
Shaohua Li 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

379 380 381 382 383 384 385 386 387 388
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
389 390
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
391
		goto err_sysfs;
A
Andrea Arcangeli 已提交
392

393
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
394
	if (err)
395
		goto err_slab;
A
Andrea Arcangeli 已提交
396

397 398 399
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
400 401 402
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
403

404 405 406 407 408
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
409
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
410
		transparent_hugepage_flags = 0;
411 412
		return 0;
	}
413

414
	err = start_stop_khugepaged();
415 416
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
417

S
Shaohua Li 已提交
418
	return 0;
419
err_khugepaged:
420 421
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
422 423
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
424
	khugepaged_destroy();
425
err_slab:
S
Shaohua Li 已提交
426
	hugepage_exit_sysfs(hugepage_kobj);
427
err_sysfs:
A
Andrea Arcangeli 已提交
428
	return err;
429
}
430
subsys_initcall(hugepage_init);
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
458
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
459 460 461 462
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

463
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
464
{
465
	if (likely(vma->vm_flags & VM_WRITE))
466 467 468 469
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

470 471
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
472
{
473 474 475 476 477 478 479
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
480
}
481 482 483 484 485 486 487 488
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
489 490 491 492 493 494 495 496 497 498 499 500

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

501 502 503
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
504
		return false;
505 506 507 508 509 510 511

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

512 513
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
514 515 516 517
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
518
	unsigned long len_pad, ret;
519 520 521 522 523 524 525 526

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

527
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
528
					      off >> PAGE_SHIFT, flags);
529 530 531 532 533 534

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
535 536
		return 0;

537 538 539 540 541 542 543 544 545
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
546 547 548 549 550
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
551
	unsigned long ret;
552 553 554 555 556
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

557 558 559 560
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
561 562 563 564
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

565 566
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
567
{
J
Jan Kara 已提交
568
	struct vm_area_struct *vma = vmf->vma;
569
	pgtable_t pgtable;
J
Jan Kara 已提交
570
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
571
	vm_fault_t ret = 0;
572

573
	VM_BUG_ON_PAGE(!PageCompound(page), page);
574

575
	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
576 577
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
578
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
579 580
		return VM_FAULT_FALLBACK;
	}
581
	cgroup_throttle_swaprate(page, gfp);
582

583
	pgtable = pte_alloc_one(vma->vm_mm);
584
	if (unlikely(!pgtable)) {
585 586
		ret = VM_FAULT_OOM;
		goto release;
587
	}
588

589
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
590 591 592 593 594
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
595 596
	__SetPageUptodate(page);

J
Jan Kara 已提交
597 598
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
599
		goto unlock_release;
600 601
	} else {
		pmd_t entry;
602

603 604 605 606
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

607 608
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
609
			vm_fault_t ret2;
610

J
Jan Kara 已提交
611
			spin_unlock(vmf->ptl);
612
			put_page(page);
K
Kirill A. Shutemov 已提交
613
			pte_free(vma->vm_mm, pgtable);
614 615 616
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
617 618
		}

619
		entry = mk_huge_pmd(page, vma->vm_page_prot);
620
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
621
		page_add_new_anon_rmap(page, vma, haddr, true);
622
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
623 624
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
625
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
626
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
627
		spin_unlock(vmf->ptl);
628
		count_vm_event(THP_FAULT_ALLOC);
629
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
630 631
	}

632
	return 0;
633 634 635 636 637 638 639 640
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

641 642
}

643
/*
644 645 646 647 648 649 650
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
651
 */
652
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
653
{
654
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
655

656
	/* Always do synchronous compaction */
657 658
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
659 660

	/* Kick kcompactd and fail quickly */
661
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
662
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
663 664

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
665
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
666 667 668
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
669 670

	/* Only do synchronous compaction if madvised */
671
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
672 673
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
674

675
	return GFP_TRANSHUGE_LIGHT;
676 677
}

678
/* Caller must hold page table lock. */
679
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
680
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
681
		struct page *zero_page)
682 683
{
	pmd_t entry;
A
Andrew Morton 已提交
684 685
	if (!pmd_none(*pmd))
		return false;
686
	entry = mk_pmd(zero_page, vma->vm_page_prot);
687
	entry = pmd_mkhuge(entry);
688 689
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
690
	set_pmd_at(mm, haddr, pmd, entry);
691
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
692
	return true;
693 694
}

695
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
696
{
J
Jan Kara 已提交
697
	struct vm_area_struct *vma = vmf->vma;
698
	gfp_t gfp;
699
	struct page *page;
J
Jan Kara 已提交
700
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
701

702
	if (!transhuge_vma_suitable(vma, haddr))
703
		return VM_FAULT_FALLBACK;
704 705
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
706
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
707
		return VM_FAULT_OOM;
J
Jan Kara 已提交
708
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
709
			!mm_forbids_zeropage(vma->vm_mm) &&
710 711 712 713
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
714
		vm_fault_t ret;
715
		pgtable = pte_alloc_one(vma->vm_mm);
716
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
717
			return VM_FAULT_OOM;
718
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
719
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
720
			pte_free(vma->vm_mm, pgtable);
721
			count_vm_event(THP_FAULT_FALLBACK);
722
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
723
		}
J
Jan Kara 已提交
724
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
725 726
		ret = 0;
		set = false;
J
Jan Kara 已提交
727
		if (pmd_none(*vmf->pmd)) {
728 729 730 731
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
732 733
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
734 735
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
736
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
737 738
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
739 740 741
				set = true;
			}
		} else
J
Jan Kara 已提交
742
			spin_unlock(vmf->ptl);
743
		if (!set)
K
Kirill A. Shutemov 已提交
744
			pte_free(vma->vm_mm, pgtable);
745
		return ret;
746
	}
747 748
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
749 750
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
751
		return VM_FAULT_FALLBACK;
752
	}
753
	prep_transhuge_page(page);
J
Jan Kara 已提交
754
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
755 756
}

757
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
758 759
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
760 761 762 763 764 765
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

781 782 783
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
784
	if (write) {
785 786
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
787
	}
788 789 790

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
791
		mm_inc_nr_ptes(mm);
792
		pgtable = NULL;
793 794
	}

795 796
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
797 798

out_unlock:
M
Matthew Wilcox 已提交
799
	spin_unlock(ptl);
800 801
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
802 803
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
819
{
820 821
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
822
	pgtable_t pgtable = NULL;
823

M
Matthew Wilcox 已提交
824 825 826 827 828
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
829 830
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
831 832 833 834 835 836
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
837

838
	if (arch_needs_pgtable_deposit()) {
839
		pgtable = pte_alloc_one(vma->vm_mm);
840 841 842 843
		if (!pgtable)
			return VM_FAULT_OOM;
	}

844 845
	track_pfn_insert(vma, &pgprot, pfn);

846
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
847
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
848
}
849
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
850

851
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
852
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
853
{
854
	if (likely(vma->vm_flags & VM_WRITE))
855 856 857 858 859 860 861 862 863 864 865 866
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
867 868 869 870 871 872 873 874 875 876 877 878 879 880
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

881 882 883 884
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
885 886
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
887 888 889
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
890 891

out_unlock:
892 893 894
	spin_unlock(ptl);
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
910
{
911 912 913
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

914 915 916 917 918
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
919 920
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
921 922 923 924 925 926 927 928 929
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

930
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
931 932
	return VM_FAULT_NOPAGE;
}
933
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
934 935
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

936
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
937
		pmd_t *pmd, int flags)
938 939 940
{
	pmd_t _pmd;

941 942 943
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
944
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
945
				pmd, _pmd, flags & FOLL_WRITE))
946 947 948 949
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
950
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
951 952 953 954 955 956 957
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

958 959 960 961 962 963
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
964 965 966 967 968
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

969
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
970 971 972 973 974 975 976 977
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
978
		touch_pmd(vma, addr, pmd, flags);
979 980 981 982 983

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
984
	if (!(flags & (FOLL_GET | FOLL_PIN)))
985 986 987
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
988 989
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
990 991
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
992 993
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
994 995 996 997

	return page;
}

998 999 1000 1001
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1002
	spinlock_t *dst_ptl, *src_ptl;
1003 1004
	struct page *src_page;
	pmd_t pmd;
1005
	pgtable_t pgtable = NULL;
1006
	int ret = -ENOMEM;
1007

1008 1009 1010 1011
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1012
	pgtable = pte_alloc_one(dst_mm);
1013 1014
	if (unlikely(!pgtable))
		goto out;
1015

1016 1017 1018
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1019 1020 1021

	ret = -EAGAIN;
	pmd = *src_pmd;
1022

1023 1024 1025 1026 1027 1028 1029 1030
	/*
	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
	 * does not have the VM_UFFD_WP, which means that the uffd
	 * fork event is not enabled.
	 */
	if (!(vma->vm_flags & VM_UFFD_WP))
		pmd = pmd_clear_uffd_wp(pmd);

1031 1032 1033 1034 1035 1036 1037 1038
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1039 1040
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1041 1042
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1043
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1044
		mm_inc_nr_ptes(dst_mm);
1045
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1046 1047 1048 1049 1050 1051
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1052
	if (unlikely(!pmd_trans_huge(pmd))) {
1053 1054 1055
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1056
	/*
1057
	 * When page table lock is held, the huge zero pmd should not be
1058 1059 1060 1061
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1062
		struct page *zero_page;
1063 1064 1065 1066 1067
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1068
		zero_page = mm_get_huge_zero_page(dst_mm);
1069
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1070
				zero_page);
1071 1072 1073
		ret = 0;
		goto out_unlock;
	}
1074

1075 1076 1077 1078 1079
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1080
	mm_inc_nr_ptes(dst_mm);
1081
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1082 1083 1084 1085 1086 1087 1088

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1089 1090
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1091 1092 1093 1094
out:
	return ret;
}

1095 1096
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1097
		pud_t *pud, int flags)
1098 1099 1100
{
	pud_t _pud;

1101 1102 1103
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1104
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1105
				pud, _pud, flags & FOLL_WRITE))
1106 1107 1108 1109
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1110
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1111 1112 1113 1114 1115 1116 1117
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1118
	if (flags & FOLL_WRITE && !pud_write(*pud))
1119 1120
		return NULL;

J
John Hubbard 已提交
1121 1122 1123 1124 1125
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1126 1127 1128 1129 1130 1131
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1132
		touch_pud(vma, addr, pud, flags);
1133 1134 1135 1136

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1137 1138
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1139
	 */
J
John Hubbard 已提交
1140
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1141 1142 1143
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1144 1145
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1146 1147
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1148 1149
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1213
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1214 1215 1216
{
	pmd_t entry;
	unsigned long haddr;
1217
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1218

J
Jan Kara 已提交
1219 1220
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1221 1222 1223
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1224 1225
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1226
	haddr = vmf->address & HPAGE_PMD_MASK;
1227
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1228
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1229 1230

unlock:
J
Jan Kara 已提交
1231
	spin_unlock(vmf->ptl);
1232 1233
}

1234
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1235
{
J
Jan Kara 已提交
1236
	struct vm_area_struct *vma = vmf->vma;
1237
	struct page *page;
J
Jan Kara 已提交
1238
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1239

J
Jan Kara 已提交
1240
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1241
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1242

1243
	if (is_huge_zero_pmd(orig_pmd))
1244 1245
		goto fallback;

J
Jan Kara 已提交
1246
	spin_lock(vmf->ptl);
1247 1248 1249 1250 1251

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1252 1253

	page = pmd_page(orig_pmd);
1254
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1255 1256

	/* Lock page for reuse_swap_page() */
1257 1258 1259 1260 1261 1262
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1263
			spin_unlock(vmf->ptl);
1264 1265
			unlock_page(page);
			put_page(page);
1266
			return 0;
1267 1268 1269
		}
		put_page(page);
	}
1270 1271 1272 1273 1274

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1275
	if (reuse_swap_page(page, NULL)) {
1276 1277
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1278
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1279
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1280
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1281
		unlock_page(page);
J
Jan Kara 已提交
1282
		spin_unlock(vmf->ptl);
1283
		return VM_FAULT_WRITE;
1284
	}
1285 1286

	unlock_page(page);
J
Jan Kara 已提交
1287
	spin_unlock(vmf->ptl);
1288 1289 1290
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1291 1292
}

1293
/*
1294 1295
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1296 1297 1298
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1299 1300
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1301 1302
}

1303
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1304 1305 1306 1307
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1308
	struct mm_struct *mm = vma->vm_mm;
1309 1310
	struct page *page = NULL;

1311
	assert_spin_locked(pmd_lockptr(mm, pmd));
1312

1313
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1314 1315
		goto out;

1316 1317 1318 1319
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1320
	/* Full NUMA hinting faults to serialise migration in fault paths */
1321
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1322 1323
		goto out;

1324
	page = pmd_page(*pmd);
1325
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1326 1327 1328 1329

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1330
	if (flags & FOLL_TOUCH)
1331
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1332

E
Eric B Munson 已提交
1333
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1334 1335 1336 1337
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1338 1339
		 * For anon THP:
		 *
1340 1341 1342 1343 1344 1345 1346
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1347 1348 1349 1350 1351 1352
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1353
		 */
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1364
	}
1365
skip_mlock:
1366
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1367
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1368 1369 1370 1371 1372

out:
	return page;
}

1373
/* NUMA hinting page fault entry point for trans huge pmds */
1374
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1375
{
J
Jan Kara 已提交
1376
	struct vm_area_struct *vma = vmf->vma;
1377
	struct anon_vma *anon_vma = NULL;
1378
	struct page *page;
J
Jan Kara 已提交
1379
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1380
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1381
	int target_nid, last_cpupid = -1;
1382 1383
	bool page_locked;
	bool migrated = false;
1384
	bool was_writable;
1385
	int flags = 0;
1386

J
Jan Kara 已提交
1387 1388
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1389 1390
		goto out_unlock;

1391 1392 1393 1394 1395
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1396 1397
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1398 1399
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1400
		spin_unlock(vmf->ptl);
1401
		put_and_wait_on_page_locked(page);
1402 1403 1404
		goto out;
	}

1405
	page = pmd_page(pmd);
1406
	BUG_ON(is_huge_zero_page(page));
1407
	page_nid = page_to_nid(page);
1408
	last_cpupid = page_cpupid_last(page);
1409
	count_vm_numa_event(NUMA_HINT_FAULTS);
1410
	if (page_nid == this_nid) {
1411
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1412 1413
		flags |= TNF_FAULT_LOCAL;
	}
1414

1415
	/* See similar comment in do_numa_page for explanation */
1416
	if (!pmd_savedwrite(pmd))
1417 1418
		flags |= TNF_NO_GROUP;

1419 1420 1421 1422
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1423 1424
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1425
	if (target_nid == NUMA_NO_NODE) {
1426
		/* If the page was locked, there are no parallel migrations */
1427
		if (page_locked)
1428
			goto clear_pmdnuma;
1429
	}
1430

1431
	/* Migration could have started since the pmd_trans_migrating check */
1432
	if (!page_locked) {
1433
		page_nid = NUMA_NO_NODE;
1434 1435
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1436
		spin_unlock(vmf->ptl);
1437
		put_and_wait_on_page_locked(page);
1438 1439 1440
		goto out;
	}

1441 1442 1443 1444
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1445
	get_page(page);
J
Jan Kara 已提交
1446
	spin_unlock(vmf->ptl);
1447
	anon_vma = page_lock_anon_vma_read(page);
1448

P
Peter Zijlstra 已提交
1449
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1450 1451
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1452 1453
		unlock_page(page);
		put_page(page);
1454
		page_nid = NUMA_NO_NODE;
1455
		goto out_unlock;
1456
	}
1457

1458 1459 1460
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1461
		page_nid = NUMA_NO_NODE;
1462 1463 1464
		goto clear_pmdnuma;
	}

1465 1466 1467 1468 1469 1470
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1471 1472 1473 1474
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1475
	 */
1476
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1477
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1490

1491 1492
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1493
	 * and access rights restored.
1494
	 */
J
Jan Kara 已提交
1495
	spin_unlock(vmf->ptl);
1496

K
Kirill A. Shutemov 已提交
1497
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1498
				vmf->pmd, pmd, vmf->address, page, target_nid);
1499 1500
	if (migrated) {
		flags |= TNF_MIGRATED;
1501
		page_nid = target_nid;
1502 1503
	} else
		flags |= TNF_MIGRATE_FAIL;
1504

1505
	goto out;
1506
clear_pmdnuma:
1507
	BUG_ON(!PageLocked(page));
1508
	was_writable = pmd_savedwrite(pmd);
1509
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1510
	pmd = pmd_mkyoung(pmd);
1511 1512
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1513 1514
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1515
	unlock_page(page);
1516
out_unlock:
J
Jan Kara 已提交
1517
	spin_unlock(vmf->ptl);
1518 1519 1520 1521 1522

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1523
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1524
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1525
				flags);
1526

1527 1528 1529
	return 0;
}

1530 1531 1532 1533 1534
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1535 1536 1537 1538 1539 1540
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1541
	bool ret = false;
1542

1543
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1544

1545 1546
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1547
		goto out_unlocked;
1548 1549

	orig_pmd = *pmd;
1550
	if (is_huge_zero_pmd(orig_pmd))
1551 1552
		goto out;

1553 1554 1555 1556 1557 1558
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1577
		split_huge_page(page);
1578
		unlock_page(page);
1579
		put_page(page);
1580 1581 1582 1583 1584 1585 1586 1587
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1588
		pmdp_invalidate(vma, addr, pmd);
1589 1590 1591 1592 1593 1594
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1595 1596

	mark_page_lazyfree(page);
1597
	ret = true;
1598 1599 1600 1601 1602 1603
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1604 1605 1606 1607 1608 1609
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1610
	mm_dec_nr_ptes(mm);
1611 1612
}

1613
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1614
		 pmd_t *pmd, unsigned long addr)
1615
{
1616
	pmd_t orig_pmd;
1617
	spinlock_t *ptl;
1618

1619
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1620

1621 1622
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1623 1624 1625 1626 1627 1628 1629
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1630 1631
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1632
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1633
	if (vma_is_special_huge(vma)) {
1634 1635
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1636 1637
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1638
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1639
	} else if (is_huge_zero_pmd(orig_pmd)) {
1640
		zap_deposited_table(tlb->mm, pmd);
1641
		spin_unlock(ptl);
1642
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1643
	} else {
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1662
		if (PageAnon(page)) {
1663
			zap_deposited_table(tlb->mm, pmd);
1664 1665
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1666 1667
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1668
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1669
		}
1670

1671
		spin_unlock(ptl);
1672 1673
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1674
	}
1675
	return 1;
1676 1677
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1704
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1705
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1706
{
1707
	spinlock_t *old_ptl, *new_ptl;
1708 1709
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1710
	bool force_flush = false;
1711 1712 1713 1714 1715 1716 1717

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1718
		return false;
1719 1720
	}

1721 1722
	/*
	 * We don't have to worry about the ordering of src and dst
1723
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1724
	 */
1725 1726
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1727 1728 1729
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1730
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1731
		if (pmd_present(pmd))
1732
			force_flush = true;
1733
		VM_BUG_ON(!pmd_none(*new_pmd));
1734

1735
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1736
			pgtable_t pgtable;
1737 1738 1739
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1740 1741
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1742 1743
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1744 1745
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1746
		spin_unlock(old_ptl);
1747
		return true;
1748
	}
1749
	return false;
1750 1751
}

1752 1753 1754 1755 1756 1757
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1758
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1759
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1760 1761
{
	struct mm_struct *mm = vma->vm_mm;
1762
	spinlock_t *ptl;
1763 1764 1765
	pmd_t entry;
	bool preserve_write;
	int ret;
1766
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1767 1768
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1769

1770
	ptl = __pmd_trans_huge_lock(pmd, vma);
1771 1772
	if (!ptl)
		return 0;
1773

1774 1775
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1790 1791
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1792 1793 1794 1795 1796 1797
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1798 1799 1800 1801 1802 1803 1804
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1805

1806 1807 1808
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1809
	/*
1810
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1811
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1812
	 * which is also under mmap_read_lock(mm):
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1830
	entry = pmdp_invalidate(vma, addr, pmd);
1831

1832 1833 1834
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1846 1847 1848 1849 1850
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1851 1852 1853 1854
	return ret;
}

/*
1855
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1856
 *
1857 1858
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1859
 */
1860
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1861
{
1862 1863
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1864 1865
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1866 1867 1868
		return ptl;
	spin_unlock(ptl);
	return NULL;
1869 1870
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1903
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1904
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1905
	if (vma_is_special_huge(vma)) {
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1923
	count_vm_event(THP_SPLIT_PUD);
1924 1925 1926 1927 1928 1929 1930 1931

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1932
	struct mmu_notifier_range range;
1933

1934
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1935
				address & HPAGE_PUD_MASK,
1936 1937 1938
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1939 1940
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1941
	__split_huge_pud_locked(vma, pud, range.start);
1942 1943 1944

out:
	spin_unlock(ptl);
1945 1946 1947 1948
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1949
	mmu_notifier_invalidate_range_only_end(&range);
1950 1951 1952
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1953 1954 1955 1956 1957 1958 1959 1960
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1961 1962 1963 1964 1965 1966
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1967
	 * See Documentation/vm/mmu_notifier.rst
1968 1969
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1988
		unsigned long haddr, bool freeze)
1989 1990 1991 1992
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
1993
	pmd_t old_pmd, _pmd;
1994
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1995
	unsigned long addr;
1996 1997 1998 1999 2000
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2001 2002
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2003 2004 2005

	count_vm_event(THP_SPLIT_PMD);

2006 2007
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2008 2009 2010 2011 2012 2013
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2014
		if (vma_is_special_huge(vma))
2015 2016
			return;
		page = pmd_page(_pmd);
2017 2018
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2019 2020 2021 2022
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2023
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2024
		return;
2025
	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2026 2027 2028 2029 2030 2031 2032 2033 2034
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2035 2036 2037
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2038 2039 2040 2041 2042 2043 2044 2045
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2046 2047
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2061
	if (unlikely(pmd_migration)) {
2062 2063
		swp_entry_t entry;

2064
		entry = pmd_to_swp_entry(old_pmd);
2065
		page = pfn_to_page(swp_offset(entry));
2066 2067 2068
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2069
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2070
	} else {
2071
		page = pmd_page(old_pmd);
2072 2073 2074 2075 2076
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2077
		uffd_wp = pmd_uffd_wp(old_pmd);
2078
	}
2079
	VM_BUG_ON_PAGE(!page_count(page), page);
2080
	page_ref_add(page, HPAGE_PMD_NR - 1);
2081

2082 2083 2084 2085
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2086 2087 2088
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2089
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2090 2091 2092 2093 2094 2095
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2096
		if (freeze || pmd_migration) {
2097 2098 2099
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2100 2101
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2102 2103
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2104
		} else {
2105
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2106
			entry = maybe_mkwrite(entry, vma);
2107 2108 2109 2110
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2111 2112
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2113 2114
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2115
		}
2116
		pte = pte_offset_map(&_pmd, addr);
2117
		BUG_ON(!pte_none(*pte));
2118
		set_pte_at(mm, addr, pte, entry);
2119
		if (!pmd_migration)
2120
			atomic_inc(&page[i]._mapcount);
2121
		pte_unmap(pte);
2122 2123
	}

2124 2125 2126 2127 2128 2129 2130
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2131
			for (i = 0; i < HPAGE_PMD_NR; i++)
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
			__dec_lruvec_page_state(page, NR_ANON_THPS);
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2144
		}
2145
		unlock_page_memcg(page);
2146 2147 2148 2149
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2150 2151

	if (freeze) {
2152
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2153 2154 2155 2156
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2157 2158 2159
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2160
		unsigned long address, bool freeze, struct page *page)
2161 2162
{
	spinlock_t *ptl;
2163
	struct mmu_notifier_range range;
2164 2165
	bool was_locked = false;
	pmd_t _pmd;
2166

2167
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2168
				address & HPAGE_PMD_MASK,
2169 2170 2171
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2172 2173 2174 2175 2176 2177

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
2178 2179 2180 2181 2182 2183
	if (page) {
		VM_WARN_ON_ONCE(!PageLocked(page));
		was_locked = true;
		if (page != pmd_page(*pmd))
			goto out;
	}
2184

2185
repeat:
2186
	if (pmd_trans_huge(*pmd)) {
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		if (!page) {
			page = pmd_page(*pmd);
			if (unlikely(!trylock_page(page))) {
				get_page(page);
				_pmd = *pmd;
				spin_unlock(ptl);
				lock_page(page);
				spin_lock(ptl);
				if (unlikely(!pmd_same(*pmd, _pmd))) {
					unlock_page(page);
					put_page(page);
					page = NULL;
					goto repeat;
				}
				put_page(page);
			}
		}
2204
		if (PageMlocked(page))
2205
			clear_page_mlock(page);
2206
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2207
		goto out;
2208
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2209
out:
2210
	spin_unlock(ptl);
2211 2212
	if (!was_locked && page)
		unlock_page(page);
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2226
	mmu_notifier_invalidate_range_only_end(&range);
2227 2228
}

2229 2230
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2231
{
2232
	pgd_t *pgd;
2233
	p4d_t *p4d;
2234
	pud_t *pud;
2235 2236
	pmd_t *pmd;

2237
	pgd = pgd_offset(vma->vm_mm, address);
2238 2239 2240
	if (!pgd_present(*pgd))
		return;

2241 2242 2243 2244 2245
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2246 2247 2248 2249
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2250

2251
	__split_huge_pmd(vma, pmd, address, freeze, page);
2252 2253
}

2254
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2267
		split_huge_pmd_address(vma, start, false, NULL);
2268 2269 2270 2271 2272 2273 2274 2275 2276

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2277
		split_huge_pmd_address(vma, end, false, NULL);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2291
			split_huge_pmd_address(next, nstart, false, NULL);
2292 2293
	}
}
2294

2295
static void unmap_page(struct page *page)
2296
{
2297
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2298
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2299
	bool unmap_success;
2300 2301 2302

	VM_BUG_ON_PAGE(!PageHead(page), page);

2303
	if (PageAnon(page))
2304
		ttu_flags |= TTU_SPLIT_FREEZE;
2305

M
Minchan Kim 已提交
2306 2307
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2308 2309
}

2310
static void remap_page(struct page *page)
2311
{
2312
	int i;
2313 2314 2315 2316 2317 2318
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2319 2320
}

2321
static void __split_huge_page_tail(struct page *head, int tail,
2322 2323 2324 2325
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2326
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2327 2328

	/*
2329 2330 2331 2332
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2333 2334 2335 2336 2337
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2338
			 (1L << PG_swapcache) |
2339 2340 2341
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2342
			 (1L << PG_workingset) |
2343
			 (1L << PG_locked) |
2344 2345
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2346

2347 2348 2349 2350 2351 2352
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2353
	/* Page flags must be visible before we make the page non-compound. */
2354 2355
	smp_wmb();

2356 2357 2358 2359 2360 2361
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2362 2363
	clear_compound_head(page_tail);

2364 2365 2366 2367
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2368 2369 2370 2371 2372 2373
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2374 2375 2376 2377 2378 2379

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2380 2381 2382
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2383
static void __split_huge_page(struct page *page, struct list_head *list,
2384
		pgoff_t end, unsigned long flags)
2385 2386
{
	struct page *head = compound_head(page);
2387
	pg_data_t *pgdat = page_pgdat(head);
2388
	struct lruvec *lruvec;
2389 2390
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2391
	int i;
2392

2393
	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2394 2395 2396 2397

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2398 2399 2400 2401 2402 2403 2404 2405
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2406
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2407
		__split_huge_page_tail(head, i, lruvec, list);
2408 2409
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2410
			ClearPageDirty(head + i);
2411
			__delete_from_page_cache(head + i, NULL);
2412 2413
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2414
			put_page(head + i);
2415 2416 2417 2418 2419 2420
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2421 2422
		}
	}
2423 2424

	ClearPageCompound(head);
2425 2426 2427

	split_page_owner(head, HPAGE_PMD_ORDER);

2428 2429
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2430
		/* Additional pin to swap cache */
2431
		if (PageSwapCache(head)) {
2432
			page_ref_add(head, 2);
2433 2434
			xa_unlock(&swap_cache->i_pages);
		} else {
2435
			page_ref_inc(head);
2436
		}
2437
	} else {
M
Matthew Wilcox 已提交
2438
		/* Additional pin to page cache */
2439
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2440
		xa_unlock(&head->mapping->i_pages);
2441 2442
	}

2443
	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2444

2445
	remap_page(head);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2464 2465
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2466
	int i, compound, ret;
2467 2468 2469 2470 2471 2472

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2473
	compound = compound_mapcount(page);
2474
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2475 2476
		return compound;
	ret = compound;
2477 2478
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2479 2480 2481
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2482 2483 2484 2485 2486
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2545 2546 2547 2548 2549
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2550
	/* Additional pins from page cache */
2551 2552 2553 2554 2555 2556 2557 2558 2559
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2582
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2583
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2584 2585 2586
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2587
	unsigned long flags;
2588
	pgoff_t end;
2589

2590
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2591 2592
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2593

2594
	if (PageWriteback(head))
2595 2596
		return -EBUSY;

2597 2598
	if (PageAnon(head)) {
		/*
2599
		 * The caller does not necessarily hold an mmap_lock that would
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2611
		end = -1;
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2625 2626 2627 2628 2629 2630 2631 2632 2633

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2634 2635 2636
	}

	/*
2637
	 * Racy check if we can split the page, before unmap_page() will
2638 2639
	 * split PMDs
	 */
2640
	if (!can_split_huge_page(head, &extra_pins)) {
2641 2642 2643 2644
		ret = -EBUSY;
		goto out_unlock;
	}

2645
	unmap_page(head);
2646 2647
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2648
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2649
	spin_lock_irqsave(&pgdata->lru_lock, flags);
2650 2651

	if (mapping) {
M
Matthew Wilcox 已提交
2652
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2653 2654

		/*
M
Matthew Wilcox 已提交
2655
		 * Check if the head page is present in page cache.
2656 2657
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2658 2659
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2660 2661 2662
			goto fail;
	}

2663
	/* Prevent deferred_split_scan() touching ->_refcount */
2664
	spin_lock(&ds_queue->split_queue_lock);
2665 2666
	count = page_count(head);
	mapcount = total_mapcount(head);
2667
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2668
		if (!list_empty(page_deferred_list(head))) {
2669
			ds_queue->split_queue_len--;
2670 2671
			list_del(page_deferred_list(head));
		}
2672
		spin_unlock(&ds_queue->split_queue_lock);
2673
		if (mapping) {
2674 2675
			if (PageSwapBacked(head))
				__dec_node_page_state(head, NR_SHMEM_THPS);
2676
			else
2677
				__dec_node_page_state(head, NR_FILE_THPS);
2678 2679
		}

2680
		__split_huge_page(page, list, end, flags);
2681 2682 2683 2684 2685 2686
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2687
	} else {
2688 2689 2690 2691 2692 2693 2694 2695
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2696
		spin_unlock(&ds_queue->split_queue_lock);
2697
fail:		if (mapping)
M
Matthew Wilcox 已提交
2698
			xa_unlock(&mapping->i_pages);
2699
		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2700
		remap_page(head);
2701 2702 2703 2704
		ret = -EBUSY;
	}

out_unlock:
2705 2706 2707 2708 2709 2710
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2711 2712 2713 2714
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2715 2716 2717

void free_transhuge_page(struct page *page)
{
2718
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2719 2720
	unsigned long flags;

2721
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2722
	if (!list_empty(page_deferred_list(page))) {
2723
		ds_queue->split_queue_len--;
2724 2725
		list_del(page_deferred_list(page));
	}
2726
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2727 2728 2729 2730 2731
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2732 2733 2734 2735
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2736 2737 2738 2739
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2753
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2754
	if (list_empty(page_deferred_list(page))) {
2755
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2756 2757
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2758 2759 2760 2761 2762
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2763
	}
2764
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2765 2766 2767 2768 2769
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2770
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2771
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2772 2773 2774 2775 2776

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2777
	return READ_ONCE(ds_queue->split_queue_len);
2778 2779 2780 2781 2782
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2783
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2784
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2785 2786 2787 2788 2789
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2790 2791 2792 2793 2794
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2795
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2796
	/* Take pin on all head pages to avoid freeing them under us */
2797
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2798 2799
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2800 2801 2802 2803
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2804
			list_del_init(page_deferred_list(page));
2805
			ds_queue->split_queue_len--;
2806
		}
2807 2808
		if (!--sc->nr_to_scan)
			break;
2809
	}
2810
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2811 2812 2813

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2814 2815
		if (!trylock_page(page))
			goto next;
2816 2817 2818 2819
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2820
next:
2821 2822 2823
		put_page(page);
	}

2824 2825 2826
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2827

2828 2829 2830 2831
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2832
	if (!split && list_empty(&ds_queue->split_queue))
2833 2834
		return SHRINK_STOP;
	return split;
2835 2836 2837 2838 2839 2840
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2841 2842
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2843
};
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2869
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2882
	pr_info("%lu of %lu THP split\n", split, total);
2883 2884 2885

	return 0;
}
2886
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2887 2888 2889 2890
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
2891 2892
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
2893 2894 2895 2896
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2907
	pmd_t pmdswp;
2908 2909 2910 2911 2912

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2913
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2914 2915 2916
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2917 2918 2919 2920
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2940 2941
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
2942
	if (is_write_migration_entry(entry))
2943
		pmde = maybe_pmd_mkwrite(pmde, vma);
2944 2945

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2946 2947 2948 2949
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
2950
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2951
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2952 2953 2954 2955
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif