huge_memory.c 84.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/mm.h>
11
#include <linux/sched/coredump.h>
12
#include <linux/sched/numa_balancing.h>
13 14 15 16 17
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
18
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
19
#include <linux/mm_inline.h>
20
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
21
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
22
#include <linux/khugepaged.h>
23
#include <linux/freezer.h>
24
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
25
#include <linux/mman.h>
26
#include <linux/memremap.h>
R
Ralf Baechle 已提交
27
#include <linux/pagemap.h>
28
#include <linux/debugfs.h>
29
#include <linux/migrate.h>
30
#include <linux/hashtable.h>
31
#include <linux/userfaultfd_k.h>
32
#include <linux/page_idle.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/oom.h>
35
#include <linux/numa.h>
36
#include <linux/page_owner.h>
37
#include <linux/sched/sysctl.h>
38

39 40 41 42
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
43
/*
44 45 46 47
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
48 49
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
50
 */
51
unsigned long transparent_hugepage_flags __read_mostly =
52
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
53
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
54 55 56 57
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
59 60
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
61

62
static struct shrinker deferred_split_shrinker;
63

64
static atomic_t huge_zero_refcount;
65
struct page *huge_zero_page __read_mostly;
66
unsigned long huge_zero_pfn __read_mostly = ~0UL;
67

68 69 70 71 72 73 74 75
static inline bool file_thp_enabled(struct vm_area_struct *vma)
{
	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
	       (vma->vm_flags & VM_EXEC);
}

bool transparent_hugepage_active(struct vm_area_struct *vma)
76
{
77 78 79 80 81
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
82 83
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
84 85
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
86 87
	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
		return file_thp_enabled(vma);
88 89 90 91

	return false;
}

92
static bool get_huge_zero_page(void)
93 94 95 96
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
97
		return true;
98 99

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
100
			HPAGE_PMD_ORDER);
101 102
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
103
		return false;
104 105
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
106
	preempt_disable();
107
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
108
		preempt_enable();
109
		__free_pages(zero_page, compound_order(zero_page));
110 111
		goto retry;
	}
112
	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
113 114 115 116

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
117
	return true;
118 119
}

120
static void put_huge_zero_page(void)
121
{
122 123 124 125 126
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
127 128
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

149 150
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
151
{
152 153 154
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
155

156 157 158
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
159
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
160 161
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
162
		WRITE_ONCE(huge_zero_pfn, ~0UL);
163
		__free_pages(zero_page, compound_order(zero_page));
164
		return HPAGE_PMD_NR;
165 166 167
	}

	return 0;
168 169
}

170
static struct shrinker huge_zero_page_shrinker = {
171 172
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
173 174 175
	.seeks = DEFAULT_SEEKS,
};

176 177 178 179
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
180 181
	const char *output;

182
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
183 184 185 186
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
187
	else
188 189 190
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
191
}
192

193 194 195 196
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
197
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
198

199
	if (sysfs_streq(buf, "always")) {
200 201
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
202
	} else if (sysfs_streq(buf, "madvise")) {
203 204
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
205
	} else if (sysfs_streq(buf, "never")) {
206 207 208 209
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
210 211

	if (ret > 0) {
212
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
213 214 215 216
		if (err)
			ret = err;
	}
	return ret;
217 218 219 220
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

221
ssize_t single_hugepage_flag_show(struct kobject *kobj,
222 223
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
224
{
225 226
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
227
}
228

229
ssize_t single_hugepage_flag_store(struct kobject *kobj,
230 231 232 233
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
234 235 236 237 238 239 240 241 242 243
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
244
		set_bit(flag, &transparent_hugepage_flags);
245
	else
246 247 248 249 250 251 252 253
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
272
}
273

274 275 276 277
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
278
	if (sysfs_streq(buf, "always")) {
279 280 281 282
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
283
	} else if (sysfs_streq(buf, "defer+madvise")) {
284 285 286 287
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288
	} else if (sysfs_streq(buf, "defer")) {
289 290 291 292
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
293
	} else if (sysfs_streq(buf, "madvise")) {
294 295 296 297
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
298
	} else if (sysfs_streq(buf, "never")) {
299 300 301 302 303 304 305 306
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
307 308 309 310
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

311
static ssize_t use_zero_page_show(struct kobject *kobj,
312
				  struct kobj_attribute *attr, char *buf)
313
{
314
	return single_hugepage_flag_show(kobj, attr, buf,
315
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
316 317 318 319
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
320
	return single_hugepage_flag_store(kobj, attr, buf, count,
321 322 323 324
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
325 326

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
327
				   struct kobj_attribute *attr, char *buf)
328
{
329
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
330 331 332 333
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

334 335 336
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
337
	&use_zero_page_attr.attr,
338
	&hpage_pmd_size_attr.attr,
339
#ifdef CONFIG_SHMEM
340
	&shmem_enabled_attr.attr,
341 342 343 344
#endif
	NULL,
};

345
static const struct attribute_group hugepage_attr_group = {
346
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
347 348
};

S
Shaohua Li 已提交
349
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
350 351 352
{
	int err;

S
Shaohua Li 已提交
353 354
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
355
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
356
		return -ENOMEM;
A
Andrea Arcangeli 已提交
357 358
	}

S
Shaohua Li 已提交
359
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
360
	if (err) {
361
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
362
		goto delete_obj;
A
Andrea Arcangeli 已提交
363 364
	}

S
Shaohua Li 已提交
365
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
366
	if (err) {
367
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
368
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
369
	}
S
Shaohua Li 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
403 404 405 406 407
		/*
		 * Hardware doesn't support hugepages, hence disable
		 * DAX PMD support.
		 */
		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
S
Shaohua Li 已提交
408 409 410
		return -EINVAL;
	}

411 412 413 414 415 416 417 418 419 420
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
421 422
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
423
		goto err_sysfs;
A
Andrea Arcangeli 已提交
424

425
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
426
	if (err)
427
		goto err_slab;
A
Andrea Arcangeli 已提交
428

429 430 431
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
432 433 434
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
435

436 437 438 439 440
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
441
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
442
		transparent_hugepage_flags = 0;
443 444
		return 0;
	}
445

446
	err = start_stop_khugepaged();
447 448
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
449

S
Shaohua Li 已提交
450
	return 0;
451
err_khugepaged:
452 453
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
454 455
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
456
	khugepaged_destroy();
457
err_slab:
S
Shaohua Li 已提交
458
	hugepage_exit_sysfs(hugepage_kobj);
459
err_sysfs:
A
Andrea Arcangeli 已提交
460
	return err;
461
}
462
subsys_initcall(hugepage_init);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
490
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
491 492 493 494
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

495
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
496
{
497
	if (likely(vma->vm_flags & VM_WRITE))
498 499 500 501
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

502 503
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504
{
505
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
506 507 508 509 510 511
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
512
}
513 514 515 516 517 518 519 520
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
521 522 523 524 525 526 527 528 529 530 531 532

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

533 534 535
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
536
		return false;
537 538 539 540 541 542 543

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

544 545
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
546 547 548 549
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
550
	unsigned long len_pad, ret;
551 552 553 554 555 556 557 558

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

559
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
560
					      off >> PAGE_SHIFT, flags);
561 562 563 564 565 566

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
567 568
		return 0;

569 570 571 572 573 574 575 576 577
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
578 579 580 581 582
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
583
	unsigned long ret;
584 585
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

586 587 588
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
589

590 591 592 593
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

594 595
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
596
{
J
Jan Kara 已提交
597
	struct vm_area_struct *vma = vmf->vma;
598
	pgtable_t pgtable;
J
Jan Kara 已提交
599
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
600
	vm_fault_t ret = 0;
601

602
	VM_BUG_ON_PAGE(!PageCompound(page), page);
603

604
	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
605 606
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
607
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
608 609
		return VM_FAULT_FALLBACK;
	}
610
	cgroup_throttle_swaprate(page, gfp);
611

612
	pgtable = pte_alloc_one(vma->vm_mm);
613
	if (unlikely(!pgtable)) {
614 615
		ret = VM_FAULT_OOM;
		goto release;
616
	}
617

618
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
619 620 621 622 623
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
624 625
	__SetPageUptodate(page);

J
Jan Kara 已提交
626 627
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
628
		goto unlock_release;
629 630
	} else {
		pmd_t entry;
631

632 633 634 635
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

636 637
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
638
			spin_unlock(vmf->ptl);
639
			put_page(page);
K
Kirill A. Shutemov 已提交
640
			pte_free(vma->vm_mm, pgtable);
641 642 643
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
644 645
		}

646
		entry = mk_huge_pmd(page, vma->vm_page_prot);
647
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
648
		page_add_new_anon_rmap(page, vma, haddr, true);
649
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
650 651
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
652
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
K
Kirill A. Shutemov 已提交
653
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
654
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
655
		spin_unlock(vmf->ptl);
656
		count_vm_event(THP_FAULT_ALLOC);
657
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
658 659
	}

660
	return 0;
661 662 663 664 665 666 667 668
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

669 670
}

671
/*
672 673 674 675 676 677 678
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
679
 */
680
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
681
{
682
	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
683

684
	/* Always do synchronous compaction */
685 686
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
687 688

	/* Kick kcompactd and fail quickly */
689
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
690
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
691 692

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
693
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
694 695 696
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
697 698

	/* Only do synchronous compaction if madvised */
699
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
700 701
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
702

703
	return GFP_TRANSHUGE_LIGHT;
704 705
}

706
/* Caller must hold page table lock. */
707
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
708
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
709
		struct page *zero_page)
710 711
{
	pmd_t entry;
A
Andrew Morton 已提交
712
	if (!pmd_none(*pmd))
713
		return;
714
	entry = mk_pmd(zero_page, vma->vm_page_prot);
715
	entry = pmd_mkhuge(entry);
716 717
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
718
	set_pmd_at(mm, haddr, pmd, entry);
719
	mm_inc_nr_ptes(mm);
720 721
}

722
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
723
{
J
Jan Kara 已提交
724
	struct vm_area_struct *vma = vmf->vma;
725
	gfp_t gfp;
726
	struct page *page;
J
Jan Kara 已提交
727
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
728

729
	if (!transhuge_vma_suitable(vma, haddr))
730
		return VM_FAULT_FALLBACK;
731 732
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
733
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
734
		return VM_FAULT_OOM;
J
Jan Kara 已提交
735
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
736
			!mm_forbids_zeropage(vma->vm_mm) &&
737 738 739
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
740
		vm_fault_t ret;
741
		pgtable = pte_alloc_one(vma->vm_mm);
742
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
743
			return VM_FAULT_OOM;
744
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
745
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
746
			pte_free(vma->vm_mm, pgtable);
747
			count_vm_event(THP_FAULT_FALLBACK);
748
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
749
		}
J
Jan Kara 已提交
750
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
751
		ret = 0;
J
Jan Kara 已提交
752
		if (pmd_none(*vmf->pmd)) {
753 754 755
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
756
				pte_free(vma->vm_mm, pgtable);
757
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
758
				spin_unlock(vmf->ptl);
759
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
760
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
761 762
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
763
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
764
						   haddr, vmf->pmd, zero_page);
765
				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
J
Jan Kara 已提交
766
				spin_unlock(vmf->ptl);
767
			}
768
		} else {
J
Jan Kara 已提交
769
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
770
			pte_free(vma->vm_mm, pgtable);
771
		}
772
		return ret;
773
	}
774
	gfp = vma_thp_gfp_mask(vma);
775
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
776 777
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
778
		return VM_FAULT_FALLBACK;
779
	}
780
	prep_transhuge_page(page);
J
Jan Kara 已提交
781
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
782 783
}

784
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
785 786
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
787 788 789 790 791 792
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

808 809 810
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
811
	if (write) {
812 813
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
814
	}
815 816 817

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
818
		mm_inc_nr_ptes(mm);
819
		pgtable = NULL;
820 821
	}

822 823
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
824 825

out_unlock:
M
Matthew Wilcox 已提交
826
	spin_unlock(ptl);
827 828
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
829 830
}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
846
{
847 848
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
849
	pgtable_t pgtable = NULL;
850

M
Matthew Wilcox 已提交
851 852 853 854 855
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
856 857
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
858 859 860 861 862 863
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
864

865
	if (arch_needs_pgtable_deposit()) {
866
		pgtable = pte_alloc_one(vma->vm_mm);
867 868 869 870
		if (!pgtable)
			return VM_FAULT_OOM;
	}

871 872
	track_pfn_insert(vma, &pgprot, pfn);

873
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
874
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
875
}
876
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
877

878
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
879
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
880
{
881
	if (likely(vma->vm_flags & VM_WRITE))
882 883 884 885 886 887 888 889 890 891 892 893
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
894 895 896 897 898 899 900 901 902 903 904 905 906 907
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

908 909 910 911
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
912 913
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
914 915 916
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
917 918

out_unlock:
919 920 921
	spin_unlock(ptl);
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
937
{
938 939 940
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

941 942 943 944 945
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
946 947
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
948 949 950 951 952 953 954 955 956
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

957
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
958 959
	return VM_FAULT_NOPAGE;
}
960
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
961 962
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

963
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
964
		pmd_t *pmd, int flags)
965 966 967
{
	pmd_t _pmd;

968 969 970
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
971
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
972
				pmd, _pmd, flags & FOLL_WRITE))
973 974 975 976
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
977
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
978 979 980 981 982 983 984
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

985 986 987 988 989 990
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
991 992 993 994 995
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

996
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
997 998 999 1000 1001 1002 1003 1004
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1005
		touch_pmd(vma, addr, pmd, flags);
1006 1007 1008 1009 1010

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1011
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1012 1013 1014
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1015 1016
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1017 1018
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1019 1020
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1021 1022 1023 1024

	return page;
}

1025 1026
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1027
		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1028
{
1029
	spinlock_t *dst_ptl, *src_ptl;
1030 1031
	struct page *src_page;
	pmd_t pmd;
1032
	pgtable_t pgtable = NULL;
1033
	int ret = -ENOMEM;
1034

1035
	/* Skip if can be re-fill on fault */
1036
	if (!vma_is_anonymous(dst_vma))
1037 1038
		return 0;

1039
	pgtable = pte_alloc_one(dst_mm);
1040 1041
	if (unlikely(!pgtable))
		goto out;
1042

1043 1044 1045
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1046 1047 1048

	ret = -EAGAIN;
	pmd = *src_pmd;
1049 1050 1051 1052 1053 1054

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1055 1056 1057
		if (is_writable_migration_entry(entry)) {
			entry = make_readable_migration_entry(
							swp_offset(entry));
1058
			pmd = swp_entry_to_pmd(entry);
1059 1060
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1061 1062
			if (pmd_swp_uffd_wp(*src_pmd))
				pmd = pmd_swp_mkuffd_wp(pmd);
1063 1064
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1065
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1066
		mm_inc_nr_ptes(dst_mm);
1067
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1068 1069
		if (!userfaultfd_wp(dst_vma))
			pmd = pmd_swp_clear_uffd_wp(pmd);
1070 1071 1072 1073 1074 1075
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1076
	if (unlikely(!pmd_trans_huge(pmd))) {
1077 1078 1079
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1080
	/*
1081
	 * When page table lock is held, the huge zero pmd should not be
1082 1083 1084 1085
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1086 1087 1088 1089 1090
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1091 1092
		mm_get_huge_zero_page(dst_mm);
		goto out_zero_page;
1093
	}
1094

1095 1096
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1097 1098 1099 1100 1101 1102 1103 1104

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
1105
	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1106 1107 1108
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
1109
		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1110 1111 1112
		return -EAGAIN;
	}

1113 1114 1115
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116
out_zero_page:
1117
	mm_inc_nr_ptes(dst_mm);
1118
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1119
	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1120 1121
	if (!userfaultfd_wp(dst_vma))
		pmd = pmd_clear_uffd_wp(pmd);
1122 1123 1124 1125 1126
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1127 1128
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1129 1130 1131 1132
out:
	return ret;
}

1133 1134
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1135
		pud_t *pud, int flags)
1136 1137 1138
{
	pud_t _pud;

1139 1140 1141
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1142
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1143
				pud, _pud, flags & FOLL_WRITE))
1144 1145 1146 1147
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1148
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1149 1150 1151 1152 1153 1154 1155
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1156
	if (flags & FOLL_WRITE && !pud_write(*pud))
1157 1158
		return NULL;

J
John Hubbard 已提交
1159 1160 1161 1162 1163
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1164 1165 1166 1167 1168 1169
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1170
		touch_pud(vma, addr, pud, flags);
1171 1172 1173 1174

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1175 1176
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1177
	 */
J
John Hubbard 已提交
1178
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1179 1180 1181
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1182 1183
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1184 1185
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1186 1187
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1218
	/* Please refer to comments in copy_huge_pmd() */
1219
	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1220 1221 1222 1223 1224 1225
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1259
void huge_pmd_set_accessed(struct vm_fault *vmf)
1260 1261 1262
{
	pmd_t entry;
	unsigned long haddr;
1263
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1264
	pmd_t orig_pmd = vmf->orig_pmd;
1265

J
Jan Kara 已提交
1266 1267
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1268 1269 1270
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1271 1272
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1273
	haddr = vmf->address & HPAGE_PMD_MASK;
1274
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1275
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1276 1277

unlock:
J
Jan Kara 已提交
1278
	spin_unlock(vmf->ptl);
1279 1280
}

1281
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1282
{
J
Jan Kara 已提交
1283
	struct vm_area_struct *vma = vmf->vma;
1284
	struct page *page;
J
Jan Kara 已提交
1285
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1286
	pmd_t orig_pmd = vmf->orig_pmd;
1287

J
Jan Kara 已提交
1288
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1289
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1290

1291
	if (is_huge_zero_pmd(orig_pmd))
1292 1293
		goto fallback;

J
Jan Kara 已提交
1294
	spin_lock(vmf->ptl);
1295 1296 1297 1298 1299

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1300 1301

	page = pmd_page(orig_pmd);
1302
	VM_BUG_ON_PAGE(!PageHead(page), page);
1303 1304

	/* Lock page for reuse_swap_page() */
1305 1306 1307 1308 1309 1310
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1311
			spin_unlock(vmf->ptl);
1312 1313
			unlock_page(page);
			put_page(page);
1314
			return 0;
1315 1316 1317
		}
		put_page(page);
	}
1318 1319 1320 1321 1322

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1323
	if (reuse_swap_page(page)) {
1324 1325
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1326
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1327
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1328
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1329
		unlock_page(page);
J
Jan Kara 已提交
1330
		spin_unlock(vmf->ptl);
1331
		return VM_FAULT_WRITE;
1332
	}
1333 1334

	unlock_page(page);
J
Jan Kara 已提交
1335
	spin_unlock(vmf->ptl);
1336 1337 1338
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1339 1340
}

1341
/*
1342 1343
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1344 1345 1346
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1347 1348
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1349 1350
}

1351
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1352 1353 1354 1355
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1356
	struct mm_struct *mm = vma->vm_mm;
1357 1358
	struct page *page = NULL;

1359
	assert_spin_locked(pmd_lockptr(mm, pmd));
1360

1361
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1362 1363
		goto out;

1364 1365 1366 1367
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1368
	/* Full NUMA hinting faults to serialise migration in fault paths */
1369
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1370 1371
		goto out;

1372
	page = pmd_page(*pmd);
1373
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1374 1375 1376 1377

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1378
	if (flags & FOLL_TOUCH)
1379
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1380

1381
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1382
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1383 1384 1385 1386 1387

out:
	return page;
}

1388
/* NUMA hinting page fault entry point for trans huge pmds */
1389
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1390
{
J
Jan Kara 已提交
1391
	struct vm_area_struct *vma = vmf->vma;
Y
Yang Shi 已提交
1392 1393
	pmd_t oldpmd = vmf->orig_pmd;
	pmd_t pmd;
1394
	struct page *page;
J
Jan Kara 已提交
1395
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
Y
Yang Shi 已提交
1396
	int page_nid = NUMA_NO_NODE;
1397
	int target_nid, last_cpupid = -1;
1398
	bool migrated = false;
Y
Yang Shi 已提交
1399
	bool was_writable = pmd_savedwrite(oldpmd);
1400
	int flags = 0;
1401

J
Jan Kara 已提交
1402
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
Y
Yang Shi 已提交
1403
	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
J
Jan Kara 已提交
1404
		spin_unlock(vmf->ptl);
1405 1406 1407
		goto out;
	}

Y
Yang Shi 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	page = vm_normal_page_pmd(vma, haddr, pmd);
	if (!page)
		goto out_map;

	/* See similar comment in do_numa_page for explanation */
	if (!was_writable)
		flags |= TNF_NO_GROUP;

	page_nid = page_to_nid(page);
	last_cpupid = page_cpupid_last(page);
	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
				       &flags);

	if (target_nid == NUMA_NO_NODE) {
		put_page(page);
		goto out_map;
	}

J
Jan Kara 已提交
1427
	spin_unlock(vmf->ptl);
1428

Y
Yang Shi 已提交
1429
	migrated = migrate_misplaced_page(page, vma, target_nid);
1430 1431
	if (migrated) {
		flags |= TNF_MIGRATED;
1432
		page_nid = target_nid;
Y
Yang Shi 已提交
1433
	} else {
1434
		flags |= TNF_MIGRATE_FAIL;
Y
Yang Shi 已提交
1435 1436 1437 1438 1439 1440 1441
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
			spin_unlock(vmf->ptl);
			goto out;
		}
		goto out_map;
	}
1442 1443

out:
1444
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1445
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1446
				flags);
1447

1448
	return 0;
Y
Yang Shi 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

out_map:
	/* Restore the PMD */
	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
	pmd = pmd_mkyoung(pmd);
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
	spin_unlock(vmf->ptl);
	goto out;
1460 1461
}

1462 1463 1464 1465 1466
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1467 1468 1469 1470 1471 1472
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1473
	bool ret = false;
1474

1475
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1476

1477 1478
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1479
		goto out_unlocked;
1480 1481

	orig_pmd = *pmd;
1482
	if (is_huge_zero_pmd(orig_pmd))
1483 1484
		goto out;

1485 1486 1487 1488 1489 1490
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1491 1492 1493 1494 1495
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
1496
	if (total_mapcount(page) != 1)
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1509
		split_huge_page(page);
1510
		unlock_page(page);
1511
		put_page(page);
1512 1513 1514 1515 1516 1517 1518 1519
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1520
		pmdp_invalidate(vma, addr, pmd);
1521 1522 1523 1524 1525 1526
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1527 1528

	mark_page_lazyfree(page);
1529
	ret = true;
1530 1531 1532 1533 1534 1535
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1536 1537 1538 1539 1540 1541
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1542
	mm_dec_nr_ptes(mm);
1543 1544
}

1545
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1546
		 pmd_t *pmd, unsigned long addr)
1547
{
1548
	pmd_t orig_pmd;
1549
	spinlock_t *ptl;
1550

1551
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1552

1553 1554
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1555 1556 1557 1558 1559 1560 1561
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1562 1563
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1564
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1565
	if (vma_is_special_huge(vma)) {
1566 1567
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1568 1569
		spin_unlock(ptl);
	} else if (is_huge_zero_pmd(orig_pmd)) {
1570
		zap_deposited_table(tlb->mm, pmd);
1571 1572
		spin_unlock(ptl);
	} else {
1573 1574 1575 1576 1577
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
1578
			page_remove_rmap(page, vma, true);
1579 1580 1581 1582 1583 1584 1585
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
1586
			page = pfn_swap_entry_to_page(entry);
1587 1588 1589 1590
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1591
		if (PageAnon(page)) {
1592
			zap_deposited_table(tlb->mm, pmd);
1593 1594
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1595 1596
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1597
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1598
		}
1599

1600
		spin_unlock(ptl);
1601 1602
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1603
	}
1604
	return 1;
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1633
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1634
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1635
{
1636
	spinlock_t *old_ptl, *new_ptl;
1637 1638
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1639
	bool force_flush = false;
1640 1641 1642 1643 1644 1645 1646

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1647
		return false;
1648 1649
	}

1650 1651
	/*
	 * We don't have to worry about the ordering of src and dst
1652
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1653
	 */
1654 1655
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1656 1657 1658
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1659
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1660
		if (pmd_present(pmd))
1661
			force_flush = true;
1662
		VM_BUG_ON(!pmd_none(*new_pmd));
1663

1664
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1665
			pgtable_t pgtable;
1666 1667 1668
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1669 1670
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1671 1672
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1673 1674
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1675
		spin_unlock(old_ptl);
1676
		return true;
1677
	}
1678
	return false;
1679 1680
}

1681 1682 1683
/*
 * Returns
 *  - 0 if PMD could not be locked
I
Ingo Molnar 已提交
1684
 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1685
 *      or if prot_numa but THP migration is not supported
I
Ingo Molnar 已提交
1686
 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1687
 */
1688
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1689
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1690 1691
{
	struct mm_struct *mm = vma->vm_mm;
1692
	spinlock_t *ptl;
1693 1694 1695
	pmd_t entry;
	bool preserve_write;
	int ret;
1696
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1697 1698
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1699

1700 1701 1702
	if (prot_numa && !thp_migration_supported())
		return 1;

1703
	ptl = __pmd_trans_huge_lock(pmd, vma);
1704 1705
	if (!ptl)
		return 0;
1706

1707 1708
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1709

1710 1711 1712 1713 1714
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1715
		if (is_writable_migration_entry(entry)) {
1716 1717 1718 1719 1720
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
1721 1722
			entry = make_readable_migration_entry(
							swp_offset(entry));
1723
			newpmd = swp_entry_to_pmd(entry);
1724 1725
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1726 1727
			if (pmd_swp_uffd_wp(*pmd))
				newpmd = pmd_swp_mkuffd_wp(newpmd);
1728 1729 1730 1731 1732 1733
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1734 1735 1736 1737 1738 1739 1740 1741 1742
	if (prot_numa) {
		struct page *page;
		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (is_huge_zero_pmd(*pmd))
			goto unlock;
1743

1744 1745
		if (pmd_protnone(*pmd))
			goto unlock;
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755
		page = pmd_page(*pmd);
		/*
		 * Skip scanning top tier node if normal numa
		 * balancing is disabled
		 */
		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
		    node_is_toptier(page_to_nid(page)))
			goto unlock;
	}
1756
	/*
1757
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1758
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1759
	 * which is also under mmap_read_lock(mm):
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1777
	entry = pmdp_invalidate(vma, addr, pmd);
1778

1779 1780 1781
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1793 1794 1795 1796 1797
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1798 1799 1800 1801
	return ret;
}

/*
1802
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1803
 *
1804 1805
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1806
 */
1807
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1808
{
1809 1810
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1811 1812
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1813 1814 1815
		return ptl;
	spin_unlock(ptl);
	return NULL;
1816 1817
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1850
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1851
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1852
	if (vma_is_special_huge(vma)) {
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1870
	count_vm_event(THP_SPLIT_PUD);
1871 1872 1873 1874 1875 1876 1877 1878

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1879
	struct mmu_notifier_range range;
1880

1881
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1882
				address & HPAGE_PUD_MASK,
1883 1884 1885
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1886 1887
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1888
	__split_huge_pud_locked(vma, pud, range.start);
1889 1890 1891

out:
	spin_unlock(ptl);
1892 1893 1894 1895
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1896
	mmu_notifier_invalidate_range_only_end(&range);
1897 1898 1899
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1900 1901 1902 1903 1904 1905 1906 1907
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1908 1909 1910 1911 1912 1913
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1914
	 * See Documentation/vm/mmu_notifier.rst
1915 1916
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1935
		unsigned long haddr, bool freeze)
1936 1937 1938 1939
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
1940
	pmd_t old_pmd, _pmd;
1941
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1942
	unsigned long addr;
1943 1944 1945 1946 1947
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1948 1949
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
1950 1951 1952

	count_vm_event(THP_SPLIT_PMD);

1953
	if (!vma_is_anonymous(vma)) {
1954
		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1955 1956 1957 1958 1959 1960
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
1961
		if (vma_is_special_huge(vma))
1962
			return;
1963 1964 1965 1966
		if (unlikely(is_pmd_migration_entry(old_pmd))) {
			swp_entry_t entry;

			entry = pmd_to_swp_entry(old_pmd);
1967
			page = pfn_swap_entry_to_page(entry);
1968 1969 1970 1971 1972 1973
		} else {
			page = pmd_page(old_pmd);
			if (!PageDirty(page) && pmd_dirty(old_pmd))
				set_page_dirty(page);
			if (!PageReferenced(page) && pmd_young(old_pmd))
				SetPageReferenced(page);
1974
			page_remove_rmap(page, vma, true);
1975 1976
			put_page(page);
		}
1977
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
1978
		return;
1979 1980
	}

1981
	if (is_huge_zero_pmd(*pmd)) {
1982 1983 1984 1985 1986 1987 1988 1989 1990
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
1991 1992 1993
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

1994 1995 1996 1997 1998 1999 2000 2001
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2002 2003
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2017
	if (unlikely(pmd_migration)) {
2018 2019
		swp_entry_t entry;

2020
		entry = pmd_to_swp_entry(old_pmd);
2021
		page = pfn_swap_entry_to_page(entry);
2022
		write = is_writable_migration_entry(entry);
2023 2024
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2025
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2026
	} else {
2027
		page = pmd_page(old_pmd);
2028 2029 2030 2031 2032
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2033
		uffd_wp = pmd_uffd_wp(old_pmd);
2034 2035
		VM_BUG_ON_PAGE(!page_count(page), page);
		page_ref_add(page, HPAGE_PMD_NR - 1);
2036
	}
2037

2038 2039 2040 2041
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2042 2043 2044
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2045
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2046 2047 2048 2049 2050 2051
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2052
		if (freeze || pmd_migration) {
2053
			swp_entry_t swp_entry;
2054 2055 2056 2057 2058 2059
			if (write)
				swp_entry = make_writable_migration_entry(
							page_to_pfn(page + i));
			else
				swp_entry = make_readable_migration_entry(
							page_to_pfn(page + i));
2060
			entry = swp_entry_to_pte(swp_entry);
2061 2062
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2063 2064
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2065
		} else {
2066
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2067
			entry = maybe_mkwrite(entry, vma);
2068 2069 2070 2071
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2072 2073
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2074 2075
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2076
		}
2077
		pte = pte_offset_map(&_pmd, addr);
2078
		BUG_ON(!pte_none(*pte));
2079
		set_pte_at(mm, addr, pte, entry);
2080
		if (!pmd_migration)
2081
			atomic_inc(&page[i]._mapcount);
2082
		pte_unmap(pte);
2083 2084
	}

2085 2086 2087 2088 2089 2090 2091
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2092
			for (i = 0; i < HPAGE_PMD_NR; i++)
2093 2094 2095 2096 2097 2098
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
2099 2100
			__mod_lruvec_page_state(page, NR_ANON_THPS,
						-HPAGE_PMD_NR);
2101 2102 2103 2104 2105
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2106
		}
2107
		unlock_page_memcg(page);
2108 2109 2110

		/* Above is effectively page_remove_rmap(page, vma, true) */
		munlock_vma_page(page, vma, true);
2111 2112 2113 2114
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2115 2116

	if (freeze) {
2117
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2118
			page_remove_rmap(page + i, vma, false);
2119 2120 2121
			put_page(page + i);
		}
	}
2122 2123 2124
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2125
		unsigned long address, bool freeze, struct folio *folio)
2126 2127
{
	spinlock_t *ptl;
2128
	struct mmu_notifier_range range;
2129
	bool do_unlock_folio = false;
2130
	pmd_t _pmd;
2131

2132
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2133
				address & HPAGE_PMD_MASK,
2134 2135 2136
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2137 2138

	/*
2139 2140
	 * If caller asks to setup a migration entry, we need a folio to check
	 * pmd against. Otherwise we can end up replacing wrong folio.
2141
	 */
2142 2143 2144 2145
	VM_BUG_ON(freeze && !folio);
	if (folio) {
		VM_WARN_ON_ONCE(!folio_test_locked(folio));
		if (folio != page_folio(pmd_page(*pmd)))
2146 2147
			goto out;
	}
2148

2149
repeat:
2150
	if (pmd_trans_huge(*pmd)) {
2151 2152
		if (!folio) {
			folio = page_folio(pmd_page(*pmd));
2153 2154 2155 2156 2157 2158 2159
			/*
			 * An anonymous page must be locked, to ensure that a
			 * concurrent reuse_swap_page() sees stable mapcount;
			 * but reuse_swap_page() is not used on shmem or file,
			 * and page lock must not be taken when zap_pmd_range()
			 * calls __split_huge_pmd() while i_mmap_lock is held.
			 */
2160 2161 2162
			if (folio_test_anon(folio)) {
				if (unlikely(!folio_trylock(folio))) {
					folio_get(folio);
2163 2164
					_pmd = *pmd;
					spin_unlock(ptl);
2165
					folio_lock(folio);
2166 2167
					spin_lock(ptl);
					if (unlikely(!pmd_same(*pmd, _pmd))) {
2168 2169 2170
						folio_unlock(folio);
						folio_put(folio);
						folio = NULL;
2171 2172
						goto repeat;
					}
2173
					folio_put(folio);
2174
				}
2175
				do_unlock_folio = true;
2176 2177
			}
		}
2178
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2179
		goto out;
2180
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2181
out:
2182
	spin_unlock(ptl);
2183 2184
	if (do_unlock_folio)
		folio_unlock(folio);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2198
	mmu_notifier_invalidate_range_only_end(&range);
2199 2200
}

2201
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2202
		bool freeze, struct folio *folio)
2203
{
2204
	pgd_t *pgd;
2205
	p4d_t *p4d;
2206
	pud_t *pud;
2207 2208
	pmd_t *pmd;

2209
	pgd = pgd_offset(vma->vm_mm, address);
2210 2211 2212
	if (!pgd_present(*pgd))
		return;

2213 2214 2215 2216 2217
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2218 2219 2220 2221
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2222

2223
	__split_huge_pmd(vma, pmd, address, freeze, folio);
2224 2225
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
{
	/*
	 * If the new address isn't hpage aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
			 ALIGN(address, HPAGE_PMD_SIZE)))
		split_huge_pmd_address(vma, address, false, NULL);
}

2238
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2239 2240 2241 2242
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
2243 2244
	/* Check if we need to split start first. */
	split_huge_pmd_if_needed(vma, start);
2245

2246 2247
	/* Check if we need to split end next. */
	split_huge_pmd_if_needed(vma, end);
2248 2249

	/*
2250 2251
	 * If we're also updating the vma->vm_next->vm_start,
	 * check if we need to split it.
2252 2253 2254 2255
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2256
		nstart += adjust_next;
2257
		split_huge_pmd_if_needed(next, nstart);
2258 2259
	}
}
2260

2261
static void unmap_page(struct page *page)
2262
{
2263
	struct folio *folio = page_folio(page);
2264 2265
	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
		TTU_SYNC;
2266 2267 2268

	VM_BUG_ON_PAGE(!PageHead(page), page);

2269 2270 2271 2272 2273
	/*
	 * Anon pages need migration entries to preserve them, but file
	 * pages can simply be left unmapped, then faulted back on demand.
	 * If that is ever changed (perhaps for mlock), update remap_page().
	 */
2274 2275
	if (folio_test_anon(folio))
		try_to_migrate(folio, ttu_flags);
2276
	else
2277
		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2278 2279

	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2280 2281
}

2282
static void remap_page(struct folio *folio, unsigned long nr)
2283
{
2284
	int i = 0;
2285

2286
	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2287
	if (!folio_test_anon(folio))
2288
		return;
2289 2290 2291 2292 2293 2294
	for (;;) {
		remove_migration_ptes(folio, folio, true);
		i += folio_nr_pages(folio);
		if (i >= nr)
			break;
		folio = folio_next(folio);
2295
	}
2296 2297
}

2298
static void lru_add_page_tail(struct page *head, struct page *tail,
2299 2300
		struct lruvec *lruvec, struct list_head *list)
{
2301 2302 2303
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2304
	lockdep_assert_held(&lruvec->lru_lock);
2305

A
Alex Shi 已提交
2306
	if (list) {
2307
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2308
		VM_WARN_ON(PageLRU(head));
2309 2310
		get_page(tail);
		list_add_tail(&tail->lru, list);
2311
	} else {
A
Alex Shi 已提交
2312 2313
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
2314 2315 2316 2317
		if (PageUnevictable(tail))
			tail->mlock_count = 0;
		else
			list_add_tail(&tail->lru, &head->lru);
A
Alex Shi 已提交
2318
		SetPageLRU(tail);
2319 2320 2321
	}
}

2322
static void __split_huge_page_tail(struct page *head, int tail,
2323 2324 2325 2326
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2327
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2328 2329

	/*
2330 2331 2332
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2333
	 * for example lock_page() which set PG_waiters.
2334 2335 2336 2337 2338
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2339
			 (1L << PG_swapcache) |
2340 2341 2342
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2343
			 (1L << PG_workingset) |
2344
			 (1L << PG_locked) |
2345
			 (1L << PG_unevictable) |
2346 2347 2348
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2349
			 (1L << PG_dirty)));
2350

2351 2352 2353 2354 2355 2356
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2357
	/* Page flags must be visible before we make the page non-compound. */
2358 2359
	smp_wmb();

2360 2361 2362 2363 2364 2365
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2366 2367
	clear_compound_head(page_tail);

2368 2369 2370 2371
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2372 2373 2374 2375 2376 2377
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2378 2379 2380 2381 2382 2383

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2384 2385 2386
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2387
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2388
		pgoff_t end)
2389
{
2390 2391
	struct folio *folio = page_folio(page);
	struct page *head = &folio->page;
2392
	struct lruvec *lruvec;
2393 2394
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2395
	unsigned int nr = thp_nr_pages(head);
2396
	int i;
2397 2398

	/* complete memcg works before add pages to LRU */
2399
	split_page_memcg(head, nr);
2400

2401 2402 2403 2404 2405 2406 2407 2408
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

I
Ingo Molnar 已提交
2409
	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2410
	lruvec = folio_lruvec_lock(folio);
A
Alex Shi 已提交
2411

2412 2413
	ClearPageHasHWPoisoned(head);

2414
	for (i = nr - 1; i >= 1; i--) {
2415
		__split_huge_page_tail(head, i, lruvec, list);
2416
		/* Some pages can be beyond EOF: drop them from page cache */
2417
		if (head[i].index >= end) {
2418
			ClearPageDirty(head + i);
2419
			__delete_from_page_cache(head + i, NULL);
2420
			if (shmem_mapping(head->mapping))
2421
				shmem_uncharge(head->mapping->host, 1);
2422
			put_page(head + i);
2423 2424 2425 2426 2427 2428
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2429 2430
		}
	}
2431 2432

	ClearPageCompound(head);
2433
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2434
	/* Caller disabled irqs, so they are still disabled here */
2435

2436
	split_page_owner(head, nr);
2437

2438 2439
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2440
		/* Additional pin to swap cache */
2441
		if (PageSwapCache(head)) {
2442
			page_ref_add(head, 2);
2443 2444
			xa_unlock(&swap_cache->i_pages);
		} else {
2445
			page_ref_inc(head);
2446
		}
2447
	} else {
M
Matthew Wilcox 已提交
2448
		/* Additional pin to page cache */
2449
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2450
		xa_unlock(&head->mapping->i_pages);
2451
	}
A
Alex Shi 已提交
2452
	local_irq_enable();
2453

2454
	remap_page(folio, nr);
2455

H
Huang Ying 已提交
2456 2457 2458 2459 2460 2461
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2462
	for (i = 0; i < nr; i++) {
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
2503
int page_trans_huge_mapcount(struct page *page)
2504
{
2505
	int i, ret;
2506 2507 2508 2509

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

2510 2511
	if (likely(!PageTransCompound(page)))
		return atomic_read(&page->_mapcount) + 1;
2512 2513 2514

	page = compound_head(page);

2515
	ret = 0;
2516
	for (i = 0; i < thp_nr_pages(page); i++) {
2517
		int mapcount = atomic_read(&page[i]._mapcount) + 1;
2518 2519
		ret = max(ret, mapcount);
	}
2520 2521

	if (PageDoubleMap(page))
2522
		ret -= 1;
2523 2524

	return ret + compound_mapcount(page);
2525 2526
}

2527
/* Racy check whether the huge page can be split */
2528
bool can_split_folio(struct folio *folio, int *pextra_pins)
2529 2530 2531
{
	int extra_pins;

M
Matthew Wilcox 已提交
2532
	/* Additional pins from page cache */
2533 2534 2535
	if (folio_test_anon(folio))
		extra_pins = folio_test_swapcache(folio) ?
				folio_nr_pages(folio) : 0;
2536
	else
2537
		extra_pins = folio_nr_pages(folio);
2538 2539
	if (pextra_pins)
		*pextra_pins = extra_pins;
2540
	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2541 2542
}

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
2564 2565
	struct folio *folio = page_folio(page);
	struct page *head = &folio->page;
2566
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2567
	XA_STATE(xas, &head->mapping->i_pages, head->index);
2568 2569
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
2570
	int extra_pins, ret;
2571
	pgoff_t end;
2572

2573
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2574 2575
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2576

2577
	if (PageWriteback(head))
2578 2579
		return -EBUSY;

2580 2581
	if (PageAnon(head)) {
		/*
2582
		 * The caller does not necessarily hold an mmap_lock that would
2583 2584
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
2585
		 * is similar to folio_lock_anon_vma_read except the write lock
2586 2587 2588 2589 2590 2591 2592 2593
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2594
		end = -1;
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

2606 2607 2608 2609 2610 2611 2612
		xas_split_alloc(&xas, head, compound_order(head),
				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
		if (xas_error(&xas)) {
			ret = xas_error(&xas);
			goto out;
		}

2613 2614
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2615 2616 2617 2618 2619 2620 2621 2622 2623

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2624 2625
		if (shmem_mapping(mapping))
			end = shmem_fallocend(mapping->host, end);
2626 2627 2628
	}

	/*
2629
	 * Racy check if we can split the page, before unmap_page() will
2630 2631
	 * split PMDs
	 */
2632
	if (!can_split_folio(folio, &extra_pins)) {
2633 2634 2635 2636
		ret = -EBUSY;
		goto out_unlock;
	}

2637
	unmap_page(head);
2638

A
Alex Shi 已提交
2639 2640
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2641 2642
	if (mapping) {
		/*
M
Matthew Wilcox 已提交
2643
		 * Check if the head page is present in page cache.
2644 2645
		 * We assume all tail are present too, if head is there.
		 */
2646 2647
		xas_lock(&xas);
		xas_reset(&xas);
M
Matthew Wilcox 已提交
2648
		if (xas_load(&xas) != head)
2649 2650 2651
			goto fail;
	}

2652
	/* Prevent deferred_split_scan() touching ->_refcount */
2653
	spin_lock(&ds_queue->split_queue_lock);
2654
	if (page_ref_freeze(head, 1 + extra_pins)) {
2655
		if (!list_empty(page_deferred_list(head))) {
2656
			ds_queue->split_queue_len--;
2657 2658
			list_del(page_deferred_list(head));
		}
2659
		spin_unlock(&ds_queue->split_queue_lock);
2660
		if (mapping) {
2661 2662
			int nr = thp_nr_pages(head);

2663
			xas_split(&xas, head, thp_order(head));
2664
			if (PageSwapBacked(head)) {
2665 2666
				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
							-nr);
2667
			} else {
2668 2669
				__mod_lruvec_page_state(head, NR_FILE_THPS,
							-nr);
2670 2671
				filemap_nr_thps_dec(mapping);
			}
2672 2673
		}

A
Alex Shi 已提交
2674
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2675
		ret = 0;
2676
	} else {
2677
		spin_unlock(&ds_queue->split_queue_lock);
2678 2679
fail:
		if (mapping)
2680
			xas_unlock(&xas);
A
Alex Shi 已提交
2681
		local_irq_enable();
2682
		remap_page(folio, folio_nr_pages(folio));
2683 2684 2685 2686
		ret = -EBUSY;
	}

out_unlock:
2687 2688 2689 2690 2691 2692
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2693
out:
2694 2695
	/* Free any memory we didn't use */
	xas_nomem(&xas, 0);
2696 2697 2698
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2699 2700 2701

void free_transhuge_page(struct page *page)
{
2702
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2703 2704
	unsigned long flags;

2705
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2706
	if (!list_empty(page_deferred_list(page))) {
2707
		ds_queue->split_queue_len--;
2708 2709
		list_del(page_deferred_list(page));
	}
2710
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2711 2712 2713 2714 2715
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2716 2717
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2718
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2719
#endif
2720 2721 2722 2723
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2737
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2738
	if (list_empty(page_deferred_list(page))) {
2739
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2740 2741
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2742 2743
#ifdef CONFIG_MEMCG
		if (memcg)
2744 2745
			set_shrinker_bit(memcg, page_to_nid(page),
					 deferred_split_shrinker.id);
2746
#endif
2747
	}
2748
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2749 2750 2751 2752 2753
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2754
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2756 2757 2758 2759 2760

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2761
	return READ_ONCE(ds_queue->split_queue_len);
2762 2763 2764 2765 2766
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2767
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2768
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2769 2770 2771 2772 2773
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2774 2775 2776 2777 2778
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2779
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2780
	/* Take pin on all head pages to avoid freeing them under us */
2781
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2782
		page = list_entry((void *)pos, struct page, deferred_list);
2783
		page = compound_head(page);
2784 2785 2786 2787
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2788
			list_del_init(page_deferred_list(page));
2789
			ds_queue->split_queue_len--;
2790
		}
2791 2792
		if (!--sc->nr_to_scan)
			break;
2793
	}
2794
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2795 2796

	list_for_each_safe(pos, next, &list) {
2797
		page = list_entry((void *)pos, struct page, deferred_list);
2798 2799
		if (!trylock_page(page))
			goto next;
2800 2801 2802 2803
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2804
next:
2805 2806 2807
		put_page(page);
	}

2808 2809 2810
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2811

2812 2813 2814 2815
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2816
	if (!split && list_empty(&ds_queue->split_queue))
2817 2818
		return SHRINK_STOP;
	return split;
2819 2820 2821 2822 2823 2824
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2825 2826
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2827
};
2828 2829

#ifdef CONFIG_DEBUG_FS
2830
static void split_huge_pages_all(void)
2831 2832 2833 2834 2835 2836
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

2837
	pr_debug("Split all THPs\n");
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2851
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2852 2853 2854 2855 2856 2857 2858 2859 2860
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
2861
			cond_resched();
2862 2863 2864
		}
	}

2865 2866
	pr_debug("%lu of %lu THP split\n", split, total);
}
2867

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
{
	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
		    is_vm_hugetlb_page(vma);
}

static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
				unsigned long vaddr_end)
{
	int ret = 0;
	struct task_struct *task;
	struct mm_struct *mm;
	unsigned long total = 0, split = 0;
	unsigned long addr;

	vaddr_start &= PAGE_MASK;
	vaddr_end &= PAGE_MASK;

	/* Find the task_struct from pid */
	rcu_read_lock();
	task = find_task_by_vpid(pid);
	if (!task) {
		rcu_read_unlock();
		ret = -ESRCH;
		goto out;
	}
	get_task_struct(task);
	rcu_read_unlock();

	/* Find the mm_struct */
	mm = get_task_mm(task);
	put_task_struct(task);

	if (!mm) {
		ret = -EINVAL;
		goto out;
	}

	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
		 pid, vaddr_start, vaddr_end);

	mmap_read_lock(mm);
	/*
	 * always increase addr by PAGE_SIZE, since we could have a PTE page
	 * table filled with PTE-mapped THPs, each of which is distinct.
	 */
	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
		struct vm_area_struct *vma = find_vma(mm, addr);
		struct page *page;

		if (!vma || addr < vma->vm_start)
			break;

		/* skip special VMA and hugetlb VMA */
		if (vma_not_suitable_for_thp_split(vma)) {
			addr = vma->vm_end;
			continue;
		}

		/* FOLL_DUMP to ignore special (like zero) pages */
2928
		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938

		if (IS_ERR(page))
			continue;
		if (!page)
			continue;

		if (!is_transparent_hugepage(page))
			goto next;

		total++;
2939
		if (!can_split_folio(page_folio(page), NULL))
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
			goto next;

		if (!trylock_page(page))
			goto next;

		if (!split_huge_page(page))
			split++;

		unlock_page(page);
next:
		put_page(page);
		cond_resched();
	}
	mmap_read_unlock(mm);
	mmput(mm);

	pr_debug("%lu of %lu THP split\n", split, total);

out:
	return ret;
2960
}
2961

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
				pgoff_t off_end)
{
	struct filename *file;
	struct file *candidate;
	struct address_space *mapping;
	int ret = -EINVAL;
	pgoff_t index;
	int nr_pages = 1;
	unsigned long total = 0, split = 0;

	file = getname_kernel(file_path);
	if (IS_ERR(file))
		return ret;

	candidate = file_open_name(file, O_RDONLY, 0);
	if (IS_ERR(candidate))
		goto out;

	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
		 file_path, off_start, off_end);

	mapping = candidate->f_mapping;

	for (index = off_start; index < off_end; index += nr_pages) {
		struct page *fpage = pagecache_get_page(mapping, index,
						FGP_ENTRY | FGP_HEAD, 0);

		nr_pages = 1;
		if (xa_is_value(fpage) || !fpage)
			continue;

		if (!is_transparent_hugepage(fpage))
			goto next;

		total++;
		nr_pages = thp_nr_pages(fpage);

		if (!trylock_page(fpage))
			goto next;

		if (!split_huge_page(fpage))
			split++;

		unlock_page(fpage);
next:
		put_page(fpage);
		cond_resched();
	}

	filp_close(candidate, NULL);
	ret = 0;

	pr_debug("%lu of %lu file-backed THP split\n", split, total);
out:
	putname(file);
	return ret;
}

3021 3022 3023 3024 3025 3026 3027
#define MAX_INPUT_BUF_SZ 255

static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
				size_t count, loff_t *ppops)
{
	static DEFINE_MUTEX(split_debug_mutex);
	ssize_t ret;
3028 3029
	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
	char input_buf[MAX_INPUT_BUF_SZ];
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	int pid;
	unsigned long vaddr_start, vaddr_end;

	ret = mutex_lock_interruptible(&split_debug_mutex);
	if (ret)
		return ret;

	ret = -EFAULT;

	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
		goto out;

	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053

	if (input_buf[0] == '/') {
		char *tok;
		char *buf = input_buf;
		char file_path[MAX_INPUT_BUF_SZ];
		pgoff_t off_start = 0, off_end = 0;
		size_t input_len = strlen(input_buf);

		tok = strsep(&buf, ",");
		if (tok) {
3054
			strcpy(file_path, tok);
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
		} else {
			ret = -EINVAL;
			goto out;
		}

		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
		if (ret != 2) {
			ret = -EINVAL;
			goto out;
		}
		ret = split_huge_pages_in_file(file_path, off_start, off_end);
		if (!ret)
			ret = input_len;

		goto out;
	}

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
	if (ret == 1 && pid == 1) {
		split_huge_pages_all();
		ret = strlen(input_buf);
		goto out;
	} else if (ret != 3) {
		ret = -EINVAL;
		goto out;
	}

	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
	if (!ret)
		ret = strlen(input_buf);
out:
	mutex_unlock(&split_debug_mutex);
	return ret;

}

static const struct file_operations split_huge_pages_fops = {
	.owner	 = THIS_MODULE,
	.write	 = split_huge_pages_write,
	.llseek  = no_llseek,
};
3096 3097 3098

static int __init split_huge_pages_debugfs(void)
{
3099 3100
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
3101 3102 3103 3104
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3115
	pmd_t pmdswp;
3116 3117 3118 3119 3120

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3121
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3122 3123
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
3124 3125 3126 3127
	if (pmd_write(pmdval))
		entry = make_writable_migration_entry(page_to_pfn(page));
	else
		entry = make_readable_migration_entry(page_to_pfn(page));
3128 3129 3130 3131
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3132
	page_remove_rmap(page, vma, true);
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3151 3152
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3153
	if (is_writable_migration_entry(entry))
3154
		pmde = maybe_pmd_mkwrite(pmde, vma);
3155 3156
	if (pmd_swp_uffd_wp(*pvmw->pmd))
		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3157

3158 3159 3160
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
3161
		page_add_file_rmap(new, vma, true);
3162
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3163 3164

	/* No need to invalidate - it was non-present before */
3165 3166 3167
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif