huge_memory.c 83.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167
	const char *output;

168
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
169 170 171 172
		output = "[always] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always [madvise] never";
173
	else
174 175 176
		output = "always madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
177
}
178

179 180 181 182
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
183
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
184

185
	if (sysfs_streq(buf, "always")) {
186 187
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188
	} else if (sysfs_streq(buf, "madvise")) {
189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191
	} else if (sysfs_streq(buf, "never")) {
192 193 194 195
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
196 197

	if (ret > 0) {
198
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
199 200 201 202
		if (err)
			ret = err;
	}
	return ret;
203 204 205 206
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

207
ssize_t single_hugepage_flag_show(struct kobject *kobj,
208 209
				  struct kobj_attribute *attr, char *buf,
				  enum transparent_hugepage_flag flag)
210
{
211 212
	return sysfs_emit(buf, "%d\n",
			  !!test_bit(flag, &transparent_hugepage_flags));
213
}
214

215
ssize_t single_hugepage_flag_store(struct kobject *kobj,
216 217 218 219
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
220 221 222 223 224 225 226 227 228 229
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
230
		set_bit(flag, &transparent_hugepage_flags);
231
	else
232 233 234 235 236 237 238 239
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	const char *output;

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
		     &transparent_hugepage_flags))
		output = "[always] defer defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
			  &transparent_hugepage_flags))
		output = "always [defer] defer+madvise madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer [defer+madvise] madvise never";
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
			  &transparent_hugepage_flags))
		output = "always defer defer+madvise [madvise] never";
	else
		output = "always defer defer+madvise madvise [never]";

	return sysfs_emit(buf, "%s\n", output);
258
}
259

260 261 262 263
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
264
	if (sysfs_streq(buf, "always")) {
265 266 267 268
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269
	} else if (sysfs_streq(buf, "defer+madvise")) {
270 271 272 273
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274
	} else if (sysfs_streq(buf, "defer")) {
275 276 277 278
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279
	} else if (sysfs_streq(buf, "madvise")) {
280 281 282 283
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284
	} else if (sysfs_streq(buf, "never")) {
285 286 287 288 289 290 291 292
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
293 294 295 296
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

297
static ssize_t use_zero_page_show(struct kobject *kobj,
298
				  struct kobj_attribute *attr, char *buf)
299
{
300
	return single_hugepage_flag_show(kobj, attr, buf,
301
					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 303 304 305
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
306
	return single_hugepage_flag_store(kobj, attr, buf, count,
307 308 309 310
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
311 312

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
313
				   struct kobj_attribute *attr, char *buf)
314
{
315
	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
316 317 318 319
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

320 321 322
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
323
	&use_zero_page_attr.attr,
324
	&hpage_pmd_size_attr.attr,
325
#ifdef CONFIG_SHMEM
326
	&shmem_enabled_attr.attr,
327 328 329 330
#endif
	NULL,
};

331
static const struct attribute_group hugepage_attr_group = {
332
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
333 334
};

S
Shaohua Li 已提交
335
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 337 338
{
	int err;

S
Shaohua Li 已提交
339 340
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
341
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
342
		return -ENOMEM;
A
Andrea Arcangeli 已提交
343 344
	}

S
Shaohua Li 已提交
345
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
346
	if (err) {
347
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
348
		goto delete_obj;
A
Andrea Arcangeli 已提交
349 350
	}

S
Shaohua Li 已提交
351
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
352
	if (err) {
353
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
354
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
355
	}
S
Shaohua Li 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

393 394 395 396 397 398 399 400 401 402
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
403 404
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
405
		goto err_sysfs;
A
Andrea Arcangeli 已提交
406

407
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
408
	if (err)
409
		goto err_slab;
A
Andrea Arcangeli 已提交
410

411 412 413
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
414 415 416
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
417

418 419 420 421 422
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
423
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
424
		transparent_hugepage_flags = 0;
425 426
		return 0;
	}
427

428
	err = start_stop_khugepaged();
429 430
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
431

S
Shaohua Li 已提交
432
	return 0;
433
err_khugepaged:
434 435
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
436 437
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
438
	khugepaged_destroy();
439
err_slab:
S
Shaohua Li 已提交
440
	hugepage_exit_sysfs(hugepage_kobj);
441
err_sysfs:
A
Andrea Arcangeli 已提交
442
	return err;
443
}
444
subsys_initcall(hugepage_init);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
472
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 474 475 476
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

477
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478
{
479
	if (likely(vma->vm_flags & VM_WRITE))
480 481 482 483
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

484 485
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
486
{
487
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
488 489 490 491 492 493
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
494
}
495 496 497 498 499 500 501 502
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
503 504 505 506 507 508 509 510 511 512 513 514

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

515 516 517
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
518
		return false;
519 520 521 522 523 524 525

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

526 527
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
528 529 530 531
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
532
	unsigned long len_pad, ret;
533 534 535 536 537 538 539 540

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

541
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
542
					      off >> PAGE_SHIFT, flags);
543 544 545 546 547 548

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
549 550
		return 0;

551 552 553 554 555 556 557 558 559
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
560 561 562 563 564
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
565
	unsigned long ret;
566 567 568 569 570
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

571 572 573 574
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
575 576 577 578
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

579 580
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
581
{
J
Jan Kara 已提交
582
	struct vm_area_struct *vma = vmf->vma;
583
	pgtable_t pgtable;
J
Jan Kara 已提交
584
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
585
	vm_fault_t ret = 0;
586

587
	VM_BUG_ON_PAGE(!PageCompound(page), page);
588

589
	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
590 591
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
592
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
593 594
		return VM_FAULT_FALLBACK;
	}
595
	cgroup_throttle_swaprate(page, gfp);
596

597
	pgtable = pte_alloc_one(vma->vm_mm);
598
	if (unlikely(!pgtable)) {
599 600
		ret = VM_FAULT_OOM;
		goto release;
601
	}
602

603
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
604 605 606 607 608
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
609 610
	__SetPageUptodate(page);

J
Jan Kara 已提交
611 612
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
613
		goto unlock_release;
614 615
	} else {
		pmd_t entry;
616

617 618 619 620
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

621 622
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
623
			vm_fault_t ret2;
624

J
Jan Kara 已提交
625
			spin_unlock(vmf->ptl);
626
			put_page(page);
K
Kirill A. Shutemov 已提交
627
			pte_free(vma->vm_mm, pgtable);
628 629 630
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
631 632
		}

633
		entry = mk_huge_pmd(page, vma->vm_page_prot);
634
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
635
		page_add_new_anon_rmap(page, vma, haddr, true);
636
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
637 638
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
639
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
K
Kirill A. Shutemov 已提交
640
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
641
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
642
		spin_unlock(vmf->ptl);
643
		count_vm_event(THP_FAULT_ALLOC);
644
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
645 646
	}

647
	return 0;
648 649 650 651 652 653 654 655
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

656 657
}

658
/*
659 660 661 662 663 664 665
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
666
 */
667
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
668
{
669
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
670

671
	/* Always do synchronous compaction */
672 673
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
674 675

	/* Kick kcompactd and fail quickly */
676
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
677
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
678 679

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
680
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
681 682 683
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
684 685

	/* Only do synchronous compaction if madvised */
686
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
687 688
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
689

690
	return GFP_TRANSHUGE_LIGHT;
691 692
}

693
/* Caller must hold page table lock. */
694
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
695
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
696
		struct page *zero_page)
697 698
{
	pmd_t entry;
A
Andrew Morton 已提交
699 700
	if (!pmd_none(*pmd))
		return false;
701
	entry = mk_pmd(zero_page, vma->vm_page_prot);
702
	entry = pmd_mkhuge(entry);
703 704
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
705
	set_pmd_at(mm, haddr, pmd, entry);
706
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
707
	return true;
708 709
}

710
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
711
{
J
Jan Kara 已提交
712
	struct vm_area_struct *vma = vmf->vma;
713
	gfp_t gfp;
714
	struct page *page;
J
Jan Kara 已提交
715
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
716

717
	if (!transhuge_vma_suitable(vma, haddr))
718
		return VM_FAULT_FALLBACK;
719 720
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
721
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
722
		return VM_FAULT_OOM;
J
Jan Kara 已提交
723
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
724
			!mm_forbids_zeropage(vma->vm_mm) &&
725 726 727
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
728
		vm_fault_t ret;
729
		pgtable = pte_alloc_one(vma->vm_mm);
730
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
731
			return VM_FAULT_OOM;
732
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
733
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
734
			pte_free(vma->vm_mm, pgtable);
735
			count_vm_event(THP_FAULT_FALLBACK);
736
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
737
		}
J
Jan Kara 已提交
738
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
739
		ret = 0;
J
Jan Kara 已提交
740
		if (pmd_none(*vmf->pmd)) {
741 742 743
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
744
				pte_free(vma->vm_mm, pgtable);
745
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
746
				spin_unlock(vmf->ptl);
747
				pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
748
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
749 750
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
751
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
752
						   haddr, vmf->pmd, zero_page);
753
				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
J
Jan Kara 已提交
754
				spin_unlock(vmf->ptl);
755
			}
756
		} else {
J
Jan Kara 已提交
757
			spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
758
			pte_free(vma->vm_mm, pgtable);
759
		}
760
		return ret;
761
	}
762 763
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
764 765
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
766
		return VM_FAULT_FALLBACK;
767
	}
768
	prep_transhuge_page(page);
J
Jan Kara 已提交
769
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
770 771
}

772
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
773 774
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
775 776 777 778 779 780
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

796 797 798
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
799
	if (write) {
800 801
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
802
	}
803 804 805

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
806
		mm_inc_nr_ptes(mm);
807
		pgtable = NULL;
808 809
	}

810 811
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
812 813

out_unlock:
M
Matthew Wilcox 已提交
814
	spin_unlock(ptl);
815 816
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
817 818
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
834
{
835 836
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
837
	pgtable_t pgtable = NULL;
838

M
Matthew Wilcox 已提交
839 840 841 842 843
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
844 845
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
846 847 848 849 850 851
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
852

853
	if (arch_needs_pgtable_deposit()) {
854
		pgtable = pte_alloc_one(vma->vm_mm);
855 856 857 858
		if (!pgtable)
			return VM_FAULT_OOM;
	}

859 860
	track_pfn_insert(vma, &pgprot, pfn);

861
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
862
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
863
}
864
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
865

866
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
867
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
868
{
869
	if (likely(vma->vm_flags & VM_WRITE))
870 871 872 873 874 875 876 877 878 879 880 881
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
882 883 884 885 886 887 888 889 890 891 892 893 894 895
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

896 897 898 899
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
900 901
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
902 903 904
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
905 906

out_unlock:
907 908 909
	spin_unlock(ptl);
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
925
{
926 927 928
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

929 930 931 932 933
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
934 935
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
936 937 938 939 940 941 942 943 944
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

945
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
946 947
	return VM_FAULT_NOPAGE;
}
948
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
949 950
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

951
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
952
		pmd_t *pmd, int flags)
953 954 955
{
	pmd_t _pmd;

956 957 958
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
959
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
960
				pmd, _pmd, flags & FOLL_WRITE))
961 962 963 964
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
965
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
966 967 968 969 970 971 972
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

973 974 975 976 977 978
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
979 980 981 982 983
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

984
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
985 986 987 988 989 990 991 992
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
993
		touch_pmd(vma, addr, pmd, flags);
994 995 996 997 998

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
999
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1000 1001 1002
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1003 1004
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1005 1006
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1007 1008
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1009 1010 1011 1012

	return page;
}

1013 1014 1015 1016
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1017
	spinlock_t *dst_ptl, *src_ptl;
1018 1019
	struct page *src_page;
	pmd_t pmd;
1020
	pgtable_t pgtable = NULL;
1021
	int ret = -ENOMEM;
1022

1023 1024 1025 1026
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1027
	pgtable = pte_alloc_one(dst_mm);
1028 1029
	if (unlikely(!pgtable))
		goto out;
1030

1031 1032 1033
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1034 1035 1036

	ret = -EAGAIN;
	pmd = *src_pmd;
1037

1038 1039 1040 1041 1042 1043 1044 1045
	/*
	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
	 * does not have the VM_UFFD_WP, which means that the uffd
	 * fork event is not enabled.
	 */
	if (!(vma->vm_flags & VM_UFFD_WP))
		pmd = pmd_clear_uffd_wp(pmd);

1046 1047 1048 1049 1050 1051 1052 1053
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1054 1055
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1056 1057
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1058
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1059
		mm_inc_nr_ptes(dst_mm);
1060
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1061 1062 1063 1064 1065 1066
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1067
	if (unlikely(!pmd_trans_huge(pmd))) {
1068 1069 1070
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1071
	/*
1072
	 * When page table lock is held, the huge zero pmd should not be
1073 1074 1075 1076
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1077
		struct page *zero_page;
1078 1079 1080 1081 1082
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1083
		zero_page = mm_get_huge_zero_page(dst_mm);
1084
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1085
				zero_page);
1086 1087 1088
		ret = 0;
		goto out_unlock;
	}
1089

1090 1091
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
	if (unlikely(is_cow_mapping(vma->vm_flags) &&
		     atomic_read(&src_mm->has_pinned) &&
		     page_maybe_dma_pinned(src_page))) {
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
		return -EAGAIN;
	}

1110 1111 1112
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1113
	mm_inc_nr_ptes(dst_mm);
1114
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1115 1116 1117 1118 1119 1120 1121

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1122 1123
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1124 1125 1126 1127
out:
	return ret;
}

1128 1129
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1130
		pud_t *pud, int flags)
1131 1132 1133
{
	pud_t _pud;

1134 1135 1136
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1137
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1138
				pud, _pud, flags & FOLL_WRITE))
1139 1140 1141 1142
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1143
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1144 1145 1146 1147 1148 1149 1150
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1151
	if (flags & FOLL_WRITE && !pud_write(*pud))
1152 1153
		return NULL;

J
John Hubbard 已提交
1154 1155 1156 1157 1158
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1159 1160 1161 1162 1163 1164
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1165
		touch_pud(vma, addr, pud, flags);
1166 1167 1168 1169

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1170 1171
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1172
	 */
J
John Hubbard 已提交
1173
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1174 1175 1176
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1177 1178
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1179 1180
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1181 1182
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	/* Please refer to comments in copy_huge_pmd() */
	if (unlikely(is_cow_mapping(vma->vm_flags) &&
		     atomic_read(&src_mm->has_pinned) &&
		     page_maybe_dma_pinned(pud_page(pud)))) {
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1256
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1257 1258 1259
{
	pmd_t entry;
	unsigned long haddr;
1260
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1261

J
Jan Kara 已提交
1262 1263
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1264 1265 1266
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1267 1268
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1269
	haddr = vmf->address & HPAGE_PMD_MASK;
1270
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1271
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1272 1273

unlock:
J
Jan Kara 已提交
1274
	spin_unlock(vmf->ptl);
1275 1276
}

1277
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1278
{
J
Jan Kara 已提交
1279
	struct vm_area_struct *vma = vmf->vma;
1280
	struct page *page;
J
Jan Kara 已提交
1281
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1282

J
Jan Kara 已提交
1283
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1284
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1285

1286
	if (is_huge_zero_pmd(orig_pmd))
1287 1288
		goto fallback;

J
Jan Kara 已提交
1289
	spin_lock(vmf->ptl);
1290 1291 1292 1293 1294

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1295 1296

	page = pmd_page(orig_pmd);
1297
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1298 1299

	/* Lock page for reuse_swap_page() */
1300 1301 1302 1303 1304 1305
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1306
			spin_unlock(vmf->ptl);
1307 1308
			unlock_page(page);
			put_page(page);
1309
			return 0;
1310 1311 1312
		}
		put_page(page);
	}
1313 1314 1315 1316 1317

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1318
	if (reuse_swap_page(page, NULL)) {
1319 1320
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1321
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1322
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1323
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1324
		unlock_page(page);
J
Jan Kara 已提交
1325
		spin_unlock(vmf->ptl);
1326
		return VM_FAULT_WRITE;
1327
	}
1328 1329

	unlock_page(page);
J
Jan Kara 已提交
1330
	spin_unlock(vmf->ptl);
1331 1332 1333
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1334 1335
}

1336
/*
1337 1338
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1339 1340 1341
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1342 1343
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1344 1345
}

1346
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1347 1348 1349 1350
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1351
	struct mm_struct *mm = vma->vm_mm;
1352 1353
	struct page *page = NULL;

1354
	assert_spin_locked(pmd_lockptr(mm, pmd));
1355

1356
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1357 1358
		goto out;

1359 1360 1361 1362
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1363
	/* Full NUMA hinting faults to serialise migration in fault paths */
1364
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1365 1366
		goto out;

1367
	page = pmd_page(*pmd);
1368
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1369 1370 1371 1372

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1373
	if (flags & FOLL_TOUCH)
1374
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1375

E
Eric B Munson 已提交
1376
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1377 1378 1379 1380
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1381 1382
		 * For anon THP:
		 *
1383 1384 1385 1386 1387 1388 1389
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1390 1391 1392 1393 1394 1395
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1396
		 */
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1407
	}
1408
skip_mlock:
1409
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1410
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1411 1412 1413 1414 1415

out:
	return page;
}

1416
/* NUMA hinting page fault entry point for trans huge pmds */
1417
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1418
{
J
Jan Kara 已提交
1419
	struct vm_area_struct *vma = vmf->vma;
1420
	struct anon_vma *anon_vma = NULL;
1421
	struct page *page;
J
Jan Kara 已提交
1422
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1423
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1424
	int target_nid, last_cpupid = -1;
1425 1426
	bool page_locked;
	bool migrated = false;
1427
	bool was_writable;
1428
	int flags = 0;
1429

J
Jan Kara 已提交
1430 1431
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1432 1433
		goto out_unlock;

1434 1435 1436 1437 1438
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1439 1440
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1441 1442
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1443
		spin_unlock(vmf->ptl);
1444
		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1445 1446 1447
		goto out;
	}

1448
	page = pmd_page(pmd);
1449
	BUG_ON(is_huge_zero_page(page));
1450
	page_nid = page_to_nid(page);
1451
	last_cpupid = page_cpupid_last(page);
1452
	count_vm_numa_event(NUMA_HINT_FAULTS);
1453
	if (page_nid == this_nid) {
1454
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1455 1456
		flags |= TNF_FAULT_LOCAL;
	}
1457

1458
	/* See similar comment in do_numa_page for explanation */
1459
	if (!pmd_savedwrite(pmd))
1460 1461
		flags |= TNF_NO_GROUP;

1462 1463 1464 1465
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1466 1467
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1468
	if (target_nid == NUMA_NO_NODE) {
1469
		/* If the page was locked, there are no parallel migrations */
1470
		if (page_locked)
1471
			goto clear_pmdnuma;
1472
	}
1473

1474
	/* Migration could have started since the pmd_trans_migrating check */
1475
	if (!page_locked) {
1476
		page_nid = NUMA_NO_NODE;
1477 1478
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1479
		spin_unlock(vmf->ptl);
1480
		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1481 1482 1483
		goto out;
	}

1484 1485 1486 1487
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1488
	get_page(page);
J
Jan Kara 已提交
1489
	spin_unlock(vmf->ptl);
1490
	anon_vma = page_lock_anon_vma_read(page);
1491

P
Peter Zijlstra 已提交
1492
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1493 1494
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1495 1496
		unlock_page(page);
		put_page(page);
1497
		page_nid = NUMA_NO_NODE;
1498
		goto out_unlock;
1499
	}
1500

1501 1502 1503
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1504
		page_nid = NUMA_NO_NODE;
1505 1506 1507
		goto clear_pmdnuma;
	}

1508 1509 1510 1511 1512 1513
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1514 1515 1516 1517
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1518
	 */
1519
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1520
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1533

1534 1535
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1536
	 * and access rights restored.
1537
	 */
J
Jan Kara 已提交
1538
	spin_unlock(vmf->ptl);
1539

K
Kirill A. Shutemov 已提交
1540
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1541
				vmf->pmd, pmd, vmf->address, page, target_nid);
1542 1543
	if (migrated) {
		flags |= TNF_MIGRATED;
1544
		page_nid = target_nid;
1545 1546
	} else
		flags |= TNF_MIGRATE_FAIL;
1547

1548
	goto out;
1549
clear_pmdnuma:
1550
	BUG_ON(!PageLocked(page));
1551
	was_writable = pmd_savedwrite(pmd);
1552
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1553
	pmd = pmd_mkyoung(pmd);
1554 1555
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1556 1557
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1558
	unlock_page(page);
1559
out_unlock:
J
Jan Kara 已提交
1560
	spin_unlock(vmf->ptl);
1561 1562 1563 1564 1565

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1566
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1567
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1568
				flags);
1569

1570 1571 1572
	return 0;
}

1573 1574 1575 1576 1577
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1578 1579 1580 1581 1582 1583
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1584
	bool ret = false;
1585

1586
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1587

1588 1589
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1590
		goto out_unlocked;
1591 1592

	orig_pmd = *pmd;
1593
	if (is_huge_zero_pmd(orig_pmd))
1594 1595
		goto out;

1596 1597 1598 1599 1600 1601
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1620
		split_huge_page(page);
1621
		unlock_page(page);
1622
		put_page(page);
1623 1624 1625 1626 1627 1628 1629 1630
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1631
		pmdp_invalidate(vma, addr, pmd);
1632 1633 1634 1635 1636 1637
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1638 1639

	mark_page_lazyfree(page);
1640
	ret = true;
1641 1642 1643 1644 1645 1646
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1647 1648 1649 1650 1651 1652
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1653
	mm_dec_nr_ptes(mm);
1654 1655
}

1656
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1657
		 pmd_t *pmd, unsigned long addr)
1658
{
1659
	pmd_t orig_pmd;
1660
	spinlock_t *ptl;
1661

1662
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1663

1664 1665
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1666 1667 1668 1669 1670 1671 1672
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1673 1674
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1675
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1676
	if (vma_is_special_huge(vma)) {
1677 1678
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1679 1680
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1681
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1682
	} else if (is_huge_zero_pmd(orig_pmd)) {
1683
		zap_deposited_table(tlb->mm, pmd);
1684
		spin_unlock(ptl);
1685
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1686
	} else {
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1705
		if (PageAnon(page)) {
1706
			zap_deposited_table(tlb->mm, pmd);
1707 1708
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1709 1710
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1711
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1712
		}
1713

1714
		spin_unlock(ptl);
1715 1716
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1717
	}
1718
	return 1;
1719 1720
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1747
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1748
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1749
{
1750
	spinlock_t *old_ptl, *new_ptl;
1751 1752
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1753
	bool force_flush = false;
1754 1755 1756 1757 1758 1759 1760

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1761
		return false;
1762 1763
	}

1764 1765
	/*
	 * We don't have to worry about the ordering of src and dst
1766
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1767
	 */
1768 1769
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1770 1771 1772
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1773
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1774
		if (pmd_present(pmd))
1775
			force_flush = true;
1776
		VM_BUG_ON(!pmd_none(*new_pmd));
1777

1778
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1779
			pgtable_t pgtable;
1780 1781 1782
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1783 1784
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1785 1786
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1787 1788
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1789
		spin_unlock(old_ptl);
1790
		return true;
1791
	}
1792
	return false;
1793 1794
}

1795 1796 1797 1798 1799 1800
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1801
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1802
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1803 1804
{
	struct mm_struct *mm = vma->vm_mm;
1805
	spinlock_t *ptl;
1806 1807 1808
	pmd_t entry;
	bool preserve_write;
	int ret;
1809
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1810 1811
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1812

1813
	ptl = __pmd_trans_huge_lock(pmd, vma);
1814 1815
	if (!ptl)
		return 0;
1816

1817 1818
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1833 1834
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1835 1836 1837 1838 1839 1840
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1841 1842 1843 1844 1845 1846 1847
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1848

1849 1850 1851
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1852
	/*
1853
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1854
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1855
	 * which is also under mmap_read_lock(mm):
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1873
	entry = pmdp_invalidate(vma, addr, pmd);
1874

1875 1876 1877
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1889 1890 1891 1892 1893
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1894 1895 1896 1897
	return ret;
}

/*
1898
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1899
 *
1900 1901
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1902
 */
1903
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1904
{
1905 1906
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1907 1908
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1909 1910 1911
		return ptl;
	spin_unlock(ptl);
	return NULL;
1912 1913
}

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1946
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1947
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1948
	if (vma_is_special_huge(vma)) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1966
	count_vm_event(THP_SPLIT_PUD);
1967 1968 1969 1970 1971 1972 1973 1974

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1975
	struct mmu_notifier_range range;
1976

1977
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1978
				address & HPAGE_PUD_MASK,
1979 1980 1981
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1982 1983
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1984
	__split_huge_pud_locked(vma, pud, range.start);
1985 1986 1987

out:
	spin_unlock(ptl);
1988 1989 1990 1991
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1992
	mmu_notifier_invalidate_range_only_end(&range);
1993 1994 1995
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1996 1997 1998 1999 2000 2001 2002 2003
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2004 2005 2006 2007 2008 2009
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2010
	 * See Documentation/vm/mmu_notifier.rst
2011 2012
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2031
		unsigned long haddr, bool freeze)
2032 2033 2034 2035
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2036
	pmd_t old_pmd, _pmd;
2037
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2038
	unsigned long addr;
2039 2040 2041 2042 2043
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2044 2045
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2046 2047 2048

	count_vm_event(THP_SPLIT_PMD);

2049 2050
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2051 2052 2053 2054 2055 2056
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2057
		if (vma_is_special_huge(vma))
2058 2059
			return;
		page = pmd_page(_pmd);
2060 2061
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2062 2063 2064 2065
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2066
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2067
		return;
2068
	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2069 2070 2071 2072 2073 2074 2075 2076 2077
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2078 2079 2080
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2081 2082 2083 2084 2085 2086 2087 2088
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2089 2090
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2104
	if (unlikely(pmd_migration)) {
2105 2106
		swp_entry_t entry;

2107
		entry = pmd_to_swp_entry(old_pmd);
2108
		page = pfn_to_page(swp_offset(entry));
2109 2110 2111
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2112
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2113
	} else {
2114
		page = pmd_page(old_pmd);
2115 2116 2117 2118 2119
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2120
		uffd_wp = pmd_uffd_wp(old_pmd);
2121
	}
2122
	VM_BUG_ON_PAGE(!page_count(page), page);
2123
	page_ref_add(page, HPAGE_PMD_NR - 1);
2124

2125 2126 2127 2128
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2129 2130 2131
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2132
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2133 2134 2135 2136 2137 2138
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2139
		if (freeze || pmd_migration) {
2140 2141 2142
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2143 2144
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2145 2146
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2147
		} else {
2148
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2149
			entry = maybe_mkwrite(entry, vma);
2150 2151 2152 2153
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2154 2155
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2156 2157
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2158
		}
2159
		pte = pte_offset_map(&_pmd, addr);
2160
		BUG_ON(!pte_none(*pte));
2161
		set_pte_at(mm, addr, pte, entry);
2162
		if (!pmd_migration)
2163
			atomic_inc(&page[i]._mapcount);
2164
		pte_unmap(pte);
2165 2166
	}

2167 2168 2169 2170 2171 2172 2173
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2174
			for (i = 0; i < HPAGE_PMD_NR; i++)
2175 2176 2177 2178 2179 2180
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
2181 2182
			__mod_lruvec_page_state(page, NR_ANON_THPS,
						-HPAGE_PMD_NR);
2183 2184 2185 2186 2187
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2188
		}
2189
		unlock_page_memcg(page);
2190 2191 2192 2193
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2194 2195

	if (freeze) {
2196
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2197 2198 2199 2200
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2201 2202 2203
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2204
		unsigned long address, bool freeze, struct page *page)
2205 2206
{
	spinlock_t *ptl;
2207
	struct mmu_notifier_range range;
2208
	bool do_unlock_page = false;
2209
	pmd_t _pmd;
2210

2211
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2212
				address & HPAGE_PMD_MASK,
2213 2214 2215
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2216 2217 2218 2219 2220 2221

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
2222 2223 2224 2225 2226
	if (page) {
		VM_WARN_ON_ONCE(!PageLocked(page));
		if (page != pmd_page(*pmd))
			goto out;
	}
2227

2228
repeat:
2229
	if (pmd_trans_huge(*pmd)) {
2230 2231
		if (!page) {
			page = pmd_page(*pmd);
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
			/*
			 * An anonymous page must be locked, to ensure that a
			 * concurrent reuse_swap_page() sees stable mapcount;
			 * but reuse_swap_page() is not used on shmem or file,
			 * and page lock must not be taken when zap_pmd_range()
			 * calls __split_huge_pmd() while i_mmap_lock is held.
			 */
			if (PageAnon(page)) {
				if (unlikely(!trylock_page(page))) {
					get_page(page);
					_pmd = *pmd;
					spin_unlock(ptl);
					lock_page(page);
					spin_lock(ptl);
					if (unlikely(!pmd_same(*pmd, _pmd))) {
						unlock_page(page);
						put_page(page);
						page = NULL;
						goto repeat;
					}
2252 2253
					put_page(page);
				}
2254
				do_unlock_page = true;
2255 2256
			}
		}
2257
		if (PageMlocked(page))
2258
			clear_page_mlock(page);
2259
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2260
		goto out;
2261
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2262
out:
2263
	spin_unlock(ptl);
2264
	if (do_unlock_page)
2265
		unlock_page(page);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2279
	mmu_notifier_invalidate_range_only_end(&range);
2280 2281
}

2282 2283
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2284
{
2285
	pgd_t *pgd;
2286
	p4d_t *p4d;
2287
	pud_t *pud;
2288 2289
	pmd_t *pmd;

2290
	pgd = pgd_offset(vma->vm_mm, address);
2291 2292 2293
	if (!pgd_present(*pgd))
		return;

2294 2295 2296 2297 2298
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2299 2300 2301 2302
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2303

2304
	__split_huge_pmd(vma, pmd, address, freeze, page);
2305 2306
}

2307
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2320
		split_huge_pmd_address(vma, start, false, NULL);
2321 2322 2323 2324 2325 2326 2327 2328 2329

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2330
		split_huge_pmd_address(vma, end, false, NULL);
2331 2332 2333

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
2334
	 * vm_next->vm_start isn't hpage aligned and it could previously
2335 2336 2337 2338 2339
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2340
		nstart += adjust_next;
2341 2342 2343
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2344
			split_huge_pmd_address(next, nstart, false, NULL);
2345 2346
	}
}
2347

2348
static void unmap_page(struct page *page)
2349
{
2350
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2351
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2352
	bool unmap_success;
2353 2354 2355

	VM_BUG_ON_PAGE(!PageHead(page), page);

2356
	if (PageAnon(page))
2357
		ttu_flags |= TTU_SPLIT_FREEZE;
2358

M
Minchan Kim 已提交
2359 2360
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2361 2362
}

2363
static void remap_page(struct page *page, unsigned int nr)
2364
{
2365
	int i;
2366 2367 2368
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
2369
		for (i = 0; i < nr; i++)
2370 2371
			remove_migration_ptes(page + i, page + i, true);
	}
2372 2373
}

2374
static void lru_add_page_tail(struct page *head, struct page *tail,
2375 2376
		struct lruvec *lruvec, struct list_head *list)
{
2377 2378 2379
	VM_BUG_ON_PAGE(!PageHead(head), head);
	VM_BUG_ON_PAGE(PageCompound(tail), head);
	VM_BUG_ON_PAGE(PageLRU(tail), head);
2380
	lockdep_assert_held(&lruvec->lru_lock);
2381

A
Alex Shi 已提交
2382
	if (list) {
2383
		/* page reclaim is reclaiming a huge page */
A
Alex Shi 已提交
2384
		VM_WARN_ON(PageLRU(head));
2385 2386
		get_page(tail);
		list_add_tail(&tail->lru, list);
2387
	} else {
A
Alex Shi 已提交
2388 2389 2390 2391
		/* head is still on lru (and we have it frozen) */
		VM_WARN_ON(!PageLRU(head));
		SetPageLRU(tail);
		list_add_tail(&tail->lru, &head->lru);
2392 2393 2394
	}
}

2395
static void __split_huge_page_tail(struct page *head, int tail,
2396 2397 2398 2399
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2400
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2401 2402

	/*
2403 2404 2405
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
2406
	 * for example lock_page() which set PG_waiters.
2407 2408 2409 2410 2411
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2412
			 (1L << PG_swapcache) |
2413 2414 2415
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2416
			 (1L << PG_workingset) |
2417
			 (1L << PG_locked) |
2418
			 (1L << PG_unevictable) |
2419 2420 2421
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2422
			 (1L << PG_dirty)));
2423

2424 2425 2426 2427 2428 2429
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2430
	/* Page flags must be visible before we make the page non-compound. */
2431 2432
	smp_wmb();

2433 2434 2435 2436 2437 2438
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2439 2440
	clear_compound_head(page_tail);

2441 2442 2443 2444
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2445 2446 2447 2448 2449 2450
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2451 2452 2453 2454 2455 2456

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2457 2458 2459
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2460
static void __split_huge_page(struct page *page, struct list_head *list,
A
Alex Shi 已提交
2461
		pgoff_t end)
2462 2463 2464
{
	struct page *head = compound_head(page);
	struct lruvec *lruvec;
2465 2466
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2467
	unsigned int nr = thp_nr_pages(head);
2468
	int i;
2469 2470 2471 2472

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2473 2474 2475 2476 2477 2478 2479 2480
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2481 2482
	/* lock lru list/PageCompound, ref freezed by page_ref_freeze */
	lruvec = lock_page_lruvec(head);
A
Alex Shi 已提交
2483

2484
	for (i = nr - 1; i >= 1; i--) {
2485
		__split_huge_page_tail(head, i, lruvec, list);
2486 2487
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2488
			ClearPageDirty(head + i);
2489
			__delete_from_page_cache(head + i, NULL);
2490 2491
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2492
			put_page(head + i);
2493 2494 2495 2496 2497 2498
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2499 2500
		}
	}
2501 2502

	ClearPageCompound(head);
2503
	unlock_page_lruvec(lruvec);
A
Alex Shi 已提交
2504
	/* Caller disabled irqs, so they are still disabled here */
2505

2506
	split_page_owner(head, nr);
2507

2508 2509
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2510
		/* Additional pin to swap cache */
2511
		if (PageSwapCache(head)) {
2512
			page_ref_add(head, 2);
2513 2514
			xa_unlock(&swap_cache->i_pages);
		} else {
2515
			page_ref_inc(head);
2516
		}
2517
	} else {
M
Matthew Wilcox 已提交
2518
		/* Additional pin to page cache */
2519
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2520
		xa_unlock(&head->mapping->i_pages);
2521
	}
A
Alex Shi 已提交
2522
	local_irq_enable();
2523

2524
	remap_page(head, nr);
2525

H
Huang Ying 已提交
2526 2527 2528 2529 2530 2531
	if (PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		split_swap_cluster(entry);
	}

2532
	for (i = 0; i < nr; i++) {
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2549 2550
int total_mapcount(struct page *page)
{
2551
	int i, compound, nr, ret;
2552 2553 2554 2555 2556 2557

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2558
	compound = compound_mapcount(page);
2559
	nr = compound_nr(page);
2560
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2561 2562
		return compound;
	ret = compound;
2563
	for (i = 0; i < nr; i++)
2564
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2565 2566
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
2567
		return ret - compound * nr;
2568
	if (PageDoubleMap(page))
2569
		ret -= nr;
2570 2571 2572
	return ret;
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
2614
	for (i = 0; i < thp_nr_pages(page); i++) {
2615 2616 2617 2618 2619 2620
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
2621
		_total_mapcount -= thp_nr_pages(page);
2622 2623 2624 2625 2626 2627 2628 2629 2630
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2631 2632 2633 2634 2635
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2636
	/* Additional pins from page cache */
2637
	if (PageAnon(page))
2638
		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2639
	else
2640
		extra_pins = thp_nr_pages(page);
2641 2642 2643 2644 2645
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2668
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2669 2670 2671
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2672
	pgoff_t end;
2673

2674
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2675 2676
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2677

2678
	if (PageWriteback(head))
2679 2680
		return -EBUSY;

2681 2682
	if (PageAnon(head)) {
		/*
2683
		 * The caller does not necessarily hold an mmap_lock that would
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2695
		end = -1;
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2709 2710 2711 2712 2713 2714 2715 2716 2717

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2718 2719 2720
	}

	/*
2721
	 * Racy check if we can split the page, before unmap_page() will
2722 2723
	 * split PMDs
	 */
2724
	if (!can_split_huge_page(head, &extra_pins)) {
2725 2726 2727 2728
		ret = -EBUSY;
		goto out_unlock;
	}

2729
	unmap_page(head);
2730 2731
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

A
Alex Shi 已提交
2732 2733
	/* block interrupt reentry in xa_lock and spinlock */
	local_irq_disable();
2734
	if (mapping) {
M
Matthew Wilcox 已提交
2735
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2736 2737

		/*
M
Matthew Wilcox 已提交
2738
		 * Check if the head page is present in page cache.
2739 2740
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2741 2742
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2743 2744 2745
			goto fail;
	}

2746
	/* Prevent deferred_split_scan() touching ->_refcount */
2747
	spin_lock(&ds_queue->split_queue_lock);
2748 2749
	count = page_count(head);
	mapcount = total_mapcount(head);
2750
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2751
		if (!list_empty(page_deferred_list(head))) {
2752
			ds_queue->split_queue_len--;
2753 2754
			list_del(page_deferred_list(head));
		}
2755
		spin_unlock(&ds_queue->split_queue_lock);
2756
		if (mapping) {
2757 2758
			int nr = thp_nr_pages(head);

2759
			if (PageSwapBacked(head))
2760 2761
				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
							-nr);
2762
			else
2763 2764
				__mod_lruvec_page_state(head, NR_FILE_THPS,
							-nr);
2765 2766
		}

A
Alex Shi 已提交
2767
		__split_huge_page(page, list, end);
H
Huang Ying 已提交
2768
		ret = 0;
2769
	} else {
2770 2771 2772 2773 2774 2775 2776 2777
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2778
		spin_unlock(&ds_queue->split_queue_lock);
2779
fail:		if (mapping)
M
Matthew Wilcox 已提交
2780
			xa_unlock(&mapping->i_pages);
A
Alex Shi 已提交
2781
		local_irq_enable();
2782
		remap_page(head, thp_nr_pages(head));
2783 2784 2785 2786
		ret = -EBUSY;
	}

out_unlock:
2787 2788 2789 2790 2791 2792
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2793 2794 2795 2796
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2797 2798 2799

void free_transhuge_page(struct page *page)
{
2800
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2801 2802
	unsigned long flags;

2803
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2804
	if (!list_empty(page_deferred_list(page))) {
2805
		ds_queue->split_queue_len--;
2806 2807
		list_del(page_deferred_list(page));
	}
2808
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2809 2810 2811 2812 2813
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2814 2815
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
2816
	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2817
#endif
2818 2819 2820 2821
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2835
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2836
	if (list_empty(page_deferred_list(page))) {
2837
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2838 2839
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2840 2841 2842 2843 2844
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2845
	}
2846
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2847 2848 2849 2850 2851
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2852
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2853
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2854 2855 2856 2857 2858

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2859
	return READ_ONCE(ds_queue->split_queue_len);
2860 2861 2862 2863 2864
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2865
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2866
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2867 2868 2869 2870 2871
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2872 2873 2874 2875 2876
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2877
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2878
	/* Take pin on all head pages to avoid freeing them under us */
2879
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2880 2881
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2882 2883 2884 2885
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2886
			list_del_init(page_deferred_list(page));
2887
			ds_queue->split_queue_len--;
2888
		}
2889 2890
		if (!--sc->nr_to_scan)
			break;
2891
	}
2892
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2893 2894 2895

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2896 2897
		if (!trylock_page(page))
			goto next;
2898 2899 2900 2901
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2902
next:
2903 2904 2905
		put_page(page);
	}

2906 2907 2908
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2909

2910 2911 2912 2913
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2914
	if (!split && list_empty(&ds_queue->split_queue))
2915 2916
		return SHRINK_STOP;
	return split;
2917 2918 2919 2920 2921 2922
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2923 2924
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2925
};
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2951
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2964
	pr_info("%lu of %lu THP split\n", split, total);
2965 2966 2967

	return 0;
}
2968
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2969 2970 2971 2972
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
2973 2974
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
2975 2976 2977 2978
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2989
	pmd_t pmdswp;
2990 2991 2992 2993 2994

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2995
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2996 2997 2998
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2999 3000 3001 3002
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3022 3023
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3024
	if (is_write_migration_entry(entry))
3025
		pmde = maybe_pmd_mkwrite(pmde, vma);
3026 3027

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3028 3029 3030 3031
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3032
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3033
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3034 3035 3036 3037
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif