huge_memory.c 81.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167 168 169 170 171
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
172
}
173

174 175 176 177
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
178
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
179

180
	if (sysfs_streq(buf, "always")) {
181 182
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183
	} else if (sysfs_streq(buf, "madvise")) {
184 185
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186
	} else if (sysfs_streq(buf, "never")) {
187 188 189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
191 192

	if (ret > 0) {
193
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
194 195 196 197
		if (err)
			ret = err;
	}
	return ret;
198 199 200 201
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

202
ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 204 205
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
206 207
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
208
}
209

210
ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 212 213 214
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
215 216 217 218 219 220 221 222 223 224
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
225
		set_bit(flag, &transparent_hugepage_flags);
226
	else
227 228 229 230 231 232 233 234
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
235
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 239 240 241 242 243
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244
}
245

246 247 248 249
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
250
	if (sysfs_streq(buf, "always")) {
251 252 253 254
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255
	} else if (sysfs_streq(buf, "defer+madvise")) {
256 257 258 259
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260
	} else if (sysfs_streq(buf, "defer")) {
261 262 263 264
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265
	} else if (sysfs_streq(buf, "madvise")) {
266 267 268 269
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270
	} else if (sysfs_streq(buf, "never")) {
271 272 273 274 275 276 277 278
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
279 280 281 282
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

283 284 285
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
286
	return single_hugepage_flag_show(kobj, attr, buf,
287 288 289 290 291
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
292
	return single_hugepage_flag_store(kobj, attr, buf, count,
293 294 295 296
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 298 299 300 301 302 303 304 305

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

306 307 308 309
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
310
	return single_hugepage_flag_show(kobj, attr, buf,
311 312 313 314 315 316
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
317
	return single_hugepage_flag_store(kobj, attr, buf, count,
318 319 320 321 322 323 324 325 326
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
327
	&use_zero_page_attr.attr,
328
	&hpage_pmd_size_attr.attr,
329
#ifdef CONFIG_SHMEM
330 331
	&shmem_enabled_attr.attr,
#endif
332 333 334 335 336 337
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

338
static const struct attribute_group hugepage_attr_group = {
339
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
340 341
};

S
Shaohua Li 已提交
342
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 344 345
{
	int err;

S
Shaohua Li 已提交
346 347
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
348
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
349
		return -ENOMEM;
A
Andrea Arcangeli 已提交
350 351
	}

S
Shaohua Li 已提交
352
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
353
	if (err) {
354
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
355
		goto delete_obj;
A
Andrea Arcangeli 已提交
356 357
	}

S
Shaohua Li 已提交
358
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
359
	if (err) {
360
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
361
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
362
	}
S
Shaohua Li 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

400 401 402 403 404 405 406 407 408 409
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
410 411
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
412
		goto err_sysfs;
A
Andrea Arcangeli 已提交
413

414
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
415
	if (err)
416
		goto err_slab;
A
Andrea Arcangeli 已提交
417

418 419 420
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
421 422 423
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
424

425 426 427 428 429
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
430
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431
		transparent_hugepage_flags = 0;
432 433
		return 0;
	}
434

435
	err = start_stop_khugepaged();
436 437
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
438

S
Shaohua Li 已提交
439
	return 0;
440
err_khugepaged:
441 442
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
443 444
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
445
	khugepaged_destroy();
446
err_slab:
S
Shaohua Li 已提交
447
	hugepage_exit_sysfs(hugepage_kobj);
448
err_sysfs:
A
Andrea Arcangeli 已提交
449
	return err;
450
}
451
subsys_initcall(hugepage_init);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
479
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
480 481 482 483
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

484
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
485
{
486
	if (likely(vma->vm_flags & VM_WRITE))
487 488 489 490
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

491 492
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
493
{
494 495 496 497 498 499 500
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
501
}
502 503 504 505 506 507 508 509
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
510 511 512 513 514 515 516 517 518 519 520 521

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

522 523 524
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
525
		return false;
526 527 528 529 530 531 532

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

533 534
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
535 536 537 538
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
539
	unsigned long len_pad, ret;
540 541 542 543 544 545 546 547

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

548
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549
					      off >> PAGE_SHIFT, flags);
550 551 552 553 554 555

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
556 557
		return 0;

558 559 560 561 562 563 564 565 566
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
567 568 569 570 571
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
572
	unsigned long ret;
573 574 575 576 577
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

578 579 580 581
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
582 583 584 585
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

586 587
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
588
{
J
Jan Kara 已提交
589
	struct vm_area_struct *vma = vmf->vma;
590
	pgtable_t pgtable;
J
Jan Kara 已提交
591
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
592
	vm_fault_t ret = 0;
593

594
	VM_BUG_ON_PAGE(!PageCompound(page), page);
595

596
	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
597 598
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
599
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
600 601
		return VM_FAULT_FALLBACK;
	}
602
	cgroup_throttle_swaprate(page, gfp);
603

604
	pgtable = pte_alloc_one(vma->vm_mm);
605
	if (unlikely(!pgtable)) {
606 607
		ret = VM_FAULT_OOM;
		goto release;
608
	}
609

610
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
611 612 613 614 615
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
616 617
	__SetPageUptodate(page);

J
Jan Kara 已提交
618 619
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
620
		goto unlock_release;
621 622
	} else {
		pmd_t entry;
623

624 625 626 627
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

628 629
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
630
			vm_fault_t ret2;
631

J
Jan Kara 已提交
632
			spin_unlock(vmf->ptl);
633
			put_page(page);
K
Kirill A. Shutemov 已提交
634
			pte_free(vma->vm_mm, pgtable);
635 636 637
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
638 639
		}

640
		entry = mk_huge_pmd(page, vma->vm_page_prot);
641
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
642
		page_add_new_anon_rmap(page, vma, haddr, true);
643
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
644 645
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
646
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
647
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
648
		spin_unlock(vmf->ptl);
649
		count_vm_event(THP_FAULT_ALLOC);
650
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
651 652
	}

653
	return 0;
654 655 656 657 658 659 660 661
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

662 663
}

664
/*
665 666 667 668 669 670 671
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
672
 */
673
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
674
{
675
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
676

677
	/* Always do synchronous compaction */
678 679
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
680 681

	/* Kick kcompactd and fail quickly */
682
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
683
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
684 685

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
686
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
687 688 689
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
690 691

	/* Only do synchronous compaction if madvised */
692
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
693 694
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
695

696
	return GFP_TRANSHUGE_LIGHT;
697 698
}

699
/* Caller must hold page table lock. */
700
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
701
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
702
		struct page *zero_page)
703 704
{
	pmd_t entry;
A
Andrew Morton 已提交
705 706
	if (!pmd_none(*pmd))
		return false;
707
	entry = mk_pmd(zero_page, vma->vm_page_prot);
708
	entry = pmd_mkhuge(entry);
709 710
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
711
	set_pmd_at(mm, haddr, pmd, entry);
712
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
713
	return true;
714 715
}

716
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
717
{
J
Jan Kara 已提交
718
	struct vm_area_struct *vma = vmf->vma;
719
	gfp_t gfp;
720
	struct page *page;
J
Jan Kara 已提交
721
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
722

723
	if (!transhuge_vma_suitable(vma, haddr))
724
		return VM_FAULT_FALLBACK;
725 726
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
727
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
728
		return VM_FAULT_OOM;
J
Jan Kara 已提交
729
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
730
			!mm_forbids_zeropage(vma->vm_mm) &&
731 732 733 734
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
735
		vm_fault_t ret;
736
		pgtable = pte_alloc_one(vma->vm_mm);
737
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
738
			return VM_FAULT_OOM;
739
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
740
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
741
			pte_free(vma->vm_mm, pgtable);
742
			count_vm_event(THP_FAULT_FALLBACK);
743
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
744
		}
J
Jan Kara 已提交
745
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
746 747
		ret = 0;
		set = false;
J
Jan Kara 已提交
748
		if (pmd_none(*vmf->pmd)) {
749 750 751 752
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
753 754
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
755 756
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
757
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
758 759
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
760 761 762
				set = true;
			}
		} else
J
Jan Kara 已提交
763
			spin_unlock(vmf->ptl);
764
		if (!set)
K
Kirill A. Shutemov 已提交
765
			pte_free(vma->vm_mm, pgtable);
766
		return ret;
767
	}
768 769
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
770 771
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
772
		return VM_FAULT_FALLBACK;
773
	}
774
	prep_transhuge_page(page);
J
Jan Kara 已提交
775
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
776 777
}

778
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
779 780
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
781 782 783 784 785 786
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

802 803 804
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
805
	if (write) {
806 807
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
808
	}
809 810 811

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
812
		mm_inc_nr_ptes(mm);
813
		pgtable = NULL;
814 815
	}

816 817
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
818 819

out_unlock:
M
Matthew Wilcox 已提交
820
	spin_unlock(ptl);
821 822
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
823 824
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
840
{
841 842
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
843
	pgtable_t pgtable = NULL;
844

M
Matthew Wilcox 已提交
845 846 847 848 849
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
850 851
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
852 853 854 855 856 857
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
858

859
	if (arch_needs_pgtable_deposit()) {
860
		pgtable = pte_alloc_one(vma->vm_mm);
861 862 863 864
		if (!pgtable)
			return VM_FAULT_OOM;
	}

865 866
	track_pfn_insert(vma, &pgprot, pfn);

867
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
868
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
869
}
870
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
871

872
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
873
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
874
{
875
	if (likely(vma->vm_flags & VM_WRITE))
876 877 878 879 880 881 882 883 884 885 886 887
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
888 889 890 891 892 893 894 895 896 897 898 899 900 901
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

902 903 904 905
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
906 907
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
908 909 910
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
911 912

out_unlock:
913 914 915
	spin_unlock(ptl);
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
931
{
932 933 934
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

935 936 937 938 939
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
940 941
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
942 943 944 945 946 947 948 949 950
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

951
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
952 953
	return VM_FAULT_NOPAGE;
}
954
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
955 956
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

957
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
958
		pmd_t *pmd, int flags)
959 960 961
{
	pmd_t _pmd;

962 963 964
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
965
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
966
				pmd, _pmd, flags & FOLL_WRITE))
967 968 969 970
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
971
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
972 973 974 975 976 977 978
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

979 980 981 982 983 984
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
985 986 987 988 989
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

990
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
991 992 993 994 995 996 997 998
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
999
		touch_pmd(vma, addr, pmd, flags);
1000 1001 1002 1003 1004

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
1005
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1006 1007 1008
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1009 1010
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1011 1012
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1013 1014
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1015 1016 1017 1018

	return page;
}

1019 1020 1021 1022
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1023
	spinlock_t *dst_ptl, *src_ptl;
1024 1025
	struct page *src_page;
	pmd_t pmd;
1026
	pgtable_t pgtable = NULL;
1027
	int ret = -ENOMEM;
1028

1029 1030 1031 1032
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1033
	pgtable = pte_alloc_one(dst_mm);
1034 1035
	if (unlikely(!pgtable))
		goto out;
1036

1037 1038 1039
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 1041 1042

	ret = -EAGAIN;
	pmd = *src_pmd;
1043

1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
	 * does not have the VM_UFFD_WP, which means that the uffd
	 * fork event is not enabled.
	 */
	if (!(vma->vm_flags & VM_UFFD_WP))
		pmd = pmd_clear_uffd_wp(pmd);

1052 1053 1054 1055 1056 1057 1058 1059
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1060 1061
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1062 1063
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1064
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1065
		mm_inc_nr_ptes(dst_mm);
1066
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1067 1068 1069 1070 1071 1072
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1073
	if (unlikely(!pmd_trans_huge(pmd))) {
1074 1075 1076
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1077
	/*
1078
	 * When page table lock is held, the huge zero pmd should not be
1079 1080 1081 1082
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1083
		struct page *zero_page;
1084 1085 1086 1087 1088
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1089
		zero_page = mm_get_huge_zero_page(dst_mm);
1090
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1091
				zero_page);
1092 1093 1094
		ret = 0;
		goto out_unlock;
	}
1095

1096 1097 1098 1099 1100
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1101
	mm_inc_nr_ptes(dst_mm);
1102
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1103 1104 1105 1106 1107 1108 1109

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1110 1111
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1112 1113 1114 1115
out:
	return ret;
}

1116 1117
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1118
		pud_t *pud, int flags)
1119 1120 1121
{
	pud_t _pud;

1122 1123 1124
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1125
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1126
				pud, _pud, flags & FOLL_WRITE))
1127 1128 1129 1130
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1131
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1132 1133 1134 1135 1136 1137 1138
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1139
	if (flags & FOLL_WRITE && !pud_write(*pud))
1140 1141
		return NULL;

J
John Hubbard 已提交
1142 1143 1144 1145 1146
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1147 1148 1149 1150 1151 1152
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1153
		touch_pud(vma, addr, pud, flags);
1154 1155 1156 1157

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1158 1159
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1160
	 */
J
John Hubbard 已提交
1161
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1162 1163 1164
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1165 1166
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1167 1168
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1169 1170
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1234
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1235 1236 1237
{
	pmd_t entry;
	unsigned long haddr;
1238
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1239

J
Jan Kara 已提交
1240 1241
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1242 1243 1244
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1245 1246
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1247
	haddr = vmf->address & HPAGE_PMD_MASK;
1248
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1249
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1250 1251

unlock:
J
Jan Kara 已提交
1252
	spin_unlock(vmf->ptl);
1253 1254
}

1255
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1256
{
J
Jan Kara 已提交
1257
	struct vm_area_struct *vma = vmf->vma;
1258
	struct page *page;
J
Jan Kara 已提交
1259
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1260

J
Jan Kara 已提交
1261
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1262
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1263

1264
	if (is_huge_zero_pmd(orig_pmd))
1265 1266
		goto fallback;

J
Jan Kara 已提交
1267
	spin_lock(vmf->ptl);
1268 1269 1270 1271 1272

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1273 1274

	page = pmd_page(orig_pmd);
1275
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1276 1277

	/* Lock page for reuse_swap_page() */
1278 1279 1280 1281 1282 1283
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1284
			spin_unlock(vmf->ptl);
1285 1286
			unlock_page(page);
			put_page(page);
1287
			return 0;
1288 1289 1290
		}
		put_page(page);
	}
1291 1292 1293 1294 1295

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1296
	if (reuse_swap_page(page, NULL)) {
1297 1298
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1299
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1300
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1301
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1302
		unlock_page(page);
J
Jan Kara 已提交
1303
		spin_unlock(vmf->ptl);
1304
		return VM_FAULT_WRITE;
1305
	}
1306 1307

	unlock_page(page);
J
Jan Kara 已提交
1308
	spin_unlock(vmf->ptl);
1309 1310 1311
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1312 1313
}

1314
/*
1315 1316
 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
 * but only after we've gone through a COW cycle and they are dirty.
1317 1318 1319
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1320
	return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
1321 1322
}

1323
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1324 1325 1326 1327
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1328
	struct mm_struct *mm = vma->vm_mm;
1329 1330
	struct page *page = NULL;

1331
	assert_spin_locked(pmd_lockptr(mm, pmd));
1332

1333
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1334 1335
		goto out;

1336 1337 1338 1339
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1340
	/* Full NUMA hinting faults to serialise migration in fault paths */
1341
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1342 1343
		goto out;

1344
	page = pmd_page(*pmd);
1345
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1346 1347 1348 1349

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1350
	if (flags & FOLL_TOUCH)
1351
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1352

E
Eric B Munson 已提交
1353
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1354 1355 1356 1357
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1358 1359
		 * For anon THP:
		 *
1360 1361 1362 1363 1364 1365 1366
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1367 1368 1369 1370 1371 1372
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1373
		 */
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1384
	}
1385
skip_mlock:
1386
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1387
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1388 1389 1390 1391 1392

out:
	return page;
}

1393
/* NUMA hinting page fault entry point for trans huge pmds */
1394
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1395
{
J
Jan Kara 已提交
1396
	struct vm_area_struct *vma = vmf->vma;
1397
	struct anon_vma *anon_vma = NULL;
1398
	struct page *page;
J
Jan Kara 已提交
1399
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1400
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1401
	int target_nid, last_cpupid = -1;
1402 1403
	bool page_locked;
	bool migrated = false;
1404
	bool was_writable;
1405
	int flags = 0;
1406

J
Jan Kara 已提交
1407 1408
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1409 1410
		goto out_unlock;

1411 1412 1413 1414 1415
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1416 1417
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1418 1419
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1420
		spin_unlock(vmf->ptl);
1421
		put_and_wait_on_page_locked(page);
1422 1423 1424
		goto out;
	}

1425
	page = pmd_page(pmd);
1426
	BUG_ON(is_huge_zero_page(page));
1427
	page_nid = page_to_nid(page);
1428
	last_cpupid = page_cpupid_last(page);
1429
	count_vm_numa_event(NUMA_HINT_FAULTS);
1430
	if (page_nid == this_nid) {
1431
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1432 1433
		flags |= TNF_FAULT_LOCAL;
	}
1434

1435
	/* See similar comment in do_numa_page for explanation */
1436
	if (!pmd_savedwrite(pmd))
1437 1438
		flags |= TNF_NO_GROUP;

1439 1440 1441 1442
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1443 1444
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1445
	if (target_nid == NUMA_NO_NODE) {
1446
		/* If the page was locked, there are no parallel migrations */
1447
		if (page_locked)
1448
			goto clear_pmdnuma;
1449
	}
1450

1451
	/* Migration could have started since the pmd_trans_migrating check */
1452
	if (!page_locked) {
1453
		page_nid = NUMA_NO_NODE;
1454 1455
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1456
		spin_unlock(vmf->ptl);
1457
		put_and_wait_on_page_locked(page);
1458 1459 1460
		goto out;
	}

1461 1462 1463 1464
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1465
	get_page(page);
J
Jan Kara 已提交
1466
	spin_unlock(vmf->ptl);
1467
	anon_vma = page_lock_anon_vma_read(page);
1468

P
Peter Zijlstra 已提交
1469
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1470 1471
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1472 1473
		unlock_page(page);
		put_page(page);
1474
		page_nid = NUMA_NO_NODE;
1475
		goto out_unlock;
1476
	}
1477

1478 1479 1480
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1481
		page_nid = NUMA_NO_NODE;
1482 1483 1484
		goto clear_pmdnuma;
	}

1485 1486 1487 1488 1489 1490
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1491 1492 1493 1494
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1495
	 */
1496
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1497
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1510

1511 1512
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1513
	 * and access rights restored.
1514
	 */
J
Jan Kara 已提交
1515
	spin_unlock(vmf->ptl);
1516

K
Kirill A. Shutemov 已提交
1517
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1518
				vmf->pmd, pmd, vmf->address, page, target_nid);
1519 1520
	if (migrated) {
		flags |= TNF_MIGRATED;
1521
		page_nid = target_nid;
1522 1523
	} else
		flags |= TNF_MIGRATE_FAIL;
1524

1525
	goto out;
1526
clear_pmdnuma:
1527
	BUG_ON(!PageLocked(page));
1528
	was_writable = pmd_savedwrite(pmd);
1529
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1530
	pmd = pmd_mkyoung(pmd);
1531 1532
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1533 1534
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1535
	unlock_page(page);
1536
out_unlock:
J
Jan Kara 已提交
1537
	spin_unlock(vmf->ptl);
1538 1539 1540 1541 1542

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1543
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1544
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1545
				flags);
1546

1547 1548 1549
	return 0;
}

1550 1551 1552 1553 1554
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1555 1556 1557 1558 1559 1560
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1561
	bool ret = false;
1562

1563
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1564

1565 1566
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1567
		goto out_unlocked;
1568 1569

	orig_pmd = *pmd;
1570
	if (is_huge_zero_pmd(orig_pmd))
1571 1572
		goto out;

1573 1574 1575 1576 1577 1578
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1597
		split_huge_page(page);
1598
		unlock_page(page);
1599
		put_page(page);
1600 1601 1602 1603 1604 1605 1606 1607
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1608
		pmdp_invalidate(vma, addr, pmd);
1609 1610 1611 1612 1613 1614
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1615 1616

	mark_page_lazyfree(page);
1617
	ret = true;
1618 1619 1620 1621 1622 1623
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1624 1625 1626 1627 1628 1629
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1630
	mm_dec_nr_ptes(mm);
1631 1632
}

1633
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1634
		 pmd_t *pmd, unsigned long addr)
1635
{
1636
	pmd_t orig_pmd;
1637
	spinlock_t *ptl;
1638

1639
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1640

1641 1642
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1643 1644 1645 1646 1647 1648 1649
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1650 1651
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1652
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1653
	if (vma_is_special_huge(vma)) {
1654 1655
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1656 1657
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1658
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1659
	} else if (is_huge_zero_pmd(orig_pmd)) {
1660
		zap_deposited_table(tlb->mm, pmd);
1661
		spin_unlock(ptl);
1662
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1663
	} else {
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1682
		if (PageAnon(page)) {
1683
			zap_deposited_table(tlb->mm, pmd);
1684 1685
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1686 1687
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1688
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1689
		}
1690

1691
		spin_unlock(ptl);
1692 1693
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1694
	}
1695
	return 1;
1696 1697
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1724
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1725
		  unsigned long new_addr, unsigned long old_end,
1726
		  pmd_t *old_pmd, pmd_t *new_pmd)
1727
{
1728
	spinlock_t *old_ptl, *new_ptl;
1729 1730
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1731
	bool force_flush = false;
1732 1733 1734

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1735
	    old_end - old_addr < HPAGE_PMD_SIZE)
1736
		return false;
1737 1738 1739 1740 1741 1742 1743

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1744
		return false;
1745 1746
	}

1747 1748
	/*
	 * We don't have to worry about the ordering of src and dst
1749
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1750
	 */
1751 1752
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1753 1754 1755
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1756
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1757
		if (pmd_present(pmd))
1758
			force_flush = true;
1759
		VM_BUG_ON(!pmd_none(*new_pmd));
1760

1761
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1762
			pgtable_t pgtable;
1763 1764 1765
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1766 1767
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1768 1769
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1770 1771
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1772
		spin_unlock(old_ptl);
1773
		return true;
1774
	}
1775
	return false;
1776 1777
}

1778 1779 1780 1781 1782 1783
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1784
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1785
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1786 1787
{
	struct mm_struct *mm = vma->vm_mm;
1788
	spinlock_t *ptl;
1789 1790 1791
	pmd_t entry;
	bool preserve_write;
	int ret;
1792
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1793 1794
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1795

1796
	ptl = __pmd_trans_huge_lock(pmd, vma);
1797 1798
	if (!ptl)
		return 0;
1799

1800 1801
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1816 1817
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1818 1819 1820 1821 1822 1823
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1824 1825 1826 1827 1828 1829 1830
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1831

1832 1833 1834
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1835
	/*
1836
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1837
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1838
	 * which is also under mmap_read_lock(mm):
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1856
	entry = pmdp_invalidate(vma, addr, pmd);
1857

1858 1859 1860
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1872 1873 1874 1875 1876
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1877 1878 1879 1880
	return ret;
}

/*
1881
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1882
 *
1883 1884
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1885
 */
1886
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1887
{
1888 1889
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1890 1891
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1892 1893 1894
		return ptl;
	spin_unlock(ptl);
	return NULL;
1895 1896
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1929
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1930
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1931
	if (vma_is_special_huge(vma)) {
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1949
	count_vm_event(THP_SPLIT_PUD);
1950 1951 1952 1953 1954 1955 1956 1957

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1958
	struct mmu_notifier_range range;
1959

1960
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1961
				address & HPAGE_PUD_MASK,
1962 1963 1964
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1965 1966
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1967
	__split_huge_pud_locked(vma, pud, range.start);
1968 1969 1970

out:
	spin_unlock(ptl);
1971 1972 1973 1974
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1975
	mmu_notifier_invalidate_range_only_end(&range);
1976 1977 1978
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1979 1980 1981 1982 1983 1984 1985 1986
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1987 1988 1989 1990 1991 1992
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1993
	 * See Documentation/vm/mmu_notifier.rst
1994 1995
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2014
		unsigned long haddr, bool freeze)
2015 2016 2017 2018
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2019
	pmd_t old_pmd, _pmd;
2020
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2021
	unsigned long addr;
2022 2023 2024 2025 2026
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2027 2028
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2029 2030 2031

	count_vm_event(THP_SPLIT_PMD);

2032 2033
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2034 2035 2036 2037 2038 2039
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2040
		if (vma_is_special_huge(vma))
2041 2042
			return;
		page = pmd_page(_pmd);
2043 2044
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2045 2046 2047 2048
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2049
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2050 2051
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2052 2053 2054 2055 2056 2057 2058 2059 2060
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2061 2062 2063
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2087
	if (unlikely(pmd_migration)) {
2088 2089
		swp_entry_t entry;

2090
		entry = pmd_to_swp_entry(old_pmd);
2091
		page = pfn_to_page(swp_offset(entry));
2092 2093 2094
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2095
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2096
	} else {
2097
		page = pmd_page(old_pmd);
2098 2099 2100 2101 2102
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2103
		uffd_wp = pmd_uffd_wp(old_pmd);
2104
	}
2105
	VM_BUG_ON_PAGE(!page_count(page), page);
2106
	page_ref_add(page, HPAGE_PMD_NR - 1);
2107

2108 2109 2110 2111
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2112 2113 2114
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2115
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2116 2117 2118 2119 2120 2121
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2122
		if (freeze || pmd_migration) {
2123 2124 2125
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2126 2127
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2128 2129
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2130
		} else {
2131
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2132
			entry = maybe_mkwrite(entry, vma);
2133 2134 2135 2136
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2137 2138
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2139 2140
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2141
		}
2142
		pte = pte_offset_map(&_pmd, addr);
2143
		BUG_ON(!pte_none(*pte));
2144
		set_pte_at(mm, addr, pte, entry);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

2158
	lock_page_memcg(page);
2159 2160
	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2161
		__dec_lruvec_page_state(page, NR_ANON_THPS);
2162 2163 2164 2165 2166 2167
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}
2168
	unlock_page_memcg(page);
2169 2170 2171

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2172 2173

	if (freeze) {
2174
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2175 2176 2177 2178
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2179 2180 2181
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2182
		unsigned long address, bool freeze, struct page *page)
2183 2184
{
	spinlock_t *ptl;
2185
	struct mmu_notifier_range range;
2186 2187
	bool was_locked = false;
	pmd_t _pmd;
2188

2189
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2190
				address & HPAGE_PMD_MASK,
2191 2192 2193
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2194 2195 2196 2197 2198 2199

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
2200 2201 2202 2203 2204 2205
	if (page) {
		VM_WARN_ON_ONCE(!PageLocked(page));
		was_locked = true;
		if (page != pmd_page(*pmd))
			goto out;
	}
2206

2207
repeat:
2208
	if (pmd_trans_huge(*pmd)) {
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		if (!page) {
			page = pmd_page(*pmd);
			if (unlikely(!trylock_page(page))) {
				get_page(page);
				_pmd = *pmd;
				spin_unlock(ptl);
				lock_page(page);
				spin_lock(ptl);
				if (unlikely(!pmd_same(*pmd, _pmd))) {
					unlock_page(page);
					put_page(page);
					page = NULL;
					goto repeat;
				}
				put_page(page);
			}
		}
2226
		if (PageMlocked(page))
2227
			clear_page_mlock(page);
2228
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2229
		goto out;
2230
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2231
out:
2232
	spin_unlock(ptl);
2233 2234
	if (!was_locked && page)
		unlock_page(page);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2248
	mmu_notifier_invalidate_range_only_end(&range);
2249 2250
}

2251 2252
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2253
{
2254
	pgd_t *pgd;
2255
	p4d_t *p4d;
2256
	pud_t *pud;
2257 2258
	pmd_t *pmd;

2259
	pgd = pgd_offset(vma->vm_mm, address);
2260 2261 2262
	if (!pgd_present(*pgd))
		return;

2263 2264 2265 2266 2267
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2268 2269 2270 2271
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2272

2273
	__split_huge_pmd(vma, pmd, address, freeze, page);
2274 2275
}

2276
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2289
		split_huge_pmd_address(vma, start, false, NULL);
2290 2291 2292 2293 2294 2295 2296 2297 2298

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2299
		split_huge_pmd_address(vma, end, false, NULL);
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2313
			split_huge_pmd_address(next, nstart, false, NULL);
2314 2315
	}
}
2316

2317
static void unmap_page(struct page *page)
2318
{
2319
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2320
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2321
	bool unmap_success;
2322 2323 2324

	VM_BUG_ON_PAGE(!PageHead(page), page);

2325
	if (PageAnon(page))
2326
		ttu_flags |= TTU_SPLIT_FREEZE;
2327

M
Minchan Kim 已提交
2328 2329
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2330 2331
}

2332
static void remap_page(struct page *page)
2333
{
2334
	int i;
2335 2336 2337 2338 2339 2340
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2341 2342
}

2343
static void __split_huge_page_tail(struct page *head, int tail,
2344 2345 2346 2347
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2348
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2349 2350

	/*
2351 2352 2353 2354
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2355 2356 2357 2358 2359
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2360
			 (1L << PG_swapcache) |
2361 2362 2363
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2364
			 (1L << PG_workingset) |
2365
			 (1L << PG_locked) |
2366 2367
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2368

2369 2370 2371 2372 2373 2374
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2375
	/* Page flags must be visible before we make the page non-compound. */
2376 2377
	smp_wmb();

2378 2379 2380 2381 2382 2383
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2384 2385
	clear_compound_head(page_tail);

2386 2387 2388 2389
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2390 2391 2392 2393 2394 2395
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2396 2397 2398 2399 2400 2401

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2402 2403 2404
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2405
static void __split_huge_page(struct page *page, struct list_head *list,
2406
		pgoff_t end, unsigned long flags)
2407 2408
{
	struct page *head = compound_head(page);
2409
	pg_data_t *pgdat = page_pgdat(head);
2410
	struct lruvec *lruvec;
2411 2412
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2413
	int i;
2414

2415
	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2416 2417 2418 2419

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2420 2421 2422 2423 2424 2425 2426 2427
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2428
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2429
		__split_huge_page_tail(head, i, lruvec, list);
2430 2431
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2432
			ClearPageDirty(head + i);
2433
			__delete_from_page_cache(head + i, NULL);
2434 2435
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2436
			put_page(head + i);
2437 2438 2439 2440 2441 2442
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2443 2444
		}
	}
2445 2446

	ClearPageCompound(head);
2447 2448 2449

	split_page_owner(head, HPAGE_PMD_ORDER);

2450 2451
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2452
		/* Additional pin to swap cache */
2453
		if (PageSwapCache(head)) {
2454
			page_ref_add(head, 2);
2455 2456
			xa_unlock(&swap_cache->i_pages);
		} else {
2457
			page_ref_inc(head);
2458
		}
2459
	} else {
M
Matthew Wilcox 已提交
2460
		/* Additional pin to page cache */
2461
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2462
		xa_unlock(&head->mapping->i_pages);
2463 2464
	}

2465
	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2466

2467
	remap_page(head);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2486 2487
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2488
	int i, compound, ret;
2489 2490 2491 2492 2493 2494

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2495
	compound = compound_mapcount(page);
2496
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2497 2498
		return compound;
	ret = compound;
2499 2500
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2501 2502 2503
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2504 2505 2506 2507 2508
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2567 2568 2569 2570 2571
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2572
	/* Additional pins from page cache */
2573 2574 2575 2576 2577 2578 2579 2580 2581
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2604
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2605
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2606 2607 2608
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2609
	unsigned long flags;
2610
	pgoff_t end;
2611

2612
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2613 2614
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2615

2616
	if (PageWriteback(head))
2617 2618
		return -EBUSY;

2619 2620
	if (PageAnon(head)) {
		/*
2621
		 * The caller does not necessarily hold an mmap_lock that would
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2633
		end = -1;
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2647 2648 2649 2650 2651 2652 2653 2654 2655

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2656 2657 2658
	}

	/*
2659
	 * Racy check if we can split the page, before unmap_page() will
2660 2661
	 * split PMDs
	 */
2662
	if (!can_split_huge_page(head, &extra_pins)) {
2663 2664 2665 2666
		ret = -EBUSY;
		goto out_unlock;
	}

2667
	unmap_page(head);
2668 2669
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2670
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2671
	spin_lock_irqsave(&pgdata->lru_lock, flags);
2672 2673

	if (mapping) {
M
Matthew Wilcox 已提交
2674
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2675 2676

		/*
M
Matthew Wilcox 已提交
2677
		 * Check if the head page is present in page cache.
2678 2679
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2680 2681
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2682 2683 2684
			goto fail;
	}

2685
	/* Prevent deferred_split_scan() touching ->_refcount */
2686
	spin_lock(&ds_queue->split_queue_lock);
2687 2688
	count = page_count(head);
	mapcount = total_mapcount(head);
2689
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2690
		if (!list_empty(page_deferred_list(head))) {
2691
			ds_queue->split_queue_len--;
2692 2693
			list_del(page_deferred_list(head));
		}
2694
		spin_unlock(&ds_queue->split_queue_lock);
2695
		if (mapping) {
2696 2697
			if (PageSwapBacked(head))
				__dec_node_page_state(head, NR_SHMEM_THPS);
2698
			else
2699
				__dec_node_page_state(head, NR_FILE_THPS);
2700 2701
		}

2702
		__split_huge_page(page, list, end, flags);
2703 2704 2705 2706 2707 2708
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2709
	} else {
2710 2711 2712 2713 2714 2715 2716 2717
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2718
		spin_unlock(&ds_queue->split_queue_lock);
2719
fail:		if (mapping)
M
Matthew Wilcox 已提交
2720
			xa_unlock(&mapping->i_pages);
2721
		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2722
		remap_page(head);
2723 2724 2725 2726
		ret = -EBUSY;
	}

out_unlock:
2727 2728 2729 2730 2731 2732
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2733 2734 2735 2736
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2737 2738 2739

void free_transhuge_page(struct page *page)
{
2740
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2741 2742
	unsigned long flags;

2743
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2744
	if (!list_empty(page_deferred_list(page))) {
2745
		ds_queue->split_queue_len--;
2746 2747
		list_del(page_deferred_list(page));
	}
2748
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2749 2750 2751 2752 2753
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2754 2755 2756 2757
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2758 2759 2760 2761
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2775
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2776
	if (list_empty(page_deferred_list(page))) {
2777
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2778 2779
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2780 2781 2782 2783 2784
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2785
	}
2786
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2787 2788 2789 2790 2791
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2792
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2793
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2794 2795 2796 2797 2798

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2799
	return READ_ONCE(ds_queue->split_queue_len);
2800 2801 2802 2803 2804
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2805
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2806
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2807 2808 2809 2810 2811
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2812 2813 2814 2815 2816
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2817
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2818
	/* Take pin on all head pages to avoid freeing them under us */
2819
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2820 2821
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2822 2823 2824 2825
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2826
			list_del_init(page_deferred_list(page));
2827
			ds_queue->split_queue_len--;
2828
		}
2829 2830
		if (!--sc->nr_to_scan)
			break;
2831
	}
2832
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2833 2834 2835

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2836 2837
		if (!trylock_page(page))
			goto next;
2838 2839 2840 2841
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2842
next:
2843 2844 2845
		put_page(page);
	}

2846 2847 2848
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2849

2850 2851 2852 2853
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2854
	if (!split && list_empty(&ds_queue->split_queue))
2855 2856
		return SHRINK_STOP;
	return split;
2857 2858 2859 2860 2861 2862
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2863 2864
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2865
};
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2891
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2904
	pr_info("%lu of %lu THP split\n", split, total);
2905 2906 2907

	return 0;
}
2908
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2909 2910 2911 2912
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
2913 2914
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
2915 2916 2917 2918
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2929
	pmd_t pmdswp;
2930 2931 2932 2933 2934

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2935
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2936 2937 2938
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2939 2940 2941 2942
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2962 2963
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
2964
	if (is_write_migration_entry(entry))
2965
		pmde = maybe_pmd_mkwrite(pmde, vma);
2966 2967

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2968 2969 2970 2971
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
2972
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2973
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2974 2975 2976 2977
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif